File size: 6,576 Bytes
28dd4a5
 
 
 
 
 
0082c6f
28dd4a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
632ac5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc6bc52
632ac5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import googlemaps
import os
#GM_TOKEN=os.environ.get("GM_TOKEN") # Get Google Maps Token Here:  

from datetime import datetime

gmaps = googlemaps.Client(key='AIzaSyDybq2mxujekZVivmr03Y5-GGHXesn4TLI')

# Geocoding an address
geocode_result = gmaps.geocode('1600 Amphitheatre Parkway, Mountain View, CA')

# Look up an address with reverse geocoding
reverse_geocode_result = gmaps.reverse_geocode((40.714224, -73.961452))

# Request directions via public transit
now = datetime.now()
directions_result = gmaps.directions("Sydney Town Hall",
                                     "Parramatta, NSW",
                                     mode="transit",
                                     departure_time=now)

# Validate an address with address validation
addressvalidation_result =  gmaps.addressvalidation(['1600 Amphitheatre Pk'], 
                                                    regionCode='US',
                                                    locality='Mountain View', 
                                                    enableUspsCass=True)




from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration
import torch
import gradio as gr
from datasets import load_dataset

# PersistDataset -----
import os
import csv
from gradio import inputs, outputs
import huggingface_hub
from huggingface_hub import Repository, hf_hub_download, upload_file
from datetime import datetime

#fastapi is where its at:  share your app, share your api
import fastapi

from typing import List, Dict
import httpx
import pandas as pd
import datasets as ds

UseMemory=True
HF_TOKEN=os.environ.get("HF_TOKEN")

def SaveResult(text, outputfileName):
    basedir = os.path.dirname(__file__)
    savePath = outputfileName
    print("Saving: " + text + " to " + savePath)
    from os.path import exists
    file_exists = exists(savePath)
    if file_exists:
        with open(outputfileName, "a") as f: #append
            f.write(str(text.replace("\n","  ")))
            f.write('\n')
    else:
        with open(outputfileName, "w") as f: #write
            f.write(str("time, message, text\n")) # one time only to get column headers for CSV file
            f.write(str(text.replace("\n","  ")))
            f.write('\n')
    return

    
def store_message(name: str, message: str, outputfileName: str):
    basedir = os.path.dirname(__file__)
    savePath = outputfileName
    
    # if file doesnt exist, create it with labels
    from os.path import exists
    file_exists = exists(savePath)
    
    if (file_exists==False):
        with open(savePath, "w") as f: #write
            f.write(str("time, message, text\n")) # one time only to get column headers for CSV file
            if name and message:
                writer = csv.DictWriter(f, fieldnames=["time", "message", "name"])
                writer.writerow(
                    {"time": str(datetime.now()), "message": message.strip(), "name": name.strip()  }
                )
        df = pd.read_csv(savePath)
        df = df.sort_values(df.columns[0],ascending=False)
    else:
        if name and message:
            with open(savePath, "a") as csvfile:
                writer = csv.DictWriter(csvfile, fieldnames=[ "time", "message", "name", ])
                writer.writerow(
                    {"time": str(datetime.now()), "message": message.strip(), "name": name.strip()  }
                )
        df = pd.read_csv(savePath)
        df = df.sort_values(df.columns[0],ascending=False)
    return df

mname = "facebook/blenderbot-400M-distill"
model = BlenderbotForConditionalGeneration.from_pretrained(mname)
tokenizer = BlenderbotTokenizer.from_pretrained(mname)

def take_last_tokens(inputs, note_history, history):
    if inputs['input_ids'].shape[1] > 128:
        inputs['input_ids'] = torch.tensor([inputs['input_ids'][0][-128:].tolist()])
        inputs['attention_mask'] = torch.tensor([inputs['attention_mask'][0][-128:].tolist()])
        note_history = ['</s> <s>'.join(note_history[0].split('</s> <s>')[2:])]
        history = history[1:]
    return inputs, note_history, history
    
def add_note_to_history(note, note_history):# good example of non async since we wait around til we know it went okay.
    note_history.append(note)
    note_history = '</s> <s>'.join(note_history)
    return [note_history]

title = "💬ChatBack🧠💾"
description = """Chatbot With persistent memory dataset allowing multiagent system AI to access a shared dataset as memory pool with stored interactions. 
 Current Best SOTA Chatbot:  https://huggingface.co/facebook/blenderbot-400M-distill?text=Hey+my+name+is+ChatBack%21+Are+you+ready+to+rock%3F  """

def get_base(filename): 
        basedir = os.path.dirname(__file__)
        print(basedir)
        #loadPath = basedir + "\\" + filename # works on windows
        loadPath = basedir + filename # works on ubuntu
        print(loadPath)
        return loadPath
    
def chat(message, history):
    history = history or []
    if history: 
        history_useful = ['</s> <s>'.join([str(a[0])+'</s> <s>'+str(a[1]) for a in history])]
    else:
        history_useful = []
        
    history_useful = add_note_to_history(message, history_useful)
    inputs = tokenizer(history_useful, return_tensors="pt")
    inputs, history_useful, history = take_last_tokens(inputs, history_useful, history)
    reply_ids = model.generate(**inputs)
    response = tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0]
    history_useful = add_note_to_history(response, history_useful)
    list_history = history_useful[0].split('</s> <s>')
    history.append((list_history[-2], list_history[-1]))  
    
    df=pd.DataFrame()
    
    if UseMemory: 
        #outputfileName = 'ChatbotMemory.csv'
        outputfileName = 'ChatbotMemory3.csv' # Test first time file create
        df = store_message(message, response, outputfileName) # Save to dataset
        basedir = get_base(outputfileName)
        
    return history, df, basedir




with gr.Blocks() as demo:
  gr.Markdown("<h1><center>🍰 AI Google Maps Demonstration🎨</center></h1>")
  
  with gr.Row():
    t1 = gr.Textbox(lines=1, default="", label="Chat Text:")
    b1 = gr.Button("Respond and Retrieve Messages")
    
  with gr.Row(): # inputs and buttons
    s1 = gr.State([])
    df1 = gr.Dataframe(wrap=True, max_rows=1000, overflow_row_behaviour= "paginate")
  with gr.Row(): # inputs and buttons
    file = gr.File(label="File")
    s2 = gr.Markdown()

  b1.click(fn=chat, inputs=[t1, s1], outputs=[s1, df1, file]) 
    
demo.launch(debug=True, show_error=True)