File size: 7,939 Bytes
0de03c5
d881b0d
 
 
 
 
 
 
0de03c5
 
d881b0d
 
 
0de03c5
d881b0d
0de03c5
d881b0d
0de03c5
d881b0d
0de03c5
d881b0d
0de03c5
 
d881b0d
0de03c5
d881b0d
 
 
0de03c5
d881b0d
 
 
0de03c5
d881b0d
0de03c5
 
 
d881b0d
 
 
 
0de03c5
 
 
 
d881b0d
 
 
0de03c5
d881b0d
 
 
 
 
 
 
 
 
 
 
 
0de03c5
d881b0d
0de03c5
d881b0d
 
 
 
 
0de03c5
d881b0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0de03c5
d881b0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0de03c5
d881b0d
 
 
 
 
 
 
 
 
 
 
 
 
0de03c5
d881b0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0de03c5
 
 
d881b0d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import os
import base64
import re
import requests
import pytz
import json
from io import BytesIO
from datetime import datetime
import gradio as gr
import openai
import fitz  # pymupdf
from bs4 import BeautifulSoup
from moviepy.video.io.VideoFileClip import VideoFileClip

# 🔐 CONFIG
KEY_FILE = "openai_api_key.txt"
MODEL = "gpt-4o-2024-05-13"

# 🍿 Default key load
if os.path.exists(KEY_FILE):
    with open(KEY_FILE, 'r') as f:
        DEFAULT_KEY = f.read().strip()
else:
    DEFAULT_KEY = ''

# 🔧 HELPERS
def save_api_key(api_key):
    with open(KEY_FILE, 'w') as f:
        f.write(api_key.strip())
    return "🔑 Key saved!"

# 🗒️ Chat

def chat_with_openai(api_key, user_message, history):
    openai.api_key = api_key.strip()
    messages = []
    for u, a in history:
        messages.append({"role": "user", "content": u})
        messages.append({"role": "assistant", "content": a})
    messages.append({"role": "user", "content": user_message})
    resp = openai.ChatCompletion.create(model=MODEL, messages=messages)
    answer = resp.choices[0].message.content
    history.append((user_message, answer))
    return history

# 🖼️ Image analysis
def image_to_base64(file):
    return base64.b64encode(file.read()).decode()

def analyze_image(api_key, file, prompt):
    data_uri = f"data:image/png;base64,{image_to_base64(file)}"
    openai.api_key = api_key.strip()
    resp = openai.ChatCompletion.create(
        model=MODEL,
        messages=[
            {"role": "system", "content": "You are a helpful assistant that responds in Markdown."},
            {"role": "user", "content": [
                    {"type":"text","text":prompt},
                    {"type":"image_url","image_url":{"url":data_uri}}
            ]}
        ]
    )
    return resp.choices[0].message.content

# 🎤 Audio transcription + chat
def transcribe_audio_file(api_key, file):
    openai.api_key = api_key.strip()
    resp = openai.Audio.transcriptions.create(model="whisper-1", file=file)
    return resp.text

# 🎥 Video summarize
def summarize_video(api_key, file, prompt, seconds=2):
    # save tmp
    with open("tmp_vid.mp4", 'wb') as f: f.write(file.read())
    clip = VideoFileClip("tmp_vid.mp4")
    frames = []
    step = int(clip.fps * seconds)
    for t in range(0, int(clip.duration), seconds):
        frame = clip.get_frame(t)
        buf = BytesIO()
        from PIL import Image
        Image.fromarray(frame).save(buf, format='JPEG')
        frames.append(base64.b64encode(buf.getvalue()).decode())
    transcript = transcribe_audio_file(api_key, open("tmp_vid.mp4", 'rb'))
    openai.api_key = api_key.strip()
    messages = [{"role":"system","content":"You are a helpful assistant."},
                {"role":"user","content": prompt}]
    for f64 in frames:
        messages.append({"role":"user","content": {"type":"image_url","image_url":{"url":f"data:image/jpeg;base64,{f64}"}}})
    messages.append({"role":"user","content": f"Transcript: {transcript}"})
    resp = openai.ChatCompletion.create(model=MODEL, messages=messages)
    return resp.choices[0].message.content

# 📄 PDF->Markdown
def pdf_to_markdown(path):
    doc = fitz.open(path)
    md = ''
    for page in doc:
        md += page.get_text('markdown') + '\n'
    return md

# 🔍 ArXiv RAG
from gradio_client import Client
def arxiv_search(query):
    client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
    refs = client.predict(query, 10, "Semantic Search - up to 10 Mar 2024", "mistralai/Mixtral-8x7B-Instruct-v0.1", api_name="/update_with_rag_md")
    ans = client.predict(query, "mistralai/Mixtral-8x7B-Instruct-v0.1", True, api_name="/ask_llm")
    return refs + "\n" + ans

# 🔈 TTS
from gtts import gTTS
def tts_bytes(text):
    buf = BytesIO()
    gTTS(text=text, lang='en').write_to_fp(buf)
    buf.seek(0)
    return buf.read()

# UI CONFIG
ui_config = {
    "chat": {"label":"💬 ChatGPT-4o", "placeholder":"Say something..."},
    "image_prompt": {"label":"🖼️ Image Prompt", "default":"Describe this image..."},
    "audio_prompt": {"label":"🎤 Audio Prompt", "default":"Transcribe and summarize..."},
    "video_prompt": {"label":"🎥 Video Prompt", "default":"Summarize this video..."},
    "pdf_prompt": {"label":"📄 PDF Prompt", "default":"Convert PDF to markdown..."},
    "arxiv_prompt": {"label":"🔍 Arxiv Query", "default":"Search papers..."}
}

with gr.Blocks(title="🔬🧠 ScienceBrain.Gradio") as demo:
    gr.Markdown("# 🔬🧠 ScienceBrain Gradio
Enter API key below."
    )
    with gr.Row():
        api_key = gr.Textbox(label="🔑 OpenAI Key", value=DEFAULT_KEY, type="password")
        save_btn = gr.Button("💾 Save Key")
        status = gr.Textbox(label="Status", interactive=False)
    save_btn.click(save_api_key, inputs=api_key, outputs=status)

    # Tabs for each modality
    with gr.Tab("💬 Chat"):
        chatbot = gr.Chatbot(label=ui_config['chat']['label'], value=[])
        msg = gr.Textbox(label=ui_config['chat']['label'], placeholder=ui_config['chat']['placeholder'])
        msg.submit(chat_with_openai, inputs=[api_key, msg, chatbot], outputs=chatbot)

    with gr.Tab("🖼️ Image"):
        img_in = gr.File(file_types=['png','jpg','jpeg'])
        img_prompt = gr.Textbox(label=ui_config['image_prompt']['label'], value=ui_config['image_prompt']['default'])
        img_btn = gr.Button("🔍 Analyze Image")
        img_out = gr.Markdown()
        img_btn.click(analyze_image, inputs=[api_key, img_in, img_prompt], outputs=img_out)

    with gr.Tab("🎤 Audio"):
        aud_in = gr.File(file_types=['wav','mp3'])
        aud_btn = gr.Button("🔊 Transcribe + Chat")
        aud_out = gr.Markdown()
        def audio_pipeline(key, f):
            text = transcribe_audio_file(key, f)
            reply = chat_with_openai(key, text, [])[-1][1]
            return f"**Transcript:** {text}\n\n**Reply:** {reply}"
        aud_btn.click(audio_pipeline, inputs=[api_key, aud_in], outputs=aud_out)

    with gr.Tab("🎥 Video"):
        vid_in = gr.File(file_types=['mp4'])
        vid_prompt = gr.Textbox(label=ui_config['video_prompt']['label'], value=ui_config['video_prompt']['default'])
        vid_btn = gr.Button("🎞️ Summarize Video")
        vid_out = gr.Markdown()
        vid_btn.click(summarize_video, inputs=[api_key, vid_in, vid_prompt], outputs=vid_out)

    with gr.Tab("📄 PDF"):
        pdf_in = gr.File(file_types=['pdf'])
        pdf_btn = gr.Button("📝 Convert PDF")
        pdf_out = gr.Markdown()
        pdf_btn.click(lambda f: pdf_to_markdown(f.name), inputs=[pdf_in], outputs=pdf_out)

    with gr.Tab("🔍 ArXiv"):
        arxiv_in = gr.Textbox(label=ui_config['arxiv_prompt']['label'], value=ui_config['arxiv_prompt']['default'])
        arxiv_btn = gr.Button("🔎 Search ArXiv")
        arxiv_out = gr.Markdown()
        arxiv_btn.click(arxiv_search, inputs=[arxiv_in], outputs=arxiv_out)

    with gr.Tab("⚙️ Quick Tests"):
        tests = [
            ("📝 Text","What is 2+2?"),
            ("🖼️ Image","Analyze image https://via.placeholder.com/150.png"),
            ("🎤 Audio","Transcribe https://www2.cs.uic.edu/~i101/SoundFiles/gettysburg10.wav"),
            ("🎥 Video","Summarize video https://sample-videos.com/video123/mp4/240/big_buck_bunny_240p_1mb.mp4"),
            ("🖼️+📝 Img+Txt","Given image https://via.placeholder.com/150.png list 3 facts."),
            ("🎤+📝 Aud+Txt","Given audio https://www2.cs.uic.edu/~i101/SoundFiles/gettysburg10.wav summarize."),
            ("🎥+📝 Vid+Txt","Given video https://sample-videos.com/video123/mp4/240/big_buck_bunny_240p_1mb.mp4 transcript+summary.")
        ]
        for idx, (e,p) in enumerate(tests,1):
            btn = gr.Button(f"{idx}. {e} Test")
            btn.click(chat_with_openai, inputs=[api_key, gr.State(p), gr.State([])], outputs=chatbot)


if __name__ == "__main__":
    demo.launch()