File size: 12,021 Bytes
a0eb915
 
 
45461f4
 
 
 
 
 
 
 
 
9675144
60e3497
621f3cd
 
a0eb915
 
45461f4
a0eb915
45461f4
a0eb915
 
60e3497
9675144
 
 
 
 
a0eb915
9675144
 
 
 
 
 
 
 
621f3cd
60e3497
 
 
a0eb915
 
 
 
60e3497
 
 
 
a0eb915
45461f4
 
 
 
 
 
 
 
 
 
 
9675144
45461f4
 
 
 
 
 
 
a0eb915
 
 
45461f4
a0eb915
 
 
9675144
a0eb915
 
 
621f3cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60e3497
 
 
 
621f3cd
60e3497
 
 
 
 
 
621f3cd
60e3497
 
 
 
 
 
 
 
621f3cd
60e3497
 
621f3cd
 
60e3497
621f3cd
60e3497
a0eb915
60e3497
 
 
a0eb915
60e3497
621f3cd
 
 
 
60e3497
 
9675144
60e3497
9675144
60e3497
9675144
 
 
 
60e3497
9675144
 
 
 
 
 
60e3497
9675144
 
 
 
 
a0eb915
 
60e3497
45461f4
 
a0eb915
 
45461f4
a0eb915
45461f4
a0eb915
 
45461f4
 
 
60e3497
45461f4
 
 
 
621f3cd
60e3497
 
 
 
 
 
 
 
 
 
 
45461f4
60e3497
 
 
621f3cd
60e3497
621f3cd
 
 
60e3497
 
 
 
621f3cd
 
60e3497
45461f4
9675144
 
 
 
 
 
 
 
 
 
 
 
45461f4
 
9675144
 
60e3497
9675144
 
 
 
60e3497
a0eb915
 
60e3497
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import os
import gradio as gr
import openai as o
import base64
import fitz  # PyMuPDF
import cv2
from moviepy.video.io.VideoFileClip import VideoFileClip
import json
import requests
import re
from io import BytesIO
from PIL import Image
from pathlib import Path
import numpy as np
from fastrtc.gradio import WebRTC
import soundfile as sf

# 📜 CONFIG
UI_TITLE = "✨🧙‍♂️🔮 GPT-4o Omni-Oracle"
KEY_FILE = "key.txt"
STATE_FILE = "app_state.json"
MODELS = {
    "GPT-4o ✨": "gpt-4o",
    "o3 (Advanced Reasoning) 🧠": "gpt-4-turbo", # Placeholder
    "o4-mini (Fastest) ⚡": "gpt-4-turbo", # Placeholder
    "o4-mini-high (Vision) 👁️‍🗨️": "gpt-4o", # Placeholder
    "GPT-4.5 (Research) 🔬": "gpt-4-turbo-preview", # Placeholder
    "GPT-4.1 (Analysis) 💻": "gpt-4-turbo", # Placeholder
    "GPT-4.1-mini (Everyday) ☕": "gpt-4-turbo", # Placeholder
}
VOICES = ["alloy", "ash", "ballad", "coral", "echo", "fable", "nova", "onyx", "sage", "shimmer"]
TTS_MODELS = ["gpt-4o-mini-tts", "tts-1", "tts-1-hd"]
FORMATS = ["mp3", "opus", "aac", "flac", "wav", "pcm"]
LANGUAGES = {
    "🇬🇧 English": "English", "🇨🇳 Chinese": "Chinese", "🇫🇷 French": "French", "🇩🇪 German": "German", 
    "🇮🇱 Hebrew": "Hebrew", "🇮🇳 Hindi": "Hindi", "🇯🇵 Japanese": "Japanese", "🇳🇿 Maori": "Maori", 
    "🇷🇺 Russian": "Russian", "🇪🇸 Spanish": "Spanish"
}
# For WebRTC - Replace with your own if deploying on a cloud provider
RTC_CONFIGURATION = {
    "iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]
}

# 🎨 STYLE
H1 = "# <font size='7'>{0}</font>"
H2 = "## <font size='6'>{0}</font>"
CSS = """
.my-group {max-width: 500px !important; max-height: 500px !important;}
.my-column {display: flex !important; justify-content: center !important; align-items: center !important;}
"""

# 🪄 HELPERS, LORE & AUTOSAVE RITUALS
def save_state(data: dict):
    with open(STATE_FILE, 'w') as f:
        json.dump(data, f, indent=4)

def load_state() -> dict:
    if os.path.exists(STATE_FILE):
        with open(STATE_FILE, 'r') as f:
            try:
                return json.load(f)
            except json.JSONDecodeError:
                return {}
    return {}

def update_and_save(key: str, value, state: dict):
    state[key] = value
    save_state(state)
    return state

def save_key(k: str) -> str:
    if not k or not k.strip(): return "🚫 Empty Key"
    with open(KEY_FILE, "w") as f: f.write(k.strip())
    return "🔑✅ Key Saved!"

def get_key(k: str) -> str:
    k = k.strip() if k and k.strip() else (open(KEY_FILE).read().strip() if os.path.exists(KEY_FILE) else os.getenv("OPENAI_KEY", ""))
    if not k: raise gr.Error("❗🔑 An Eldritch Key (OpenAI API Key) is required.")
    o.api_key = k
    return k

def invoke_oracle(scribe_key: str, model_key: str, system_prompt: str, user_content: list, history: list):
    get_key(scribe_key)
    model_name = MODELS.get(model_key, "gpt-4o")
    messages = history + [{"role": "system", "content": system_prompt}, {"role": "user", "content": user_content}]
    try:
        prophecy = o.chat.completions.create(model=model_name, messages=messages, stream=True)
        history.append({"role": "user", "content": "..."}) 
        history.append({"role": "assistant", "content": ""})
        for chunk in prophecy:
            if chunk.choices[0].delta.content:
                history[-1]['content'] += chunk.choices[0].delta.content
                yield history
    except Exception as e:
        yield history + [{"role": "assistant", "content": f"🧙‍♂️🔮 A magical disturbance occurred: {str(e)}"}]

def handle_text_submission(api_key, model, prompt, history):
    """A clear path for text quests to the Oracle."""
    yield from invoke_oracle(api_key, model, "You are a helpful AI assistant.", [{"type": "text", "text": prompt}], history)

# --- Image & Audio Streaming Functions ---

def transform_cv2(frame: np.ndarray, transform: str):
    """Applies a magical filter to a single frame from a webcam stream."""
    if frame is None: return None
    if transform == "cartoon":
        img_color = cv2.pyrDown(cv2.pyrDown(frame))
        for _ in range(6):
            img_color = cv2.bilateralFilter(img_color, 9, 9, 7)
        img_color = cv2.pyrUp(cv2.pyrUp(img_color))
        img_edges = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
        img_edges = cv2.adaptiveThreshold(cv2.medianBlur(img_edges, 7), 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 9, 2)
        img_edges = cv2.cvtColor(img_edges, cv2.COLOR_GRAY2RGB)
        return cv2.bitwise_and(img_color, img_edges)
    elif transform == "edges":
        return cv2.cvtColor(cv2.Canny(frame, 100, 200), cv2.COLOR_GRAY2BGR)
    elif transform == "flip":
        return np.flipud(frame)
    return frame

def transcribe_streaming(api_key, audio_chunk, history_state):
    """Transcribes a chunk of audio, keeping context from previous chunks."""
    if audio_chunk is None:
        return history_state, history_state
    get_key(api_key)
    sample_rate, data = audio_chunk
    temp_wav_path = f"temp_chunk_{hash(data.tobytes())}.wav"
    sf.write(temp_wav_path, data, sample_rate)
    try:
        with open(temp_wav_path, "rb") as audio_file:
            transcript = o.audio.transcriptions.create(model="whisper-1", file=audio_file)
        new_text = transcript.text
    except Exception as e:
        print(f"Transcription error: {e}")
        new_text = ""
    finally:
        if os.path.exists(temp_wav_path):
            os.remove(temp_wav_path)
    history_state += new_text + " "
    return history_state, history_state

def generate_speech(api_key, tts_model, voice, text, language_key, format, progress=gr.Progress()):
    get_key(api_key)
    language = LANGUAGES.get(language_key, "English")
    progress(0.2, desc=f"Translating to {language}...")
    translated_text = text
    if language != "English":
        try:
            response = o.chat.completions.create(model="gpt-4o", messages=[{"role": "system", "content": f"Translate to {language}. Output only the translation."}, {"role": "user", "content": text}], temperature=0)
            translated_text = response.choices[0].message.content
        except Exception as e:
            raise gr.Error(f"Translation failed: {e}")
    progress(0.6, desc="Summoning voice...")
    speech_file_path = Path(__file__).parent / f"speech.{format}"
    try:
        response = o.audio.speech.create(model=tts_model, voice=voice, input=translated_text, response_format=format)
        response.stream_to_file(speech_file_path)
    except Exception as e:
        raise gr.Error(f"Speech generation failed: {e}")
    progress(1.0, desc="Voice summoned!")
    return str(speech_file_path), translated_text

# 🔮 UI
with gr.Blocks(title=UI_TITLE, theme=gr.themes.Soft(primary_hue="red", secondary_hue="orange"), css=CSS) as demo:
    initial_state = load_state()
    app_state = gr.State(initial_state)
    gr.Markdown(H1.format(UI_TITLE))

    with gr.Accordion("🔑 Eldritch Key & Oracle Selection", open=True):
        with gr.Row():
            api_key_box = gr.Textbox(label="🔑 Key", type="password", placeholder="sk-...", scale=3, value=initial_state.get('api_key', ''))
            save_btn = gr.Button("💾", scale=1)
            status_txt = gr.Textbox(interactive=False, scale=1, label="Status")
        model_selector = gr.Dropdown(choices=list(MODELS.keys()), label="🔮 Oracle", value=initial_state.get('model', "GPT-4o ✨"))
        save_btn.click(save_key, inputs=api_key_box, outputs=status_txt)

    chatbot = gr.Chatbot(height=400, label="📜 Scroll of Conversation", type='messages', value=initial_state.get('chatbot', []))

    with gr.Tabs():
        with gr.TabItem("💬 Chat"):
            text_prompt = gr.Textbox(label="Your Quest:", placeholder="Type your message...", value=initial_state.get('text_prompt', ''))
            text_event = text_prompt.submit(fn=handle_text_submission, inputs=[api_key_box, model_selector, text_prompt, chatbot], outputs=chatbot)

        with gr.TabItem("🖼️ Streaming Image"):
            gr.Markdown(H2.format("Live Image Enchantments"))
            with gr.Column(elem_classes=["my-column"]):
                with gr.Group(elem_classes=["my-group"]):
                    transform_filter = gr.Dropdown(choices=["cartoon", "edges", "flip"], value="flip", label="Transformation")
                    streaming_image = gr.Image(sources=["webcam"], type="numpy", streaming=True)
            streaming_image.stream(transform_cv2, [streaming_image, transform_filter], streaming_image, time_limit=30, stream_every=0.1)

        with gr.TabItem("🎤 Streaming Audio"):
            gr.Markdown(H2.format("Real-time Transcription Rite"))
            with gr.Row():
                mic_input = gr.Audio(sources="microphone", streaming=True)
                transcript_output = gr.Textbox(label="Transcript", interactive=False)
            transcript_state = gr.State(value="")
            mic_input.stream(transcribe_streaming, [api_key_box, mic_input, transcript_state], [transcript_state, transcript_output], time_limit=30, stream_every=2)

        with gr.TabItem("👁️ Object Detection (WebRTC)"):
            gr.Markdown(H2.format("Live Scrying Spell"))
            gr.HTML("<h3 style='text-align: center'>NOTE: This is a UI placeholder. A separate inference server for the YOLO model is required for this to function.</h3>")
            with gr.Column(elem_classes=["my-column"]):
                with gr.Group(elem_classes=["my-group"]):
                    webrtc_stream = WebRTC(label="Stream", rtc_configuration=RTC_CONFIGURATION)
                    conf_threshold = gr.Slider(label="Confidence Threshold", minimum=0.0, maximum=1.0, step=0.05, value=0.30)
            # Placeholder for the actual stream event handler which would call a loaded YOLOv10 model
            # def detection_placeholder(image, conf): return image
            # webrtc_stream.stream(fn=detection_placeholder, inputs=[webrtc_stream, conf_threshold], outputs=[webrtc_stream], time_limit=10)

        with gr.TabItem("🔊 Speech Synthesis"):
            gr.Markdown(H2.format("Give Voice to Words"))
            tts_language = gr.Radio(choices=list(LANGUAGES.keys()), label="🈯 Language", value=initial_state.get('tts_language', "🇬🇧 English"))
            with gr.Row():
                tts_voice = gr.Dropdown(choices=VOICES, label="🗣️ Voice", value=initial_state.get('tts_voice', "alloy"))
                tts_model_select = gr.Dropdown(choices=TTS_MODELS, label="🧠 TTS Model", value=initial_state.get('tts_model', "gpt-4o-mini-tts"))
                tts_format = gr.Dropdown(choices=FORMATS, label="📦 Format", value=initial_state.get('tts_format', "mp3"))
            tts_text_input = gr.Textbox(label="📜 Text to Speak", lines=4, placeholder="Enter text here...", value=initial_state.get('tts_text', ''))
            tts_btn = gr.Button("🔊 Generate Speech")
            tts_translated_text = gr.Textbox(label="Translated Text (Output)", interactive=False)
            tts_audio_output = gr.Audio(label="🎧 Spoken Word", type="filepath")
            tts_event = tts_btn.click(generate_speech, [api_key_box, tts_model_select, tts_voice, tts_text_input, tts_language, tts_format], [tts_audio_output, tts_translated_text])

    # --- Autosave Event Listeners ---
    components_to_save = {
        'api_key': api_key_box, 'model': model_selector, 'text_prompt': text_prompt,
        'tts_language': tts_language, 'tts_voice': tts_voice,
        'tts_model': tts_model_select, 'tts_format': tts_format, 'tts_text': tts_text_input
    }
    for key, component in components_to_save.items():
        component.change(update_and_save, [gr.State(key), component, app_state], app_state)
    text_event.then(lambda history, state: update_and_save('chatbot', history, state), [chatbot, app_state], app_state)

if __name__ == "__main__":
    demo.launch(share=True, debug=True)