import os import gradio as gr import openai as o import base64 import fitz # PyMuPDF import cv2 from moviepy.video.io.VideoFileClip import VideoFileClip import json import requests import re from io import BytesIO from PIL import Image from pathlib import Path import numpy as np from fastrtc.gradio import WebRTC import soundfile as sf # 📜 CONFIG UI_TITLE = "✨🧙♂️🔮 GPT-4o Omni-Oracle" KEY_FILE = "key.txt" STATE_FILE = "app_state.json" MODELS = { "GPT-4o ✨": "gpt-4o", "o3 (Advanced Reasoning) 🧠": "gpt-4-turbo", # Placeholder "o4-mini (Fastest) ⚡": "gpt-4-turbo", # Placeholder "o4-mini-high (Vision) 👁️🗨️": "gpt-4o", # Placeholder "GPT-4.5 (Research) 🔬": "gpt-4-turbo-preview", # Placeholder "GPT-4.1 (Analysis) 💻": "gpt-4-turbo", # Placeholder "GPT-4.1-mini (Everyday) ☕": "gpt-4-turbo", # Placeholder } VOICES = ["alloy", "ash", "ballad", "coral", "echo", "fable", "nova", "onyx", "sage", "shimmer"] TTS_MODELS = ["gpt-4o-mini-tts", "tts-1", "tts-1-hd"] FORMATS = ["mp3", "opus", "aac", "flac", "wav", "pcm"] LANGUAGES = { "🇬🇧 English": "English", "🇨🇳 Chinese": "Chinese", "🇫🇷 French": "French", "🇩🇪 German": "German", "🇮🇱 Hebrew": "Hebrew", "🇮🇳 Hindi": "Hindi", "🇯🇵 Japanese": "Japanese", "🇳🇿 Maori": "Maori", "🇷🇺 Russian": "Russian", "🇪🇸 Spanish": "Spanish" } # For WebRTC - Replace with your own if deploying on a cloud provider RTC_CONFIGURATION = { "iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}] } # 🎨 STYLE H1 = "# {0}" H2 = "## {0}" CSS = """ .my-group {max-width: 500px !important; max-height: 500px !important;} .my-column {display: flex !important; justify-content: center !important; align-items: center !important;} """ # 🪄 HELPERS, LORE & AUTOSAVE RITUALS def save_state(data: dict): with open(STATE_FILE, 'w') as f: json.dump(data, f, indent=4) def load_state() -> dict: if os.path.exists(STATE_FILE): with open(STATE_FILE, 'r') as f: try: return json.load(f) except json.JSONDecodeError: return {} return {} def update_and_save(key: str, value, state: dict): state[key] = value save_state(state) return state def save_key(k: str) -> str: if not k or not k.strip(): return "🚫 Empty Key" with open(KEY_FILE, "w") as f: f.write(k.strip()) return "🔑✅ Key Saved!" def get_key(k: str) -> str: k = k.strip() if k and k.strip() else (open(KEY_FILE).read().strip() if os.path.exists(KEY_FILE) else os.getenv("OPENAI_KEY", "")) if not k: raise gr.Error("❗🔑 An Eldritch Key (OpenAI API Key) is required.") o.api_key = k return k def invoke_oracle(scribe_key: str, model_key: str, system_prompt: str, user_content: list, history: list): get_key(scribe_key) model_name = MODELS.get(model_key, "gpt-4o") messages = history + [{"role": "system", "content": system_prompt}, {"role": "user", "content": user_content}] try: prophecy = o.chat.completions.create(model=model_name, messages=messages, stream=True) history.append({"role": "user", "content": "..."}) history.append({"role": "assistant", "content": ""}) for chunk in prophecy: if chunk.choices[0].delta.content: history[-1]['content'] += chunk.choices[0].delta.content yield history except Exception as e: yield history + [{"role": "assistant", "content": f"🧙♂️🔮 A magical disturbance occurred: {str(e)}"}] def handle_text_submission(api_key, model, prompt, history): """A clear path for text quests to the Oracle.""" yield from invoke_oracle(api_key, model, "You are a helpful AI assistant.", [{"type": "text", "text": prompt}], history) # --- Image & Audio Streaming Functions --- def transform_cv2(frame: np.ndarray, transform: str): """Applies a magical filter to a single frame from a webcam stream.""" if frame is None: return None if transform == "cartoon": img_color = cv2.pyrDown(cv2.pyrDown(frame)) for _ in range(6): img_color = cv2.bilateralFilter(img_color, 9, 9, 7) img_color = cv2.pyrUp(cv2.pyrUp(img_color)) img_edges = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) img_edges = cv2.adaptiveThreshold(cv2.medianBlur(img_edges, 7), 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 9, 2) img_edges = cv2.cvtColor(img_edges, cv2.COLOR_GRAY2RGB) return cv2.bitwise_and(img_color, img_edges) elif transform == "edges": return cv2.cvtColor(cv2.Canny(frame, 100, 200), cv2.COLOR_GRAY2BGR) elif transform == "flip": return np.flipud(frame) return frame def transcribe_streaming(api_key, audio_chunk, history_state): """Transcribes a chunk of audio, keeping context from previous chunks.""" if audio_chunk is None: return history_state, history_state get_key(api_key) sample_rate, data = audio_chunk temp_wav_path = f"temp_chunk_{hash(data.tobytes())}.wav" sf.write(temp_wav_path, data, sample_rate) try: with open(temp_wav_path, "rb") as audio_file: transcript = o.audio.transcriptions.create(model="whisper-1", file=audio_file) new_text = transcript.text except Exception as e: print(f"Transcription error: {e}") new_text = "" finally: if os.path.exists(temp_wav_path): os.remove(temp_wav_path) history_state += new_text + " " return history_state, history_state def generate_speech(api_key, tts_model, voice, text, language_key, format, progress=gr.Progress()): get_key(api_key) language = LANGUAGES.get(language_key, "English") progress(0.2, desc=f"Translating to {language}...") translated_text = text if language != "English": try: response = o.chat.completions.create(model="gpt-4o", messages=[{"role": "system", "content": f"Translate to {language}. Output only the translation."}, {"role": "user", "content": text}], temperature=0) translated_text = response.choices[0].message.content except Exception as e: raise gr.Error(f"Translation failed: {e}") progress(0.6, desc="Summoning voice...") speech_file_path = Path(__file__).parent / f"speech.{format}" try: response = o.audio.speech.create(model=tts_model, voice=voice, input=translated_text, response_format=format) response.stream_to_file(speech_file_path) except Exception as e: raise gr.Error(f"Speech generation failed: {e}") progress(1.0, desc="Voice summoned!") return str(speech_file_path), translated_text # 🔮 UI with gr.Blocks(title=UI_TITLE, theme=gr.themes.Soft(primary_hue="red", secondary_hue="orange"), css=CSS) as demo: initial_state = load_state() app_state = gr.State(initial_state) gr.Markdown(H1.format(UI_TITLE)) with gr.Accordion("🔑 Eldritch Key & Oracle Selection", open=True): with gr.Row(): api_key_box = gr.Textbox(label="🔑 Key", type="password", placeholder="sk-...", scale=3, value=initial_state.get('api_key', '')) save_btn = gr.Button("💾", scale=1) status_txt = gr.Textbox(interactive=False, scale=1, label="Status") model_selector = gr.Dropdown(choices=list(MODELS.keys()), label="🔮 Oracle", value=initial_state.get('model', "GPT-4o ✨")) save_btn.click(save_key, inputs=api_key_box, outputs=status_txt) chatbot = gr.Chatbot(height=400, label="📜 Scroll of Conversation", type='messages', value=initial_state.get('chatbot', [])) with gr.Tabs(): with gr.TabItem("💬 Chat"): text_prompt = gr.Textbox(label="Your Quest:", placeholder="Type your message...", value=initial_state.get('text_prompt', '')) text_event = text_prompt.submit(fn=handle_text_submission, inputs=[api_key_box, model_selector, text_prompt, chatbot], outputs=chatbot) with gr.TabItem("🖼️ Streaming Image"): gr.Markdown(H2.format("Live Image Enchantments")) with gr.Column(elem_classes=["my-column"]): with gr.Group(elem_classes=["my-group"]): transform_filter = gr.Dropdown(choices=["cartoon", "edges", "flip"], value="flip", label="Transformation") streaming_image = gr.Image(sources=["webcam"], type="numpy", streaming=True) streaming_image.stream(transform_cv2, [streaming_image, transform_filter], streaming_image, time_limit=30, stream_every=0.1) with gr.TabItem("🎤 Streaming Audio"): gr.Markdown(H2.format("Real-time Transcription Rite")) with gr.Row(): mic_input = gr.Audio(sources="microphone", streaming=True) transcript_output = gr.Textbox(label="Transcript", interactive=False) transcript_state = gr.State(value="") mic_input.stream(transcribe_streaming, [api_key_box, mic_input, transcript_state], [transcript_state, transcript_output], time_limit=30, stream_every=2) with gr.TabItem("👁️ Object Detection (WebRTC)"): gr.Markdown(H2.format("Live Scrying Spell")) gr.HTML("