from html import escape import re import streamlit as st import pandas as pd, numpy as np from transformers import CLIPProcessor, CLIPModel from st_clickable_images import clickable_images @st.cache( show_spinner=False, hash_funcs={ CLIPModel: lambda _: None, CLIPProcessor: lambda _: None, dict: lambda _: None, }, ) def load(): model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14") processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14") df = {0: pd.read_csv("data.csv"), 1: pd.read_csv("data2.csv")} embeddings = {0: np.load("embeddings.npy"), 1: np.load("embeddings2.npy")} for k in [0, 1]: embeddings[k] = embeddings[k] / np.linalg.norm( embeddings[k], axis=1, keepdims=True ) return model, processor, df, embeddings model, processor, df, embeddings = load() source = {0: "\nSource: Unsplash", 1: "\nSource: The Movie Database (TMDB)"} def compute_text_embeddings(list_of_strings): inputs = processor(text=list_of_strings, return_tensors="pt", padding=True) result = model.get_text_features(**inputs).detach().numpy() return result / np.linalg.norm(result, axis=1, keepdims=True) def image_search(query, corpus, n_results=24): positive_embeddings = None def concatenate_embeddings(e1, e2): if e1 is None: return e2 else: return np.concatenate((e1, e2), axis=0) splitted_query = query.split("EXCLUDING ") dot_product = 0 k = 0 if corpus == "Unsplash" else 1 if len(splitted_query[0]) > 0: positive_queries = splitted_query[0].split(";") for positive_query in positive_queries: match = re.match(r"\[(Movies|Unsplash):(\d{1,5})\](.*)", positive_query) if match: corpus2, idx, remainder = match.groups() idx, remainder = int(idx), remainder.strip() k2 = 0 if corpus2 == "Unsplash" else 1 positive_embeddings = concatenate_embeddings( positive_embeddings, embeddings[k2][idx : idx + 1, :] ) if len(remainder) > 0: positive_embeddings = concatenate_embeddings( positive_embeddings, compute_text_embeddings([remainder]) ) else: positive_embeddings = concatenate_embeddings( positive_embeddings, compute_text_embeddings([positive_query]) ) dot_product = embeddings[k] @ positive_embeddings.T dot_product = dot_product - np.median(dot_product, axis=0) dot_product = dot_product / np.max(dot_product, axis=0, keepdims=True) dot_product = np.min(dot_product, axis=1) if len(splitted_query) > 1: negative_queries = (" ".join(splitted_query[1:])).split(";") negative_embeddings = compute_text_embeddings(negative_queries) dot_product2 = embeddings[k] @ negative_embeddings.T dot_product2 = dot_product2 - np.median(dot_product2, axis=0) dot_product2 = dot_product2 / np.max(dot_product2, axis=0, keepdims=True) dot_product -= np.max(np.maximum(dot_product2, 0), axis=1) results = np.argsort(dot_product)[-1 : -n_results - 1 : -1] return [ ( df[k].iloc[i]["path"], df[k].iloc[i]["tooltip"] + source[k], i, ) for i in results ] description = """ # Semantic image search **Enter your query and hit enter** """ howto = """ - Click image to find similar images - Use "**;**" to combine multiple queries) - Use "**EXCLUDING**", to exclude a query """ def main(): st.markdown( """ """, unsafe_allow_html=True, ) st.sidebar.markdown(description) with st.sidebar.expander("Advanced use"): st.markdown(howto) st.sidebar.markdown(f"Unsplash has categories that match: backgrounds, photos, nature, iphone, etc") st.sidebar.markdown(f"Unsplash images contain animals, apps, events, feelings, food, travel, nature, people, religion, sports, things, stock") st.sidebar.markdown(f"Unsplash things include flag, tree, clock, money, tattoo, arrow, book, car, fireworks, ghost, health, kiss, dance, balloon, crown, eye, house, music, airplane, lighthouse, typewriter, toys") st.sidebar.markdown(f"unsplash feelings include funny, heart, love, cool, congratulations, love, scary, cute, friendship, inspirational, hug, sad, cursed, beautiful, crazy, respect, transformation, peaceful, happy") st.sidebar.markdown(f"unsplash people contain baby, life, women, family, girls, pregnancy, society, old people, musician, attractive, bohemian") imagenetquerytips=" a bad photo of a {}., a photo of many {}., a sculpture of a {}., a photo of the hard to see {}., a low resolution photo of the {}., a rendering of a {}., graffiti of a {}., a bad photo of the {}., a cropped photo of the {}., a tattoo of a {}., the embroidered {}., a photo of a hard to see {}., a bright photo of a {}., a photo of a clean {}., a photo of a dirty {}., a dark photo of the {}., a drawing of a {}., a photo of my {}., the plastic {}., a photo of the cool {}., a close-up photo of a {}., a black and white photo of the {}., a painting of the {}., a painting of a {}., a pixelated photo of the {}., a sculpture of the {}., a bright photo of the {}., a cropped photo of a {}., a plastic {}., a photo of the dirty {}., a jpeg corrupted photo of a {}., a blurry photo of the {}., a photo of the {}., a good photo of the {}., a rendering of the {}., a {} in a video game., a photo of one {}., a doodle of a {}., a close-up photo of the {}., a photo of a {}., the origami {}., the {} in a video game., a sketch of a {}., a doodle of the {}., a origami {}., a low resolution photo of a {}., the toy {}., a rendition of the {}., a photo of the clean {}., a photo of a large {}., a rendition of a {}., a photo of a nice {}., a photo of a weird {}., a blurry photo of a {}., a cartoon {}., art of a {}., a sketch of the {}., a embroidered {}., a pixelated photo of a {}., itap of the {}., a jpeg corrupted photo of the {}. a good photo of a {}., a plushie {}., a photo of the nice {}., a photo of the small {}., a photo of the weird {}., the cartoon {}., art of the {}., a drawing of the {}., a photo of the large {}., a black and white photo of a {}., the plushie {}., a dark photo of a {}., itap of a {}. graffiti of the {}., a toy {}., itap of my {}., a photo of a cool {}., a photo of a small {}., a tattoo of the {}." #print(f"{len(imagenet_classes)} classes, {len(imagenet_templates)} templates") st.sidebar.markdown(imagenetquerytips) _, c, _ = st.columns((1, 3, 1)) if "query" in st.session_state: query = c.text_input("", value=st.session_state["query"]) else: query = c.text_input("", value="health; artificial intelligence") corpus = st.radio("", ["Unsplash", "Movies"]) if len(query) > 0: results = image_search(query, corpus) clicked = clickable_images( [result[0] for result in results], titles=[result[1] for result in results], div_style={ "display": "flex", "justify-content": "center", "flex-wrap": "wrap", }, img_style={"margin": "2px", "height": "200px"}, ) if clicked >= 0: change_query = False if "last_clicked" not in st.session_state: change_query = True else: if clicked != st.session_state["last_clicked"]: change_query = True if change_query: st.session_state["query"] = f"[{corpus}:{results[clicked][2]}]" st.experimental_rerun() if __name__ == "__main__": main()