awacke1 commited on
Commit
5caf9f6
·
1 Parent(s): 7477b67

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +120 -0
app.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import torch.nn as nn
4
+ import gradio as gr
5
+ from PIL import Image
6
+ import torchvision.transforms as transforms
7
+
8
+ norm_layer = nn.InstanceNorm2d
9
+
10
+ class ResidualBlock(nn.Module):
11
+ def __init__(self, in_features):
12
+ super(ResidualBlock, self).__init__()
13
+
14
+ conv_block = [ nn.ReflectionPad2d(1),
15
+ nn.Conv2d(in_features, in_features, 3),
16
+ norm_layer(in_features),
17
+ nn.ReLU(inplace=True),
18
+ nn.ReflectionPad2d(1),
19
+ nn.Conv2d(in_features, in_features, 3),
20
+ norm_layer(in_features)
21
+ ]
22
+
23
+ self.conv_block = nn.Sequential(*conv_block)
24
+
25
+ def forward(self, x):
26
+ return x + self.conv_block(x)
27
+
28
+
29
+ class Generator(nn.Module):
30
+ def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True):
31
+ super(Generator, self).__init__()
32
+
33
+ # Initial convolution block
34
+ model0 = [ nn.ReflectionPad2d(3),
35
+ nn.Conv2d(input_nc, 64, 7),
36
+ norm_layer(64),
37
+ nn.ReLU(inplace=True) ]
38
+ self.model0 = nn.Sequential(*model0)
39
+
40
+ # Downsampling
41
+ model1 = []
42
+ in_features = 64
43
+ out_features = in_features*2
44
+ for _ in range(2):
45
+ model1 += [ nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
46
+ norm_layer(out_features),
47
+ nn.ReLU(inplace=True) ]
48
+ in_features = out_features
49
+ out_features = in_features*2
50
+ self.model1 = nn.Sequential(*model1)
51
+
52
+ model2 = []
53
+ # Residual blocks
54
+ for _ in range(n_residual_blocks):
55
+ model2 += [ResidualBlock(in_features)]
56
+ self.model2 = nn.Sequential(*model2)
57
+
58
+ # Upsampling
59
+ model3 = []
60
+ out_features = in_features//2
61
+ for _ in range(2):
62
+ model3 += [ nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1),
63
+ norm_layer(out_features),
64
+ nn.ReLU(inplace=True) ]
65
+ in_features = out_features
66
+ out_features = in_features//2
67
+ self.model3 = nn.Sequential(*model3)
68
+
69
+ # Output layer
70
+ model4 = [ nn.ReflectionPad2d(3),
71
+ nn.Conv2d(64, output_nc, 7)]
72
+ if sigmoid:
73
+ model4 += [nn.Sigmoid()]
74
+
75
+ self.model4 = nn.Sequential(*model4)
76
+
77
+ def forward(self, x, cond=None):
78
+ out = self.model0(x)
79
+ out = self.model1(out)
80
+ out = self.model2(out)
81
+ out = self.model3(out)
82
+ out = self.model4(out)
83
+
84
+ return out
85
+
86
+ model1 = Generator(3, 1, 3)
87
+ model1.load_state_dict(torch.load('model.pth', map_location=torch.device('cpu')))
88
+ model1.eval()
89
+
90
+ model2 = Generator(3, 1, 3)
91
+ model2.load_state_dict(torch.load('model2.pth', map_location=torch.device('cpu')))
92
+ model2.eval()
93
+
94
+ def predict(input_img, ver):
95
+ input_img = Image.open(input_img)
96
+ transform = transforms.Compose([transforms.Resize(256, Image.BICUBIC), transforms.ToTensor()])
97
+ input_img = transform(input_img)
98
+ input_img = torch.unsqueeze(input_img, 0)
99
+
100
+ drawing = 0
101
+ with torch.no_grad():
102
+ if ver == 'style 2':
103
+ drawing = model2(input_img)[0].detach()
104
+ else:
105
+ drawing = model1(input_img)[0].detach()
106
+
107
+ drawing = transforms.ToPILImage()(drawing)
108
+ return drawing
109
+
110
+ title="informative-drawings"
111
+ description="Gradio Demo for line drawing generation. "
112
+ # article = "<p style='text-align: center'><a href='TODO' target='_blank'>Project Page</a> | <a href='codelink' target='_blank'>Github</a></p>"
113
+ examples=[['cat.png', 'style 1'], ['bridge.png', 'style 1'], ['lizard.png', 'style 2'],]
114
+
115
+
116
+ iface = gr.Interface(predict, [gr.inputs.Image(type='filepath'),
117
+ gr.inputs.Radio(['style 1','style 2'], type="value", default='style 1', label='version')],
118
+ gr.outputs.Image(type="pil"), title=title,description=description,examples=examples)
119
+
120
+ iface.launch()