Spaces:
Running
Running
File size: 14,134 Bytes
0e426ef 5d6f17d 0e426ef 5d6f17d cf3e246 5d6f17d cf3e246 5d6f17d 0e426ef 5d6f17d 0e426ef 5d6f17d 0e426ef 5d6f17d 0e426ef 5d6f17d 0e426ef 5d6f17d 0e426ef 5d6f17d 0e426ef 5d6f17d 0e426ef 5d6f17d 0e426ef 5d6f17d 0e426ef 5d6f17d 0e426ef 5d6f17d 0e426ef 5d6f17d 0e426ef 5d6f17d 0e426ef 5d6f17d 0e426ef 5d6f17d 0e426ef 5d6f17d 0e426ef 5d6f17d 0e426ef 5d6f17d 0e426ef 5d6f17d 0e426ef 5d6f17d 0e426ef 5d6f17d 0e426ef 5d6f17d 0e426ef 5d6f17d 0e426ef 5d6f17d 0e426ef 5d6f17d 0e426ef 5d6f17d 0e426ef 5d6f17d 0e426ef 5d6f17d 0e426ef 5d6f17d 0e426ef 5d6f17d 0e426ef 5d6f17d 0e426ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
import streamlit as st
from gradio_client import Client
import time
import concurrent.futures
import os
from PIL import Image
import io
import requests
from huggingface_hub import HfApi, login
from pathlib import Path
import json
def init_session_state():
"""Initialize session state variables"""
if 'hf_token' not in st.session_state:
st.session_state.hf_token = None
if 'is_authenticated' not in st.session_state:
st.session_state.is_authenticated = False
def save_token(token):
"""Save token to session state"""
st.session_state.hf_token = token
st.session_state.is_authenticated = True
def authenticate_user():
"""Handle user authentication with HuggingFace"""
st.sidebar.markdown("## ๐ Authentication")
if st.session_state.is_authenticated:
st.sidebar.success("โ Logged in to HuggingFace")
if st.sidebar.button("Logout"):
st.session_state.hf_token = None
st.session_state.is_authenticated = False
st.rerun()
else:
token = st.sidebar.text_input("Enter HuggingFace Token", type="password",
help="Get your token from https://huggingface.co/settings/tokens")
if st.sidebar.button("Login"):
if token:
try:
# Verify token is valid
api = HfApi(token=token)
api.whoami()
save_token(token)
st.sidebar.success("Successfully logged in!")
st.rerun()
except Exception as e:
st.sidebar.error(f"Authentication failed: {str(e)}")
else:
st.sidebar.error("Please enter your HuggingFace token")
class ModelGenerator:
def __init__(self, token):
self.token = token
def generate_midjourney(self, prompt):
try:
client = Client("mukaist/Midjourney", hf_token=self.token)
result = client.predict(
prompt=prompt,
negative_prompt="(deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime:1.4), text, close up, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck",
use_negative_prompt=True,
style="2560 x 1440",
seed=0,
width=1024,
height=1024,
guidance_scale=6,
randomize_seed=True,
api_name="/run"
)
if isinstance(result, list) and len(result) > 0:
image_data = result[0]
if isinstance(image_data, str):
if image_data.startswith('http'):
response = requests.get(image_data)
return ("Midjourney", Image.open(io.BytesIO(response.content)))
else:
return ("Midjourney", Image.open(image_data))
else:
return ("Midjourney", Image.open(io.BytesIO(image_data)))
return ("Midjourney", "Error: No image generated")
except Exception as e:
return ("Midjourney", f"Error: {str(e)}")
def generate_stable_cascade(self, prompt):
try:
client = Client("multimodalart/stable-cascade", hf_token=self.token)
result = client.predict(
prompt=prompt,
negative_prompt=prompt,
seed=0,
width=1024,
height=1024,
prior_num_inference_steps=20,
prior_guidance_scale=4,
decoder_num_inference_steps=10,
decoder_guidance_scale=0,
num_images_per_prompt=1,
api_name="/run"
)
if isinstance(result, list) and len(result) > 0:
image_data = result[0]
if isinstance(image_data, str):
if image_data.startswith('http'):
response = requests.get(image_data)
return ("Stable Cascade", Image.open(io.BytesIO(response.content)))
else:
return ("Stable Cascade", Image.open(image_data))
else:
return ("Stable Cascade", Image.open(io.BytesIO(image_data)))
return ("Stable Cascade", "Error: No image generated")
except Exception as e:
return ("Stable Cascade", f"Error: {str(e)}")
def generate_stable_diffusion_3(self, prompt):
try:
client = Client("stabilityai/stable-diffusion-3-medium", hf_token=self.token)
result = client.predict(
prompt=prompt,
negative_prompt=prompt,
seed=0,
randomize_seed=True,
width=1024,
height=1024,
guidance_scale=5,
num_inference_steps=28,
api_name="/infer"
)
if isinstance(result, (str, bytes)):
return ("SD 3 Medium", Image.open(io.BytesIO(result) if isinstance(result, bytes) else result))
return ("SD 3 Medium", "Error: Unexpected result format")
except Exception as e:
return ("SD 3 Medium", f"Error: {str(e)}")
def generate_stable_diffusion_35(self, prompt):
try:
client = Client("stabilityai/stable-diffusion-3.5-large", hf_token=self.token)
result = client.predict(
prompt=prompt,
negative_prompt=prompt,
seed=0,
randomize_seed=True,
width=1024,
height=1024,
guidance_scale=4.5,
num_inference_steps=40,
api_name="/infer"
)
if isinstance(result, (str, bytes)):
return ("SD 3.5 Large", Image.open(io.BytesIO(result) if isinstance(result, bytes) else result))
return ("SD 3.5 Large", "Error: Unexpected result format")
except Exception as e:
return ("SD 3.5 Large", f"Error: {str(e)}")
def generate_playground_v2_5(self, prompt):
try:
client = Client("https://playgroundai-playground-v2-5.hf.space/--replicas/ji5gy/", hf_token=self.token)
result = client.predict(
prompt,
prompt, # negative prompt
True, # use negative prompt
0, # seed
1024, # width
1024, # height
7.5, # guidance scale
True, # randomize seed
api_name="/run"
)
if isinstance(result, tuple) and result[0] and len(result[0]) > 0:
image_data = result[0][0].get('image')
if image_data:
if isinstance(image_data, str):
if image_data.startswith('http'):
response = requests.get(image_data)
return ("Playground v2.5", Image.open(io.BytesIO(response.content)))
return ("Playground v2.5", Image.open(image_data))
return ("Playground v2.5", Image.open(io.BytesIO(image_data)))
return ("Playground v2.5", "Error: No image generated")
except Exception as e:
return ("Playground v2.5", f"Error: {str(e)}")
def generate_images(prompt, selected_models, token):
results = []
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = []
generator = ModelGenerator(token)
model_map = {
"Midjourney": generator.generate_midjourney,
"Stable Cascade": generator.generate_stable_cascade,
"SD 3 Medium": generator.generate_stable_diffusion_3,
"SD 3.5 Large": generator.generate_stable_diffusion_35,
"Playground v2.5": generator.generate_playground_v2_5
}
for model in selected_models:
if model in model_map:
futures.append(executor.submit(model_map[model], prompt))
for future in concurrent.futures.as_completed(futures):
try:
result = future.result()
if result:
results.append(result)
except Exception as e:
st.error(f"Error during image generation: {str(e)}")
return results
def handle_prompt_click(prompt_text, key):
if not st.session_state.is_authenticated:
st.error("Please login with your HuggingFace account first!")
return
selected_models = st.session_state.get('selected_models', [])
if not selected_models:
st.warning("Please select at least one model from the sidebar!")
return
with st.spinner('Generating artwork...'):
results = generate_images(prompt_text, selected_models, st.session_state.hf_token)
if results:
st.session_state[f'generated_images_{key}'] = results
st.success("Artwork generated successfully!")
# Display images immediately
cols = st.columns(len(results))
for col, (model_name, result) in zip(cols, results):
with col:
st.markdown(f"**{model_name}**")
if isinstance(result, str) and result.startswith("Error"):
st.error(result)
elif isinstance(result, Image.Image):
st.image(result, use_container_width=True)
else:
st.error(f"Unexpected result type: {type(result)}")
def main():
st.title("๐จ Multi-Model Art Generator")
init_session_state()
authenticate_user()
if st.session_state.is_authenticated:
with st.sidebar:
st.header("Model Selection")
st.session_state['selected_models'] = st.multiselect(
"Choose AI Models",
["Midjourney", "Stable Cascade", "SD 3 Medium", "SD 3.5 Large", "Playground v2.5"],
default=["Midjourney"]
)
st.markdown("---")
st.markdown("### Selected Models:")
for model in st.session_state['selected_models']:
st.write(f"โ {model}")
st.markdown("---")
st.markdown("### Model Information:")
st.markdown("""
- **Midjourney**: Best for artistic and creative imagery
- **Stable Cascade**: New architecture with high detail
- **SD 3 Medium**: Fast and efficient generation
- **SD 3.5 Large**: Highest quality, slower generation
- **Playground v2.5**: Advanced model with high customization
""")
st.markdown("### Select a prompt style to generate artwork:")
prompt_emojis = {
"AIart/AIArtistCommunity": "๐ค",
"Black & White": "โซโช",
"Black & Yellow": "โซ๐",
"Blindfold": "๐",
"Break": "๐",
"Broken": "๐จ",
"Christmas Celebrations art": "๐",
"Colorful Art": "๐จ",
"Crimson art": "๐ด",
"Eyes Art": "๐๏ธ",
"Going out with Style": "๐",
"Hooded Girl": "๐งฅ",
"Lips": "๐",
"MAEKHLONG": "๐ฎ",
"Mermaid": "๐งโโ๏ธ",
"Morning Sunshine": "๐
",
"Music Art": "๐ต",
"Owl": "๐ฆ",
"Pink": "๐",
"Purple": "๐",
"Rain": "๐ง๏ธ",
"Red Moon": "๐",
"Rose": "๐น",
"Snow": "โ๏ธ",
"Spacesuit Girl": "๐ฉโ๐",
"Steampunk": "โ๏ธ",
"Succubus": "๐",
"Sunlight": "โ๏ธ",
"Weird art": "๐ญ",
"White Hair": "๐ฑโโ๏ธ",
"Wings art": "๐ผ",
"Woman with Sword": "โ๏ธ"
}
col1, col2, col3 = st.columns(3)
for idx, (prompt, emoji) in enumerate(prompt_emojis.items()):
full_prompt = f"QT {prompt}"
col = [col1, col2, col3][idx % 3]
with col:
if st.button(f"{emoji} {prompt}", key=f"btn_{idx}"):
handle_prompt_click(full_prompt, idx)
st.markdown("---")
st.markdown("### Generated Artwork:")
# Display any previously generated images
for key in st.session_state:
if key.startswith('generated_images_'):
idx = key.split('_')[-1]
prompt_key = f'selected_prompt_{idx}'
if prompt_key in st.session_state:
st.write("Prompt:", st.session_state[prompt_key])
cols = st.columns(len(st.session_state[key]))
for col, (model_name, result) in zip(cols, st.session_state[key]):
with col:
st.markdown(f"**{model_name}**")
if isinstance(result, str) and result.startswith("Error"):
st.error(result)
elif isinstance(result, Image.Image):
st.image(result, use_container_width=True)
else:
st.error(f"Unexpected result type: {type(result)}")
else:
st.info("Please login with your HuggingFace account to use the app")
if __name__ == "__main__":
main() |