awacke1 commited on
Commit
d791c5b
Β·
verified Β·
1 Parent(s): 03faf3e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +142 -726
app.py CHANGED
@@ -4,7 +4,6 @@ import glob
4
  import base64
5
  import time
6
  import shutil
7
- import streamlit as st
8
  import pandas as pd
9
  import torch
10
  import torch.nn as nn
@@ -28,6 +27,7 @@ import zipfile
28
  import math
29
  import random
30
  import re
 
31
 
32
  logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
33
  logger = logging.getLogger(__name__)
@@ -39,33 +39,7 @@ class LogCaptureHandler(logging.Handler):
39
 
40
  logger.addHandler(LogCaptureHandler())
41
 
42
- st.set_page_config(
43
- page_title="AI Vision & SFT Titans πŸš€",
44
- page_icon="πŸ€–",
45
- layout="wide",
46
- initial_sidebar_state="expanded",
47
- menu_items={
48
- 'Get Help': 'https://huggingface.co/awacke1',
49
- 'Report a Bug': 'https://huggingface.co/spaces/awacke1',
50
- 'About': "AI Vision & SFT Titans: PDFs, OCR, Image Gen, Line Drawings, Custom Diffusion, and SFT on CPU! 🌌"
51
- }
52
- )
53
-
54
- if 'history' not in st.session_state:
55
- st.session_state['history'] = []
56
- if 'builder' not in st.session_state:
57
- st.session_state['builder'] = None
58
- if 'model_loaded' not in st.session_state:
59
- st.session_state['model_loaded'] = False
60
- if 'processing' not in st.session_state:
61
- st.session_state['processing'] = {}
62
- if 'asset_checkboxes' not in st.session_state:
63
- st.session_state['asset_checkboxes'] = {}
64
- if 'downloaded_pdfs' not in st.session_state:
65
- st.session_state['downloaded_pdfs'] = {}
66
- if 'unique_counter' not in st.session_state:
67
- st.session_state['unique_counter'] = 0 # For generating unique keys
68
-
69
  @dataclass
70
  class ModelConfig:
71
  name: str
@@ -108,23 +82,6 @@ class SFTDataset(Dataset):
108
  labels[:prompt_len] = -100
109
  return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels}
110
 
111
- class DiffusionDataset(Dataset):
112
- def __init__(self, images, texts):
113
- self.images = images
114
- self.texts = texts
115
- def __len__(self):
116
- return len(self.images)
117
- def __getitem__(self, idx):
118
- return {"image": self.images[idx], "text": self.texts[idx]}
119
-
120
- class TinyDiffusionDataset(Dataset):
121
- def __init__(self, images):
122
- self.images = [torch.tensor(np.array(img.convert("RGB")).transpose(2, 0, 1), dtype=torch.float32) / 255.0 for img in images]
123
- def __len__(self):
124
- return len(self.images)
125
- def __getitem__(self, idx):
126
- return self.images[idx]
127
-
128
  class TinyUNet(nn.Module):
129
  def __init__(self, in_channels=3, out_channels=3):
130
  super(TinyUNet, self).__init__()
@@ -139,7 +96,6 @@ class TinyUNet(nn.Module):
139
  def forward(self, x, t):
140
  t_embed = F.relu(self.time_embed(t.unsqueeze(-1)))
141
  t_embed = t_embed.view(t_embed.size(0), t_embed.size(1), 1, 1)
142
-
143
  x1 = F.relu(self.down1(x))
144
  x2 = F.relu(self.down2(x1))
145
  x_mid = F.relu(self.mid(x2)) + t_embed
@@ -191,11 +147,13 @@ class TinyDiffusion:
191
  x = torch.clamp(x * 255, 0, 255).byte()
192
  return Image.fromarray(x.squeeze(0).permute(1, 2, 0).cpu().numpy())
193
 
194
- def upscale(self, image, scale_factor=2):
195
- img_tensor = torch.tensor(np.array(image.convert("RGB")).transpose(2, 0, 1), dtype=torch.float32).unsqueeze(0) / 255.0
196
- upscaled = F.interpolate(img_tensor, scale_factor=scale_factor, mode='bilinear', align_corners=False)
197
- upscaled = torch.clamp(upscaled * 255, 0, 255).byte()
198
- return Image.fromarray(upscaled.squeeze(0).permute(1, 2, 0).cpu().numpy())
 
 
199
 
200
  class ModelBuilder:
201
  def __init__(self):
@@ -203,17 +161,14 @@ class ModelBuilder:
203
  self.model = None
204
  self.tokenizer = None
205
  self.sft_data = None
206
- self.jokes = ["Why did the AI go to therapy? Too many layers to unpack! πŸ˜‚", "Training complete! Time for a binary coffee break. β˜•"]
207
  def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
208
- with st.spinner(f"Loading {model_path}... ⏳"):
209
- self.model = AutoModelForCausalLM.from_pretrained(model_path)
210
- self.tokenizer = AutoTokenizer.from_pretrained(model_path)
211
- if self.tokenizer.pad_token is None:
212
- self.tokenizer.pad_token = self.tokenizer.eos_token
213
- if config:
214
- self.config = config
215
- self.model.to("cuda" if torch.cuda.is_available() else "cpu")
216
- st.success(f"Model loaded! πŸŽ‰ {random.choice(self.jokes)}")
217
  return self
218
  def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4):
219
  self.sft_data = []
@@ -228,115 +183,54 @@ class ModelBuilder:
228
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
229
  self.model.to(device)
230
  for epoch in range(epochs):
231
- with st.spinner(f"Training epoch {epoch + 1}/{epochs}... βš™οΈ"):
232
- total_loss = 0
233
- for batch in dataloader:
234
- optimizer.zero_grad()
235
- input_ids = batch["input_ids"].to(device)
236
- attention_mask = batch["attention_mask"].to(device)
237
- labels = batch["labels"].to(device)
238
- outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
239
- loss = outputs.loss
240
- loss.backward()
241
- optimizer.step()
242
- total_loss += loss.item()
243
- st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
244
- st.success(f"SFT Fine-tuning completed! πŸŽ‰ {random.choice(self.jokes)}")
245
  return self
246
  def save_model(self, path: str):
247
- with st.spinner("Saving model... πŸ’Ύ"):
248
- os.makedirs(os.path.dirname(path), exist_ok=True)
249
- self.model.save_pretrained(path)
250
- self.tokenizer.save_pretrained(path)
251
- st.success(f"Model saved at {path}! βœ…")
252
- def evaluate(self, prompt: str, status_container=None):
253
  self.model.eval()
254
- if status_container:
255
- status_container.write("Preparing to evaluate... 🧠")
256
- try:
257
- with torch.no_grad():
258
- inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device)
259
- outputs = self.model.generate(**inputs, max_new_tokens=50, do_sample=True, top_p=0.95, temperature=0.7)
260
- return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
261
- except Exception as e:
262
- if status_container:
263
- status_container.error(f"Oops! Something broke: {str(e)} πŸ’₯")
264
- return f"Error: {str(e)}"
265
 
266
  class DiffusionBuilder:
267
  def __init__(self):
268
  self.config = None
269
  self.pipeline = None
270
  def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None):
271
- with st.spinner(f"Loading diffusion model {model_path}... ⏳"):
272
- self.pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cpu")
273
- if config:
274
- self.config = config
275
- st.success(f"Diffusion model loaded! 🎨")
276
- return self
277
- def fine_tune_sft(self, images, texts, epochs=3):
278
- dataset = DiffusionDataset(images, texts)
279
- dataloader = DataLoader(dataset, batch_size=1, shuffle=True)
280
- optimizer = torch.optim.AdamW(self.pipeline.unet.parameters(), lr=1e-5)
281
- self.pipeline.unet.train()
282
- for epoch in range(epochs):
283
- with st.spinner(f"Training diffusion epoch {epoch + 1}/{epochs}... βš™οΈ"):
284
- total_loss = 0
285
- for batch in dataloader:
286
- optimizer.zero_grad()
287
- image = batch["image"][0].to(self.pipeline.device)
288
- text = batch["text"][0]
289
- latents = self.pipeline.vae.encode(torch.tensor(np.array(image)).permute(2, 0, 1).unsqueeze(0).float().to(self.pipeline.device)).latent_dist.sample()
290
- noise = torch.randn_like(latents)
291
- timesteps = torch.randint(0, self.pipeline.scheduler.num_train_timesteps, (latents.shape[0],), device=latents.device)
292
- noisy_latents = self.pipeline.scheduler.add_noise(latents, noise, timesteps)
293
- text_embeddings = self.pipeline.text_encoder(self.pipeline.tokenizer(text, return_tensors="pt").input_ids.to(self.pipeline.device))[0]
294
- pred_noise = self.pipeline.unet(noisy_latents, timesteps, encoder_hidden_states=text_embeddings).sample
295
- loss = torch.nn.functional.mse_loss(pred_noise, noise)
296
- loss.backward()
297
- optimizer.step()
298
- total_loss += loss.item()
299
- st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
300
- st.success("Diffusion SFT Fine-tuning completed! 🎨")
301
  return self
302
- def save_model(self, path: str):
303
- with st.spinner("Saving diffusion model... πŸ’Ύ"):
304
- os.makedirs(os.path.dirname(path), exist_ok=True)
305
- self.pipeline.save_pretrained(path)
306
- st.success(f"Diffusion model saved at {path}! βœ…")
307
  def generate(self, prompt: str):
308
  return self.pipeline(prompt, num_inference_steps=20).images[0]
309
 
 
310
  def generate_filename(sequence, ext="png"):
311
- timestamp = time.strftime("%d%m%Y%H%M%S")
312
  return f"{sequence}_{timestamp}.{ext}"
313
 
314
  def pdf_url_to_filename(url):
315
  safe_name = re.sub(r'[<>:"/\\|?*]', '_', url)
316
  return f"{safe_name}.pdf"
317
 
318
- def get_download_link(file_path, mime_type="application/pdf", label="Download"):
319
- with open(file_path, 'rb') as f:
320
- data = f.read()
321
- b64 = base64.b64encode(data).decode()
322
- return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label}</a>'
323
-
324
- def zip_directory(directory_path, zip_path):
325
- with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
326
- for root, _, files in os.walk(directory_path):
327
- for file in files:
328
- zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path)))
329
-
330
- def get_model_files(model_type="causal_lm"):
331
- path = "models/*" if model_type == "causal_lm" else "diffusion_models/*"
332
- return [d for d in glob.glob(path) if os.path.isdir(d)]
333
-
334
  def get_gallery_files(file_types=["png", "pdf"]):
335
  return sorted(list(set([f for ext in file_types for f in glob.glob(f"*.{ext}")]))) # Deduplicate files
336
 
337
- def get_pdf_files():
338
- return sorted(glob.glob("*.pdf"))
339
-
340
  def download_pdf(url, output_path):
341
  try:
342
  response = requests.get(url, stream=True, timeout=10)
@@ -350,585 +244,107 @@ def download_pdf(url, output_path):
350
  return False
351
 
352
  async def process_pdf_snapshot(pdf_path, mode="single"):
353
- start_time = time.time()
354
- status = st.empty()
355
- status.text(f"Processing PDF Snapshot ({mode})... (0s)")
356
- try:
357
- doc = fitz.open(pdf_path)
358
- output_files = []
359
- if mode == "single":
360
- page = doc[0]
361
- pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
362
- output_file = generate_filename("single", "png")
363
- pix.save(output_file)
364
- output_files.append(output_file)
365
- elif mode == "twopage":
366
- for i in range(min(2, len(doc))):
367
- page = doc[i]
368
- pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
369
- output_file = generate_filename(f"twopage_{i}", "png")
370
- pix.save(output_file)
371
- output_files.append(output_file)
372
- elif mode == "allpages":
373
- for i in range(len(doc)):
374
- page = doc[i]
375
- pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
376
- output_file = generate_filename(f"page_{i}", "png")
377
- pix.save(output_file)
378
- output_files.append(output_file)
379
- doc.close()
380
- elapsed = int(time.time() - start_time)
381
- status.text(f"PDF Snapshot ({mode}) completed in {elapsed}s!")
382
- update_gallery()
383
- return output_files
384
- except Exception as e:
385
- status.error(f"Failed to process PDF: {str(e)}")
386
- return []
387
-
388
- async def process_ocr(image, output_file):
389
- start_time = time.time()
390
- status = st.empty()
391
- status.text("Processing GOT-OCR2_0... (0s)")
392
- tokenizer = AutoTokenizer.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True)
393
- model = AutoModel.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval()
394
- result = model.chat(tokenizer, image, ocr_type='ocr')
395
- elapsed = int(time.time() - start_time)
396
- status.text(f"GOT-OCR2_0 completed in {elapsed}s!")
397
- async with aiofiles.open(output_file, "w") as f:
398
- await f.write(result)
399
- update_gallery()
400
- return result
401
-
402
- async def process_image_gen(prompt, output_file):
403
- start_time = time.time()
404
- status = st.empty()
405
- status.text("Processing Image Gen... (0s)")
406
- pipeline = StableDiffusionPipeline.from_pretrained("OFA-Sys/small-stable-diffusion-v0", torch_dtype=torch.float32).to("cpu")
407
- gen_image = pipeline(prompt, num_inference_steps=20).images[0]
408
- elapsed = int(time.time() - start_time)
409
- status.text(f"Image Gen completed in {elapsed}s!")
410
- gen_image.save(output_file)
411
- update_gallery()
412
- return gen_image
413
-
414
- async def process_custom_diffusion(images, output_file, model_name):
415
- start_time = time.time()
416
- status = st.empty()
417
- status.text(f"Training {model_name}... (0s)")
418
- unet = TinyUNet()
419
- diffusion = TinyDiffusion(unet)
420
- diffusion.train(images)
421
- gen_image = diffusion.generate()
422
- upscaled_image = diffusion.upscale(gen_image, scale_factor=2)
423
- elapsed = int(time.time() - start_time)
424
- status.text(f"{model_name} completed in {elapsed}s!")
425
- upscaled_image.save(output_file)
426
- update_gallery()
427
- return upscaled_image
428
-
429
- def mock_search(query: str) -> str:
430
- if "superhero" in query.lower():
431
- return "Latest trends: Gold-plated Batman statues, VR superhero battles."
432
- return "No relevant results found."
433
-
434
- def mock_duckduckgo_search(query: str) -> str:
435
- if "superhero party trends" in query.lower():
436
- return """
437
- Latest trends for 2025:
438
- - Luxury decorations: Gold-plated Batman statues, holographic Avengers displays.
439
- - Entertainment: Live stunt shows with Iron Man suits, VR superhero battles.
440
- - Catering: Gourmet kryptonite-green cocktails, Thor’s hammer-shaped appetizers.
441
- """
442
- return "No relevant results found."
443
-
444
- class PartyPlannerAgent:
445
- def __init__(self, model, tokenizer):
446
- self.model = model
447
- self.tokenizer = tokenizer
448
- self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
449
- self.model.to(self.device)
450
- def generate(self, prompt: str) -> str:
451
- self.model.eval()
452
- with torch.no_grad():
453
- inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.device)
454
- outputs = self.model.generate(**inputs, max_new_tokens=100, do_sample=True, top_p=0.95, temperature=0.7)
455
- return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
456
- def plan_party(self, task: str) -> pd.DataFrame:
457
- search_result = mock_duckduckgo_search("latest superhero party trends")
458
- prompt = f"Given this context: '{search_result}'\n{task}"
459
- plan_text = self.generate(prompt)
460
- locations = {
461
- "Wayne Manor": (42.3601, -71.0589),
462
- "New York": (40.7128, -74.0060),
463
- "Los Angeles": (34.0522, -118.2437),
464
- "London": (51.5074, -0.1278)
465
- }
466
- wayne_coords = locations["Wayne Manor"]
467
- travel_times = {loc: calculate_cargo_travel_time(coords, wayne_coords) for loc, coords in locations.items() if loc != "Wayne Manor"}
468
- catchphrases = ["To the Batmobile!", "Avengers, assemble!", "I am Iron Man!", "By the power of Grayskull!"]
469
- data = [
470
- {"Location": "New York", "Travel Time (hrs)": travel_times["New York"], "Luxury Idea": "Gold-plated Batman statues", "Catchphrase": random.choice(catchphrases)},
471
- {"Location": "Los Angeles", "Travel Time (hrs)": travel_times["Los Angeles"], "Luxury Idea": "Holographic Avengers displays", "Catchphrase": random.choice(catchphrases)},
472
- {"Location": "London", "Travel Time (hrs)": travel_times["London"], "Luxury Idea": "Live stunt shows with Iron Man suits", "Catchphrase": random.choice(catchphrases)},
473
- {"Location": "Wayne Manor", "Travel Time (hrs)": 0.0, "Luxury Idea": "VR superhero battles", "Catchphrase": random.choice(catchphrases)},
474
- {"Location": "New York", "Travel Time (hrs)": travel_times["New York"], "Luxury Idea": "Gourmet kryptonite-green cocktails", "Catchphrase": random.choice(catchphrases)},
475
- {"Location": "Los Angeles", "Travel Time (hrs)": travel_times["Los Angeles"], "Luxury Idea": "Thor’s hammer-shaped appetizers", "Catchphrase": random.choice(catchphrases)},
476
- ]
477
- return pd.DataFrame(data)
478
-
479
- class CVPartyPlannerAgent:
480
- def __init__(self, pipeline):
481
- self.pipeline = pipeline
482
- def generate(self, prompt: str) -> Image.Image:
483
- return self.pipeline(prompt, num_inference_steps=20).images[0]
484
- def plan_party(self, task: str) -> pd.DataFrame:
485
- search_result = mock_search("superhero party trends")
486
- prompt = f"Given this context: '{search_result}'\n{task}"
487
- data = [
488
- {"Theme": "Batman", "Image Idea": "Gold-plated Batman statue"},
489
- {"Theme": "Avengers", "Image Idea": "VR superhero battle scene"}
490
- ]
491
- return pd.DataFrame(data)
492
-
493
- def calculate_cargo_travel_time(origin_coords: Tuple[float, float], destination_coords: Tuple[float, float], cruising_speed_kmh: float = 750.0) -> float:
494
- def to_radians(degrees: float) -> float:
495
- return degrees * (math.pi / 180)
496
- lat1, lon1 = map(to_radians, origin_coords)
497
- lat2, lon2 = map(to_radians, destination_coords)
498
- EARTH_RADIUS_KM = 6371.0
499
- dlon = lon2 - lon1
500
- dlat = lat2 - lat1
501
- a = (math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2) ** 2)
502
- c = 2 * math.asin(math.sqrt(a))
503
- distance = EARTH_RADIUS_KM * c
504
- actual_distance = distance * 1.1
505
- flight_time = (actual_distance / cruising_speed_kmh) + 1.0
506
- return round(flight_time, 2)
507
-
508
- st.title("AI Vision & SFT Titans πŸš€")
509
-
510
- st.sidebar.header("Captured Files πŸ“œ")
511
- cols = st.sidebar.columns(2)
512
- with cols[0]:
513
- if st.button("Zip All 🀐"):
514
- zip_path = f"all_assets_{int(time.time())}.zip"
515
- with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
516
- for file in get_gallery_files():
517
- zipf.write(file, os.path.basename(file))
518
- st.sidebar.markdown(get_download_link(zip_path, "application/zip", "Download All Assets"), unsafe_allow_html=True)
519
- with cols[1]:
520
- if st.button("Zap All! πŸ—‘οΈ"):
521
- for file in get_gallery_files():
522
- os.remove(file)
523
- st.session_state['asset_checkboxes'].clear()
524
- st.session_state['downloaded_pdfs'].clear()
525
- st.sidebar.success("All assets vaporized! πŸ’¨")
526
- st.rerun()
527
-
528
- gallery_size = st.sidebar.slider("Gallery Size", 1, 10, 2)
529
- def update_gallery():
530
  all_files = get_gallery_files()
531
- if all_files:
532
- st.sidebar.subheader("Asset Gallery πŸ“ΈπŸ“–")
533
- cols = st.sidebar.columns(2)
534
- for idx, file in enumerate(all_files[:gallery_size * 2]):
535
- with cols[idx % 2]:
536
- st.session_state['unique_counter'] += 1 # Increment counter for uniqueness
537
- unique_id = st.session_state['unique_counter']
538
- if file.endswith('.png'):
539
- st.image(Image.open(file), caption=os.path.basename(file), use_container_width=True)
540
- else:
541
- doc = fitz.open(file)
542
- pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5))
543
- img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
544
- st.image(img, caption=os.path.basename(file), use_container_width=True)
545
- doc.close()
546
- checkbox_key = f"asset_{file}_{unique_id}" # Unique key with counter
547
- st.session_state['asset_checkboxes'][file] = st.checkbox(
548
- "Use for SFT/Input",
549
- value=st.session_state['asset_checkboxes'].get(file, False),
550
- key=checkbox_key
551
- )
552
- mime_type = "image/png" if file.endswith('.png') else "application/pdf"
553
- st.markdown(get_download_link(file, mime_type, "Snag It! πŸ“₯"), unsafe_allow_html=True)
554
- if st.button("Zap It! πŸ—‘οΈ", key=f"delete_{file}_{unique_id}"): # Unique key with counter
555
- os.remove(file)
556
- if file in st.session_state['asset_checkboxes']:
557
- del st.session_state['asset_checkboxes'][file]
558
- if file.endswith('.pdf'):
559
- url_key = next((k for k, v in st.session_state['downloaded_pdfs'].items() if v == file), None)
560
- if url_key:
561
- del st.session_state['downloaded_pdfs'][url_key]
562
- st.sidebar.success(f"Asset {os.path.basename(file)} vaporized! πŸ’¨")
563
- st.rerun()
564
- update_gallery()
565
-
566
- st.sidebar.subheader("Model Management πŸ—‚οΈ")
567
- model_type = st.sidebar.selectbox("Model Type", ["Causal LM", "Diffusion"], key="sidebar_model_type")
568
- model_dirs = get_model_files(model_type)
569
- selected_model = st.sidebar.selectbox("Select Saved Model", ["None"] + model_dirs, key="sidebar_model_select")
570
- if selected_model != "None" and st.sidebar.button("Load Model πŸ“‚"):
571
  builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
572
- config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=os.path.basename(selected_model), base_model="unknown", size="small")
573
- builder.load_model(selected_model, config)
574
- st.session_state['builder'] = builder
575
- st.session_state['model_loaded'] = True
576
- st.rerun()
577
-
578
- st.sidebar.subheader("Action Logs πŸ“œ")
579
- log_container = st.sidebar.empty()
580
- with log_container:
581
- for record in log_records:
582
- st.write(f"{record.asctime} - {record.levelname} - {record.message}")
583
-
584
- st.sidebar.subheader("History πŸ“œ")
585
- history_container = st.sidebar.empty()
586
- with history_container:
587
- for entry in st.session_state['history'][-gallery_size * 2:]:
588
- st.write(entry)
589
-
590
- tab1, tab2, tab3, tab4, tab5, tab6, tab7, tab8, tab9 = st.tabs([
591
- "Camera Snap πŸ“·", "Download PDFs πŸ“₯", "Build Titan 🌱", "Fine-Tune Titan πŸ”§",
592
- "Test Titan πŸ§ͺ", "Agentic RAG Party 🌐", "Test OCR πŸ”", "Test Image Gen 🎨", "Custom Diffusion πŸŽ¨πŸ€“"
593
- ])
594
-
595
- with tab1:
596
- st.header("Camera Snap πŸ“·")
597
- st.subheader("Single Capture")
598
- cols = st.columns(2)
599
- with cols[0]:
600
- cam0_img = st.camera_input("Take a picture - Cam 0", key="cam0")
601
- if cam0_img:
602
- filename = generate_filename("cam0")
603
- with open(filename, "wb") as f:
604
- f.write(cam0_img.getvalue())
605
- entry = f"Snapshot from Cam 0: {filename}"
606
- if entry not in st.session_state['history']:
607
- st.session_state['history'] = [e for e in st.session_state['history'] if not e.startswith("Snapshot from Cam 0:")] + [entry]
608
- st.image(Image.open(filename), caption="Camera 0", use_container_width=True)
609
- logger.info(f"Saved snapshot from Camera 0: {filename}")
610
- update_gallery()
611
- with cols[1]:
612
- cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1")
613
- if cam1_img:
614
- filename = generate_filename("cam1")
615
- with open(filename, "wb") as f:
616
- f.write(cam1_img.getvalue())
617
- entry = f"Snapshot from Cam 1: {filename}"
618
- if entry not in st.session_state['history']:
619
- st.session_state['history'] = [e for e in st.session_state['history'] if not e.startswith("Snapshot from Cam 1:")] + [entry]
620
- st.image(Image.open(filename), caption="Camera 1", use_container_width=True)
621
- logger.info(f"Saved snapshot from Camera 1: {filename}")
622
- update_gallery()
623
-
624
- with tab2:
625
- st.header("Download PDFs πŸ“₯")
626
- if st.button("Examples πŸ“š"):
627
- example_urls = [
628
- "https://arxiv.org/pdf/2308.03892",
629
- "https://arxiv.org/pdf/1912.01703",
630
- "https://arxiv.org/pdf/2408.11039",
631
- "https://arxiv.org/pdf/2109.10282",
632
- "https://arxiv.org/pdf/2112.10752",
633
- "https://arxiv.org/pdf/2308.11236",
634
- "https://arxiv.org/pdf/1706.03762",
635
- "https://arxiv.org/pdf/2006.11239",
636
- "https://arxiv.org/pdf/2305.11207",
637
- "https://arxiv.org/pdf/2106.09685",
638
- "https://arxiv.org/pdf/2005.11401",
639
- "https://arxiv.org/pdf/2106.10504"
640
- ]
641
- st.session_state['pdf_urls'] = "\n".join(example_urls)
642
-
643
- url_input = st.text_area("Enter PDF URLs (one per line)", value=st.session_state.get('pdf_urls', ""), height=200)
644
- if st.button("Robo-Download πŸ€–"):
645
- urls = url_input.strip().split("\n")
646
- progress_bar = st.progress(0)
647
- status_text = st.empty()
648
- total_urls = len(urls)
649
- existing_pdfs = get_pdf_files()
650
- for idx, url in enumerate(urls):
651
- if url:
652
- output_path = pdf_url_to_filename(url)
653
- status_text.text(f"Fetching {idx + 1}/{total_urls}: {os.path.basename(output_path)}...")
654
- if output_path not in existing_pdfs:
655
- if download_pdf(url, output_path):
656
- st.session_state['downloaded_pdfs'][url] = output_path
657
- logger.info(f"Downloaded PDF from {url} to {output_path}")
658
- entry = f"Downloaded PDF: {output_path}"
659
- if entry not in st.session_state['history']:
660
- st.session_state['history'].append(entry)
661
- else:
662
- st.error(f"Failed to nab {url} 😿")
663
- else:
664
- st.info(f"Already got {os.path.basename(output_path)}! Skipping... 🐾")
665
- st.session_state['downloaded_pdfs'][url] = output_path
666
- progress_bar.progress((idx + 1) / total_urls)
667
- status_text.text("Robo-Download complete! πŸš€")
668
- update_gallery()
669
-
670
- mode = st.selectbox("Snapshot Mode", ["Single Page (High-Res)", "Two Pages (High-Res)", "All Pages (High-Res)"], key="download_mode")
671
- if st.button("Snapshot Selected πŸ“Έ"):
672
- selected_pdfs = [path for path in get_gallery_files() if path.endswith('.pdf') and st.session_state['asset_checkboxes'].get(path, False)]
673
- if selected_pdfs:
674
- for pdf_path in selected_pdfs:
675
- mode_key = {"Single Page (High-Res)": "single", "Two Pages (High-Res)": "twopage", "All Pages (High-Res)": "allpages"}[mode]
676
- snapshots = asyncio.run(process_pdf_snapshot(pdf_path, mode_key))
677
- for snapshot in snapshots:
678
- st.image(Image.open(snapshot), caption=snapshot, use_container_width=True)
679
- else:
680
- st.warning("No PDFs selected for snapshotting! Check some boxes in the sidebar gallery.")
681
-
682
- with tab3:
683
- st.header("Build Titan 🌱")
684
- model_type = st.selectbox("Model Type", ["Causal LM", "Diffusion"], key="build_type")
685
- base_model = st.selectbox("Select Tiny Model",
686
- ["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"] if model_type == "Causal LM" else
687
- ["OFA-Sys/small-stable-diffusion-v0", "stabilityai/stable-diffusion-2-base"])
688
- model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}")
689
- domain = st.text_input("Target Domain", "general")
690
- if st.button("Download Model ⬇️"):
691
- config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=model_name, base_model=base_model, size="small", domain=domain)
692
- builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
693
- builder.load_model(base_model, config)
694
- builder.save_model(config.model_path)
695
- st.session_state['builder'] = builder
696
- st.session_state['model_loaded'] = True
697
- entry = f"Built {model_type} model: {model_name}"
698
- if entry not in st.session_state['history']:
699
- st.session_state['history'].append(entry)
700
- st.success(f"Model downloaded and saved to {config.model_path}! πŸŽ‰")
701
- st.rerun()
702
-
703
- with tab4:
704
- st.header("Fine-Tune Titan πŸ”§")
705
- if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
706
- st.warning("Please build or load a Titan first! ⚠️")
707
- else:
708
- if isinstance(st.session_state['builder'], ModelBuilder):
709
- if st.button("Generate Sample CSV πŸ“"):
710
- sample_data = [
711
- {"prompt": "What is AI?", "response": "AI is artificial intelligence, simulating human smarts in machines."},
712
- {"prompt": "Explain machine learning", "response": "Machine learning is AI’s gym where models bulk up on data."},
713
- ]
714
- csv_path = f"sft_data_{int(time.time())}.csv"
715
- with open(csv_path, "w", newline="") as f:
716
- writer = csv.DictWriter(f, fieldnames=["prompt", "response"])
717
- writer.writeheader()
718
- writer.writerows(sample_data)
719
- st.markdown(get_download_link(csv_path, "text/csv", "Download Sample CSV"), unsafe_allow_html=True)
720
- st.success(f"Sample CSV generated as {csv_path}! βœ…")
721
-
722
- uploaded_csv = st.file_uploader("Upload CSV for SFT", type="csv")
723
- if uploaded_csv and st.button("Fine-Tune with Uploaded CSV πŸ”„"):
724
- csv_path = f"uploaded_sft_data_{int(time.time())}.csv"
725
- with open(csv_path, "wb") as f:
726
- f.write(uploaded_csv.read())
727
- new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}"
728
- new_config = ModelConfig(name=new_model_name, base_model=st.session_state['builder'].config.base_model, size="small", domain=st.session_state['builder'].config.domain)
729
- st.session_state['builder'].config = new_config
730
- st.session_state['builder'].fine_tune_sft(csv_path)
731
- st.session_state['builder'].save_model(new_config.model_path)
732
- zip_path = f"{new_config.model_path}.zip"
733
- zip_directory(new_config.model_path, zip_path)
734
- entry = f"Fine-tuned Causal LM: {new_model_name}"
735
- if entry not in st.session_state['history']:
736
- st.session_state['history'].append(entry)
737
- st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned Titan"), unsafe_allow_html=True)
738
- st.rerun()
739
- elif isinstance(st.session_state['builder'], DiffusionBuilder):
740
- selected_files = [path for path in get_gallery_files() if st.session_state['asset_checkboxes'].get(path, False)]
741
- if len(selected_files) >= 2:
742
- demo_data = [{"image": file, "text": f"Asset {os.path.basename(file).split('.')[0]}"} for file in selected_files]
743
- edited_data = st.data_editor(pd.DataFrame(demo_data), num_rows="dynamic")
744
- if st.button("Fine-Tune with Dataset πŸ”„"):
745
- images = [Image.open(row["image"]) if row["image"].endswith('.png') else Image.frombytes("RGB", fitz.open(row["image"])[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)).size, fitz.open(row["image"])[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)).samples) for _, row in edited_data.iterrows()]
746
- texts = [row["text"] for _, row in edited_data.iterrows()]
747
- new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}"
748
- new_config = DiffusionConfig(name=new_model_name, base_model=st.session_state['builder'].config.base_model, size="small", domain=st.session_state['builder'].config.domain)
749
- st.session_state['builder'].config = new_config
750
- st.session_state['builder'].fine_tune_sft(images, texts)
751
- st.session_state['builder'].save_model(new_config.model_path)
752
- zip_path = f"{new_config.model_path}.zip"
753
- zip_directory(new_config.model_path, zip_path)
754
- entry = f"Fine-tuned Diffusion: {new_model_name}"
755
- if entry not in st.session_state['history']:
756
- st.session_state['history'].append(entry)
757
- st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned Diffusion Model"), unsafe_allow_html=True)
758
- csv_path = f"sft_dataset_{int(time.time())}.csv"
759
- with open(csv_path, "w", newline="") as f:
760
- writer = csv.writer(f)
761
- writer.writerow(["image", "text"])
762
- for _, row in edited_data.iterrows():
763
- writer.writerow([row["image"], row["text"]])
764
- st.markdown(get_download_link(csv_path, "text/csv", "Download SFT Dataset CSV"), unsafe_allow_html=True)
765
-
766
- with tab5:
767
- st.header("Test Titan πŸ§ͺ")
768
- if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
769
- st.warning("Please build or load a Titan first! ⚠️")
770
- else:
771
- if isinstance(st.session_state['builder'], ModelBuilder):
772
- if st.session_state['builder'].sft_data:
773
- st.write("Testing with SFT Data:")
774
- for item in st.session_state['builder'].sft_data[:3]:
775
- prompt = item["prompt"]
776
- expected = item["response"]
777
- status_container = st.empty()
778
- generated = st.session_state['builder'].evaluate(prompt, status_container)
779
- st.write(f"**Prompt**: {prompt}")
780
- st.write(f"**Expected**: {expected}")
781
- st.write(f"**Generated**: {generated}")
782
- st.write("---")
783
- status_container.empty()
784
- test_prompt = st.text_area("Enter Test Prompt", "What is AI?")
785
- if st.button("Run Test ▢️"):
786
- status_container = st.empty()
787
- result = st.session_state['builder'].evaluate(test_prompt, status_container)
788
- entry = f"Causal LM Test: {test_prompt} -> {result}"
789
- if entry not in st.session_state['history']:
790
- st.session_state['history'].append(entry)
791
- st.write(f"**Generated Response**: {result}")
792
- status_container.empty()
793
- elif isinstance(st.session_state['builder'], DiffusionBuilder):
794
- test_prompt = st.text_area("Enter Test Prompt", "Neon Batman")
795
- if st.button("Run Test ▢️"):
796
- image = st.session_state['builder'].generate(test_prompt)
797
- output_file = generate_filename("diffusion_test", "png")
798
- image.save(output_file)
799
- entry = f"Diffusion Test: {test_prompt} -> {output_file}"
800
- if entry not in st.session_state['history']:
801
- st.session_state['history'].append(entry)
802
- st.image(image, caption="Generated Image")
803
- update_gallery()
804
-
805
- with tab6:
806
- st.header("Agentic RAG Party 🌐")
807
- if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
808
- st.warning("Please build or load a Titan first! ⚠️")
809
- else:
810
- if isinstance(st.session_state['builder'], ModelBuilder):
811
- if st.button("Run NLP RAG Demo πŸŽ‰"):
812
- agent = PartyPlannerAgent(st.session_state['builder'].model, st.session_state['builder'].tokenizer)
813
- task = "Plan a luxury superhero-themed party at Wayne Manor."
814
- plan_df = agent.plan_party(task)
815
- entry = f"NLP RAG Demo: Planned party at Wayne Manor"
816
- if entry not in st.session_state['history']:
817
- st.session_state['history'].append(entry)
818
- st.dataframe(plan_df)
819
- elif isinstance(st.session_state['builder'], DiffusionBuilder):
820
- if st.button("Run CV RAG Demo πŸŽ‰"):
821
- agent = CVPartyPlannerAgent(st.session_state['builder'].pipeline)
822
- task = "Generate images for a luxury superhero-themed party."
823
- plan_df = agent.plan_party(task)
824
- entry = f"CV RAG Demo: Generated party images"
825
- if entry not in st.session_state['history']:
826
- st.session_state['history'].append(entry)
827
- st.dataframe(plan_df)
828
- for _, row in plan_df.iterrows():
829
- image = agent.generate(row["Image Idea"])
830
- output_file = generate_filename(f"cv_rag_{row['Theme'].lower()}", "png")
831
- image.save(output_file)
832
- st.image(image, caption=f"{row['Theme']} - {row['Image Idea']}")
833
- update_gallery()
834
-
835
- with tab7:
836
- st.header("Test OCR πŸ”")
837
- all_files = [path for path in get_gallery_files() if st.session_state['asset_checkboxes'].get(path, False)]
838
- if all_files:
839
- selected_file = st.selectbox("Select Image or PDF", all_files, key="ocr_select")
840
- if selected_file:
841
- if selected_file.endswith('.png'):
842
- image = Image.open(selected_file)
843
- else:
844
- doc = fitz.open(selected_file)
845
- pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
846
- image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
847
- doc.close()
848
- st.image(image, caption="Input Image", use_container_width=True)
849
- if st.button("Run OCR πŸš€", key="ocr_run"):
850
- output_file = generate_filename("ocr_output", "txt")
851
- st.session_state['processing']['ocr'] = True
852
- result = asyncio.run(process_ocr(image, output_file))
853
- entry = f"OCR Test: {selected_file} -> {output_file}"
854
- if entry not in st.session_state['history']:
855
- st.session_state['history'].append(entry)
856
- st.text_area("OCR Result", result, height=200, key="ocr_result")
857
- st.success(f"OCR output saved to {output_file}")
858
- st.session_state['processing']['ocr'] = False
859
- else:
860
- st.warning("No images or PDFs selected yet. Check some boxes in the sidebar gallery!")
861
-
862
- with tab8:
863
- st.header("Test Image Gen 🎨")
864
- all_files = [path for path in get_gallery_files() if st.session_state['asset_checkboxes'].get(path, False)]
865
- if all_files:
866
- selected_file = st.selectbox("Select Image or PDF", all_files, key="gen_select")
867
- if selected_file:
868
- if selected_file.endswith('.png'):
869
- image = Image.open(selected_file)
870
- else:
871
- doc = fitz.open(selected_file)
872
- pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
873
- image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
874
- doc.close()
875
- st.image(image, caption="Reference Image", use_container_width=True)
876
- prompt = st.text_area("Prompt", "Generate a similar superhero image", key="gen_prompt")
877
- if st.button("Run Image Gen πŸš€", key="gen_run"):
878
- output_file = generate_filename("gen_output", "png")
879
- st.session_state['processing']['gen'] = True
880
- result = asyncio.run(process_image_gen(prompt, output_file))
881
- entry = f"Image Gen Test: {prompt} -> {output_file}"
882
- if entry not in st.session_state['history']:
883
- st.session_state['history'].append(entry)
884
- st.image(result, caption="Generated Image", use_container_width=True)
885
- st.success(f"Image saved to {output_file}")
886
- st.session_state['processing']['gen'] = False
887
- else:
888
- st.warning("No images or PDFs selected yet. Check some boxes in the sidebar gallery!")
889
-
890
- with tab9:
891
- st.header("Custom Diffusion πŸŽ¨πŸ€“")
892
- st.write("Unleash your inner artist with our tiny diffusion models!")
893
- all_files = [path for path in get_gallery_files() if st.session_state['asset_checkboxes'].get(path, False)]
894
- if all_files:
895
- st.subheader("Select Images or PDFs to Train")
896
- selected_files = st.multiselect("Pick Images or PDFs", all_files, key="diffusion_select")
897
- images = []
898
- for file in selected_files:
899
- if file.endswith('.png'):
900
- images.append(Image.open(file))
901
- else:
902
- doc = fitz.open(file)
903
- pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
904
- images.append(Image.frombytes("RGB", [pix.width, pix.height], pix.samples))
905
- doc.close()
906
 
907
- model_options = [
908
- ("PixelTickler 🎨✨", "OFA-Sys/small-stable-diffusion-v0"),
909
- ("DreamWeaver πŸŒ™πŸ–ŒοΈ", "stabilityai/stable-diffusion-2-base"),
910
- ("TinyArtBot πŸ€–πŸ–ΌοΈ", "custom")
911
- ]
912
- model_choice = st.selectbox("Choose Your Diffusion Dynamo", [opt[0] for opt in model_options], key="diffusion_model")
913
- model_name = next(opt[1] for opt in model_options if opt[0] == model_choice)
914
-
915
- if st.button("Train & Generate πŸš€", key="diffusion_run"):
916
- output_file = generate_filename("custom_diffusion", "png")
917
- st.session_state['processing']['diffusion'] = True
918
- if model_name == "custom":
919
- result = asyncio.run(process_custom_diffusion(images, output_file, model_choice))
920
- else:
921
- builder = DiffusionBuilder()
922
- builder.load_model(model_name)
923
- result = builder.generate("A superhero scene inspired by captured images")
924
- result.save(output_file)
925
- entry = f"Custom Diffusion: {model_choice} -> {output_file}"
926
- if entry not in st.session_state['history']:
927
- st.session_state['history'].append(entry)
928
- st.image(result, caption=f"{model_choice} Masterpiece", use_container_width=True)
929
- st.success(f"Image saved to {output_file}")
930
- st.session_state['processing']['diffusion'] = False
931
- else:
932
- st.warning("No images or PDFs selected yet. Check some boxes in the sidebar gallery!")
933
-
934
- update_gallery()
 
 
 
 
 
 
4
  import base64
5
  import time
6
  import shutil
 
7
  import pandas as pd
8
  import torch
9
  import torch.nn as nn
 
27
  import math
28
  import random
29
  import re
30
+ import gradio as gr
31
 
32
  logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
33
  logger = logging.getLogger(__name__)
 
39
 
40
  logger.addHandler(LogCaptureHandler())
41
 
42
+ # Data Classes and Models (unchanged from your original code)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
  @dataclass
44
  class ModelConfig:
45
  name: str
 
82
  labels[:prompt_len] = -100
83
  return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels}
84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85
  class TinyUNet(nn.Module):
86
  def __init__(self, in_channels=3, out_channels=3):
87
  super(TinyUNet, self).__init__()
 
96
  def forward(self, x, t):
97
  t_embed = F.relu(self.time_embed(t.unsqueeze(-1)))
98
  t_embed = t_embed.view(t_embed.size(0), t_embed.size(1), 1, 1)
 
99
  x1 = F.relu(self.down1(x))
100
  x2 = F.relu(self.down2(x1))
101
  x_mid = F.relu(self.mid(x2)) + t_embed
 
147
  x = torch.clamp(x * 255, 0, 255).byte()
148
  return Image.fromarray(x.squeeze(0).permute(1, 2, 0).cpu().numpy())
149
 
150
+ class TinyDiffusionDataset(Dataset):
151
+ def __init__(self, images):
152
+ self.images = [torch.tensor(np.array(img.convert("RGB")).transpose(2, 0, 1), dtype=torch.float32) / 255.0 for img in images]
153
+ def __len__(self):
154
+ return len(self.images)
155
+ def __getitem__(self, idx):
156
+ return self.images[idx]
157
 
158
  class ModelBuilder:
159
  def __init__(self):
 
161
  self.model = None
162
  self.tokenizer = None
163
  self.sft_data = None
 
164
  def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
165
+ self.model = AutoModelForCausalLM.from_pretrained(model_path)
166
+ self.tokenizer = AutoTokenizer.from_pretrained(model_path)
167
+ if self.tokenizer.pad_token is None:
168
+ self.tokenizer.pad_token = self.tokenizer.eos_token
169
+ if config:
170
+ self.config = config
171
+ self.model.to("cuda" if torch.cuda.is_available() else "cpu")
 
 
172
  return self
173
  def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4):
174
  self.sft_data = []
 
183
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
184
  self.model.to(device)
185
  for epoch in range(epochs):
186
+ total_loss = 0
187
+ for batch in dataloader:
188
+ optimizer.zero_grad()
189
+ input_ids = batch["input_ids"].to(device)
190
+ attention_mask = batch["attention_mask"].to(device)
191
+ labels = batch["labels"].to(device)
192
+ outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
193
+ loss = outputs.loss
194
+ loss.backward()
195
+ optimizer.step()
196
+ total_loss += loss.item()
197
+ logger.info(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
 
 
198
  return self
199
  def save_model(self, path: str):
200
+ os.makedirs(os.path.dirname(path), exist_ok=True)
201
+ self.model.save_pretrained(path)
202
+ self.tokenizer.save_pretrained(path)
203
+ def evaluate(self, prompt: str):
 
 
204
  self.model.eval()
205
+ with torch.no_grad():
206
+ inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device)
207
+ outputs = self.model.generate(**inputs, max_new_tokens=50, do_sample=True, top_p=0.95, temperature=0.7)
208
+ return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
 
 
 
 
 
 
 
209
 
210
  class DiffusionBuilder:
211
  def __init__(self):
212
  self.config = None
213
  self.pipeline = None
214
  def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None):
215
+ self.pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cpu")
216
+ if config:
217
+ self.config = config
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
218
  return self
 
 
 
 
 
219
  def generate(self, prompt: str):
220
  return self.pipeline(prompt, num_inference_steps=20).images[0]
221
 
222
+ # Utility Functions
223
  def generate_filename(sequence, ext="png"):
224
+ timestamp = time.strftime("%d%m%Y%HM%S")
225
  return f"{sequence}_{timestamp}.{ext}"
226
 
227
  def pdf_url_to_filename(url):
228
  safe_name = re.sub(r'[<>:"/\\|?*]', '_', url)
229
  return f"{safe_name}.pdf"
230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
231
  def get_gallery_files(file_types=["png", "pdf"]):
232
  return sorted(list(set([f for ext in file_types for f in glob.glob(f"*.{ext}")]))) # Deduplicate files
233
 
 
 
 
234
  def download_pdf(url, output_path):
235
  try:
236
  response = requests.get(url, stream=True, timeout=10)
 
244
  return False
245
 
246
  async def process_pdf_snapshot(pdf_path, mode="single"):
247
+ doc = fitz.open(pdf_path)
248
+ output_files = []
249
+ if mode == "single":
250
+ page = doc[0]
251
+ pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
252
+ output_file = generate_filename("single", "png")
253
+ pix.save(output_file)
254
+ output_files.append(output_file)
255
+ doc.close()
256
+ return output_files
257
+
258
+ # Gradio Interface Functions
259
+ def update_gallery(history):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
260
  all_files = get_gallery_files()
261
+ gallery_content = "\n".join([f"- {f}" for f in all_files[:5]])
262
+ history.append(f"Gallery updated: {len(all_files)} files")
263
+ return gallery_content, history
264
+
265
+ def camera_snap(image, history):
266
+ if image is not None:
267
+ filename = generate_filename("cam")
268
+ image.save(filename)
269
+ history.append(f"Snapshot saved: {filename}")
270
+ return f"Image saved as {filename}", history
271
+ return "No image captured", history
272
+
273
+ def download_pdfs(urls, history):
274
+ urls = urls.strip().split("\n")
275
+ downloaded = []
276
+ for url in urls:
277
+ if url:
278
+ output_path = pdf_url_to_filename(url)
279
+ if download_pdf(url, output_path):
280
+ downloaded.append(output_path)
281
+ history.append(f"Downloaded PDF: {output_path}")
282
+ return f"Downloaded {len(downloaded)} PDFs", history
283
+
284
+ def build_model(model_type, base_model, model_name, domain, history):
285
+ config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=model_name, base_model=base_model, size="small", domain=domain)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
286
  builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
287
+ builder.load_model(base_model, config)
288
+ builder.save_model(config.model_path)
289
+ history.append(f"Built {model_type} model: {model_name}")
290
+ return builder, f"Model saved to {config.model_path}", history
291
+
292
+ def test_model(builder, prompt, history):
293
+ if builder is None:
294
+ return "No model loaded", history
295
+ if isinstance(builder, ModelBuilder):
296
+ result = builder.evaluate(prompt)
297
+ history.append(f"Tested Causal LM: {prompt} -> {result}")
298
+ return result, history
299
+ elif isinstance(builder, DiffusionBuilder):
300
+ image = builder.generate(prompt)
301
+ output_file = generate_filename("diffusion_test")
302
+ image.save(output_file)
303
+ history.append(f"Tested Diffusion: {prompt} -> {output_file}")
304
+ return output_file, history
305
+
306
+ # Gradio UI
307
+ with gr.Blocks(title="AI Vision & SFT Titans πŸš€") as demo:
308
+ gr.Markdown("# AI Vision & SFT Titans πŸš€")
309
+ history = gr.State(value=[])
310
+ builder = gr.State(value=None)
311
+
312
+ with gr.Row():
313
+ with gr.Column(scale=1):
314
+ gr.Markdown("## Captured Files πŸ“œ")
315
+ gallery_output = gr.Textbox(label="Gallery", lines=5)
316
+ gr.Button("Update Gallery").click(update_gallery, inputs=[history], outputs=[gallery_output, history])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
317
 
318
+ with gr.Column(scale=3):
319
+ with gr.Tabs():
320
+ with gr.TabItem("Camera Snap πŸ“·"):
321
+ camera_input = gr.Image(type="pil", label="Take a Picture")
322
+ snap_output = gr.Textbox(label="Status")
323
+ gr.Button("Capture").click(camera_snap, inputs=[camera_input, history], outputs=[snap_output, history])
324
+
325
+ with gr.TabItem("Download PDFs πŸ“₯"):
326
+ url_input = gr.Textbox(label="Enter PDF URLs (one per line)", lines=5)
327
+ pdf_output = gr.Textbox(label="Status")
328
+ gr.Button("Download").click(download_pdfs, inputs=[url_input, history], outputs=[pdf_output, history])
329
+
330
+ with gr.TabItem("Build Titan 🌱"):
331
+ model_type = gr.Dropdown(["Causal LM", "Diffusion"], label="Model Type")
332
+ base_model = gr.Dropdown(
333
+ choices=["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"] if model_type.value == "Causal LM" else ["OFA-Sys/small-stable-diffusion-v0", "stabilityai/stable-diffusion-2-base"],
334
+ label="Base Model"
335
+ )
336
+ model_name = gr.Textbox(label="Model Name", value=f"tiny-titan-{int(time.time())}")
337
+ domain = gr.Textbox(label="Domain", value="general")
338
+ build_output = gr.Textbox(label="Status")
339
+ gr.Button("Build").click(build_model, inputs=[model_type, base_model, model_name, domain, history], outputs=[builder, build_output, history])
340
+
341
+ with gr.TabItem("Test Titan πŸ§ͺ"):
342
+ test_prompt = gr.Textbox(label="Test Prompt", value="What is AI?")
343
+ test_output = gr.Textbox(label="Result")
344
+ gr.Button("Test").click(test_model, inputs=[builder, test_prompt, history], outputs=[test_output, history])
345
+
346
+ with gr.Row():
347
+ gr.Markdown("## History πŸ“œ")
348
+ history_output = gr.Textbox(value="\n".join(history.value), label="History", lines=5, interactive=False)
349
+
350
+ demo.launch()