Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,6 @@ import glob
|
|
4 |
import base64
|
5 |
import time
|
6 |
import shutil
|
7 |
-
import streamlit as st
|
8 |
import pandas as pd
|
9 |
import torch
|
10 |
import torch.nn as nn
|
@@ -28,6 +27,7 @@ import zipfile
|
|
28 |
import math
|
29 |
import random
|
30 |
import re
|
|
|
31 |
|
32 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
33 |
logger = logging.getLogger(__name__)
|
@@ -39,33 +39,7 @@ class LogCaptureHandler(logging.Handler):
|
|
39 |
|
40 |
logger.addHandler(LogCaptureHandler())
|
41 |
|
42 |
-
|
43 |
-
page_title="AI Vision & SFT Titans π",
|
44 |
-
page_icon="π€",
|
45 |
-
layout="wide",
|
46 |
-
initial_sidebar_state="expanded",
|
47 |
-
menu_items={
|
48 |
-
'Get Help': 'https://huggingface.co/awacke1',
|
49 |
-
'Report a Bug': 'https://huggingface.co/spaces/awacke1',
|
50 |
-
'About': "AI Vision & SFT Titans: PDFs, OCR, Image Gen, Line Drawings, Custom Diffusion, and SFT on CPU! π"
|
51 |
-
}
|
52 |
-
)
|
53 |
-
|
54 |
-
if 'history' not in st.session_state:
|
55 |
-
st.session_state['history'] = []
|
56 |
-
if 'builder' not in st.session_state:
|
57 |
-
st.session_state['builder'] = None
|
58 |
-
if 'model_loaded' not in st.session_state:
|
59 |
-
st.session_state['model_loaded'] = False
|
60 |
-
if 'processing' not in st.session_state:
|
61 |
-
st.session_state['processing'] = {}
|
62 |
-
if 'asset_checkboxes' not in st.session_state:
|
63 |
-
st.session_state['asset_checkboxes'] = {}
|
64 |
-
if 'downloaded_pdfs' not in st.session_state:
|
65 |
-
st.session_state['downloaded_pdfs'] = {}
|
66 |
-
if 'unique_counter' not in st.session_state:
|
67 |
-
st.session_state['unique_counter'] = 0 # For generating unique keys
|
68 |
-
|
69 |
@dataclass
|
70 |
class ModelConfig:
|
71 |
name: str
|
@@ -108,23 +82,6 @@ class SFTDataset(Dataset):
|
|
108 |
labels[:prompt_len] = -100
|
109 |
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels}
|
110 |
|
111 |
-
class DiffusionDataset(Dataset):
|
112 |
-
def __init__(self, images, texts):
|
113 |
-
self.images = images
|
114 |
-
self.texts = texts
|
115 |
-
def __len__(self):
|
116 |
-
return len(self.images)
|
117 |
-
def __getitem__(self, idx):
|
118 |
-
return {"image": self.images[idx], "text": self.texts[idx]}
|
119 |
-
|
120 |
-
class TinyDiffusionDataset(Dataset):
|
121 |
-
def __init__(self, images):
|
122 |
-
self.images = [torch.tensor(np.array(img.convert("RGB")).transpose(2, 0, 1), dtype=torch.float32) / 255.0 for img in images]
|
123 |
-
def __len__(self):
|
124 |
-
return len(self.images)
|
125 |
-
def __getitem__(self, idx):
|
126 |
-
return self.images[idx]
|
127 |
-
|
128 |
class TinyUNet(nn.Module):
|
129 |
def __init__(self, in_channels=3, out_channels=3):
|
130 |
super(TinyUNet, self).__init__()
|
@@ -139,7 +96,6 @@ class TinyUNet(nn.Module):
|
|
139 |
def forward(self, x, t):
|
140 |
t_embed = F.relu(self.time_embed(t.unsqueeze(-1)))
|
141 |
t_embed = t_embed.view(t_embed.size(0), t_embed.size(1), 1, 1)
|
142 |
-
|
143 |
x1 = F.relu(self.down1(x))
|
144 |
x2 = F.relu(self.down2(x1))
|
145 |
x_mid = F.relu(self.mid(x2)) + t_embed
|
@@ -191,11 +147,13 @@ class TinyDiffusion:
|
|
191 |
x = torch.clamp(x * 255, 0, 255).byte()
|
192 |
return Image.fromarray(x.squeeze(0).permute(1, 2, 0).cpu().numpy())
|
193 |
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
return
|
|
|
|
|
199 |
|
200 |
class ModelBuilder:
|
201 |
def __init__(self):
|
@@ -203,17 +161,14 @@ class ModelBuilder:
|
|
203 |
self.model = None
|
204 |
self.tokenizer = None
|
205 |
self.sft_data = None
|
206 |
-
self.jokes = ["Why did the AI go to therapy? Too many layers to unpack! π", "Training complete! Time for a binary coffee break. β"]
|
207 |
def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
self.model.to("cuda" if torch.cuda.is_available() else "cpu")
|
216 |
-
st.success(f"Model loaded! π {random.choice(self.jokes)}")
|
217 |
return self
|
218 |
def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4):
|
219 |
self.sft_data = []
|
@@ -228,115 +183,54 @@ class ModelBuilder:
|
|
228 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
229 |
self.model.to(device)
|
230 |
for epoch in range(epochs):
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
|
244 |
-
st.success(f"SFT Fine-tuning completed! π {random.choice(self.jokes)}")
|
245 |
return self
|
246 |
def save_model(self, path: str):
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
st.success(f"Model saved at {path}! β
")
|
252 |
-
def evaluate(self, prompt: str, status_container=None):
|
253 |
self.model.eval()
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device)
|
259 |
-
outputs = self.model.generate(**inputs, max_new_tokens=50, do_sample=True, top_p=0.95, temperature=0.7)
|
260 |
-
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
261 |
-
except Exception as e:
|
262 |
-
if status_container:
|
263 |
-
status_container.error(f"Oops! Something broke: {str(e)} π₯")
|
264 |
-
return f"Error: {str(e)}"
|
265 |
|
266 |
class DiffusionBuilder:
|
267 |
def __init__(self):
|
268 |
self.config = None
|
269 |
self.pipeline = None
|
270 |
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None):
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
self.config = config
|
275 |
-
st.success(f"Diffusion model loaded! π¨")
|
276 |
-
return self
|
277 |
-
def fine_tune_sft(self, images, texts, epochs=3):
|
278 |
-
dataset = DiffusionDataset(images, texts)
|
279 |
-
dataloader = DataLoader(dataset, batch_size=1, shuffle=True)
|
280 |
-
optimizer = torch.optim.AdamW(self.pipeline.unet.parameters(), lr=1e-5)
|
281 |
-
self.pipeline.unet.train()
|
282 |
-
for epoch in range(epochs):
|
283 |
-
with st.spinner(f"Training diffusion epoch {epoch + 1}/{epochs}... βοΈ"):
|
284 |
-
total_loss = 0
|
285 |
-
for batch in dataloader:
|
286 |
-
optimizer.zero_grad()
|
287 |
-
image = batch["image"][0].to(self.pipeline.device)
|
288 |
-
text = batch["text"][0]
|
289 |
-
latents = self.pipeline.vae.encode(torch.tensor(np.array(image)).permute(2, 0, 1).unsqueeze(0).float().to(self.pipeline.device)).latent_dist.sample()
|
290 |
-
noise = torch.randn_like(latents)
|
291 |
-
timesteps = torch.randint(0, self.pipeline.scheduler.num_train_timesteps, (latents.shape[0],), device=latents.device)
|
292 |
-
noisy_latents = self.pipeline.scheduler.add_noise(latents, noise, timesteps)
|
293 |
-
text_embeddings = self.pipeline.text_encoder(self.pipeline.tokenizer(text, return_tensors="pt").input_ids.to(self.pipeline.device))[0]
|
294 |
-
pred_noise = self.pipeline.unet(noisy_latents, timesteps, encoder_hidden_states=text_embeddings).sample
|
295 |
-
loss = torch.nn.functional.mse_loss(pred_noise, noise)
|
296 |
-
loss.backward()
|
297 |
-
optimizer.step()
|
298 |
-
total_loss += loss.item()
|
299 |
-
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
|
300 |
-
st.success("Diffusion SFT Fine-tuning completed! π¨")
|
301 |
return self
|
302 |
-
def save_model(self, path: str):
|
303 |
-
with st.spinner("Saving diffusion model... πΎ"):
|
304 |
-
os.makedirs(os.path.dirname(path), exist_ok=True)
|
305 |
-
self.pipeline.save_pretrained(path)
|
306 |
-
st.success(f"Diffusion model saved at {path}! β
")
|
307 |
def generate(self, prompt: str):
|
308 |
return self.pipeline(prompt, num_inference_steps=20).images[0]
|
309 |
|
|
|
310 |
def generate_filename(sequence, ext="png"):
|
311 |
-
timestamp = time.strftime("%d%m%Y%
|
312 |
return f"{sequence}_{timestamp}.{ext}"
|
313 |
|
314 |
def pdf_url_to_filename(url):
|
315 |
safe_name = re.sub(r'[<>:"/\\|?*]', '_', url)
|
316 |
return f"{safe_name}.pdf"
|
317 |
|
318 |
-
def get_download_link(file_path, mime_type="application/pdf", label="Download"):
|
319 |
-
with open(file_path, 'rb') as f:
|
320 |
-
data = f.read()
|
321 |
-
b64 = base64.b64encode(data).decode()
|
322 |
-
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label}</a>'
|
323 |
-
|
324 |
-
def zip_directory(directory_path, zip_path):
|
325 |
-
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
326 |
-
for root, _, files in os.walk(directory_path):
|
327 |
-
for file in files:
|
328 |
-
zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path)))
|
329 |
-
|
330 |
-
def get_model_files(model_type="causal_lm"):
|
331 |
-
path = "models/*" if model_type == "causal_lm" else "diffusion_models/*"
|
332 |
-
return [d for d in glob.glob(path) if os.path.isdir(d)]
|
333 |
-
|
334 |
def get_gallery_files(file_types=["png", "pdf"]):
|
335 |
return sorted(list(set([f for ext in file_types for f in glob.glob(f"*.{ext}")]))) # Deduplicate files
|
336 |
|
337 |
-
def get_pdf_files():
|
338 |
-
return sorted(glob.glob("*.pdf"))
|
339 |
-
|
340 |
def download_pdf(url, output_path):
|
341 |
try:
|
342 |
response = requests.get(url, stream=True, timeout=10)
|
@@ -350,585 +244,107 @@ def download_pdf(url, output_path):
|
|
350 |
return False
|
351 |
|
352 |
async def process_pdf_snapshot(pdf_path, mode="single"):
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
for i in range(min(2, len(doc))):
|
367 |
-
page = doc[i]
|
368 |
-
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
369 |
-
output_file = generate_filename(f"twopage_{i}", "png")
|
370 |
-
pix.save(output_file)
|
371 |
-
output_files.append(output_file)
|
372 |
-
elif mode == "allpages":
|
373 |
-
for i in range(len(doc)):
|
374 |
-
page = doc[i]
|
375 |
-
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
376 |
-
output_file = generate_filename(f"page_{i}", "png")
|
377 |
-
pix.save(output_file)
|
378 |
-
output_files.append(output_file)
|
379 |
-
doc.close()
|
380 |
-
elapsed = int(time.time() - start_time)
|
381 |
-
status.text(f"PDF Snapshot ({mode}) completed in {elapsed}s!")
|
382 |
-
update_gallery()
|
383 |
-
return output_files
|
384 |
-
except Exception as e:
|
385 |
-
status.error(f"Failed to process PDF: {str(e)}")
|
386 |
-
return []
|
387 |
-
|
388 |
-
async def process_ocr(image, output_file):
|
389 |
-
start_time = time.time()
|
390 |
-
status = st.empty()
|
391 |
-
status.text("Processing GOT-OCR2_0... (0s)")
|
392 |
-
tokenizer = AutoTokenizer.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True)
|
393 |
-
model = AutoModel.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval()
|
394 |
-
result = model.chat(tokenizer, image, ocr_type='ocr')
|
395 |
-
elapsed = int(time.time() - start_time)
|
396 |
-
status.text(f"GOT-OCR2_0 completed in {elapsed}s!")
|
397 |
-
async with aiofiles.open(output_file, "w") as f:
|
398 |
-
await f.write(result)
|
399 |
-
update_gallery()
|
400 |
-
return result
|
401 |
-
|
402 |
-
async def process_image_gen(prompt, output_file):
|
403 |
-
start_time = time.time()
|
404 |
-
status = st.empty()
|
405 |
-
status.text("Processing Image Gen... (0s)")
|
406 |
-
pipeline = StableDiffusionPipeline.from_pretrained("OFA-Sys/small-stable-diffusion-v0", torch_dtype=torch.float32).to("cpu")
|
407 |
-
gen_image = pipeline(prompt, num_inference_steps=20).images[0]
|
408 |
-
elapsed = int(time.time() - start_time)
|
409 |
-
status.text(f"Image Gen completed in {elapsed}s!")
|
410 |
-
gen_image.save(output_file)
|
411 |
-
update_gallery()
|
412 |
-
return gen_image
|
413 |
-
|
414 |
-
async def process_custom_diffusion(images, output_file, model_name):
|
415 |
-
start_time = time.time()
|
416 |
-
status = st.empty()
|
417 |
-
status.text(f"Training {model_name}... (0s)")
|
418 |
-
unet = TinyUNet()
|
419 |
-
diffusion = TinyDiffusion(unet)
|
420 |
-
diffusion.train(images)
|
421 |
-
gen_image = diffusion.generate()
|
422 |
-
upscaled_image = diffusion.upscale(gen_image, scale_factor=2)
|
423 |
-
elapsed = int(time.time() - start_time)
|
424 |
-
status.text(f"{model_name} completed in {elapsed}s!")
|
425 |
-
upscaled_image.save(output_file)
|
426 |
-
update_gallery()
|
427 |
-
return upscaled_image
|
428 |
-
|
429 |
-
def mock_search(query: str) -> str:
|
430 |
-
if "superhero" in query.lower():
|
431 |
-
return "Latest trends: Gold-plated Batman statues, VR superhero battles."
|
432 |
-
return "No relevant results found."
|
433 |
-
|
434 |
-
def mock_duckduckgo_search(query: str) -> str:
|
435 |
-
if "superhero party trends" in query.lower():
|
436 |
-
return """
|
437 |
-
Latest trends for 2025:
|
438 |
-
- Luxury decorations: Gold-plated Batman statues, holographic Avengers displays.
|
439 |
-
- Entertainment: Live stunt shows with Iron Man suits, VR superhero battles.
|
440 |
-
- Catering: Gourmet kryptonite-green cocktails, Thorβs hammer-shaped appetizers.
|
441 |
-
"""
|
442 |
-
return "No relevant results found."
|
443 |
-
|
444 |
-
class PartyPlannerAgent:
|
445 |
-
def __init__(self, model, tokenizer):
|
446 |
-
self.model = model
|
447 |
-
self.tokenizer = tokenizer
|
448 |
-
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
449 |
-
self.model.to(self.device)
|
450 |
-
def generate(self, prompt: str) -> str:
|
451 |
-
self.model.eval()
|
452 |
-
with torch.no_grad():
|
453 |
-
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.device)
|
454 |
-
outputs = self.model.generate(**inputs, max_new_tokens=100, do_sample=True, top_p=0.95, temperature=0.7)
|
455 |
-
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
456 |
-
def plan_party(self, task: str) -> pd.DataFrame:
|
457 |
-
search_result = mock_duckduckgo_search("latest superhero party trends")
|
458 |
-
prompt = f"Given this context: '{search_result}'\n{task}"
|
459 |
-
plan_text = self.generate(prompt)
|
460 |
-
locations = {
|
461 |
-
"Wayne Manor": (42.3601, -71.0589),
|
462 |
-
"New York": (40.7128, -74.0060),
|
463 |
-
"Los Angeles": (34.0522, -118.2437),
|
464 |
-
"London": (51.5074, -0.1278)
|
465 |
-
}
|
466 |
-
wayne_coords = locations["Wayne Manor"]
|
467 |
-
travel_times = {loc: calculate_cargo_travel_time(coords, wayne_coords) for loc, coords in locations.items() if loc != "Wayne Manor"}
|
468 |
-
catchphrases = ["To the Batmobile!", "Avengers, assemble!", "I am Iron Man!", "By the power of Grayskull!"]
|
469 |
-
data = [
|
470 |
-
{"Location": "New York", "Travel Time (hrs)": travel_times["New York"], "Luxury Idea": "Gold-plated Batman statues", "Catchphrase": random.choice(catchphrases)},
|
471 |
-
{"Location": "Los Angeles", "Travel Time (hrs)": travel_times["Los Angeles"], "Luxury Idea": "Holographic Avengers displays", "Catchphrase": random.choice(catchphrases)},
|
472 |
-
{"Location": "London", "Travel Time (hrs)": travel_times["London"], "Luxury Idea": "Live stunt shows with Iron Man suits", "Catchphrase": random.choice(catchphrases)},
|
473 |
-
{"Location": "Wayne Manor", "Travel Time (hrs)": 0.0, "Luxury Idea": "VR superhero battles", "Catchphrase": random.choice(catchphrases)},
|
474 |
-
{"Location": "New York", "Travel Time (hrs)": travel_times["New York"], "Luxury Idea": "Gourmet kryptonite-green cocktails", "Catchphrase": random.choice(catchphrases)},
|
475 |
-
{"Location": "Los Angeles", "Travel Time (hrs)": travel_times["Los Angeles"], "Luxury Idea": "Thorβs hammer-shaped appetizers", "Catchphrase": random.choice(catchphrases)},
|
476 |
-
]
|
477 |
-
return pd.DataFrame(data)
|
478 |
-
|
479 |
-
class CVPartyPlannerAgent:
|
480 |
-
def __init__(self, pipeline):
|
481 |
-
self.pipeline = pipeline
|
482 |
-
def generate(self, prompt: str) -> Image.Image:
|
483 |
-
return self.pipeline(prompt, num_inference_steps=20).images[0]
|
484 |
-
def plan_party(self, task: str) -> pd.DataFrame:
|
485 |
-
search_result = mock_search("superhero party trends")
|
486 |
-
prompt = f"Given this context: '{search_result}'\n{task}"
|
487 |
-
data = [
|
488 |
-
{"Theme": "Batman", "Image Idea": "Gold-plated Batman statue"},
|
489 |
-
{"Theme": "Avengers", "Image Idea": "VR superhero battle scene"}
|
490 |
-
]
|
491 |
-
return pd.DataFrame(data)
|
492 |
-
|
493 |
-
def calculate_cargo_travel_time(origin_coords: Tuple[float, float], destination_coords: Tuple[float, float], cruising_speed_kmh: float = 750.0) -> float:
|
494 |
-
def to_radians(degrees: float) -> float:
|
495 |
-
return degrees * (math.pi / 180)
|
496 |
-
lat1, lon1 = map(to_radians, origin_coords)
|
497 |
-
lat2, lon2 = map(to_radians, destination_coords)
|
498 |
-
EARTH_RADIUS_KM = 6371.0
|
499 |
-
dlon = lon2 - lon1
|
500 |
-
dlat = lat2 - lat1
|
501 |
-
a = (math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2) ** 2)
|
502 |
-
c = 2 * math.asin(math.sqrt(a))
|
503 |
-
distance = EARTH_RADIUS_KM * c
|
504 |
-
actual_distance = distance * 1.1
|
505 |
-
flight_time = (actual_distance / cruising_speed_kmh) + 1.0
|
506 |
-
return round(flight_time, 2)
|
507 |
-
|
508 |
-
st.title("AI Vision & SFT Titans π")
|
509 |
-
|
510 |
-
st.sidebar.header("Captured Files π")
|
511 |
-
cols = st.sidebar.columns(2)
|
512 |
-
with cols[0]:
|
513 |
-
if st.button("Zip All π€"):
|
514 |
-
zip_path = f"all_assets_{int(time.time())}.zip"
|
515 |
-
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
516 |
-
for file in get_gallery_files():
|
517 |
-
zipf.write(file, os.path.basename(file))
|
518 |
-
st.sidebar.markdown(get_download_link(zip_path, "application/zip", "Download All Assets"), unsafe_allow_html=True)
|
519 |
-
with cols[1]:
|
520 |
-
if st.button("Zap All! ποΈ"):
|
521 |
-
for file in get_gallery_files():
|
522 |
-
os.remove(file)
|
523 |
-
st.session_state['asset_checkboxes'].clear()
|
524 |
-
st.session_state['downloaded_pdfs'].clear()
|
525 |
-
st.sidebar.success("All assets vaporized! π¨")
|
526 |
-
st.rerun()
|
527 |
-
|
528 |
-
gallery_size = st.sidebar.slider("Gallery Size", 1, 10, 2)
|
529 |
-
def update_gallery():
|
530 |
all_files = get_gallery_files()
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
)
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
if file in st.session_state['asset_checkboxes']:
|
557 |
-
del st.session_state['asset_checkboxes'][file]
|
558 |
-
if file.endswith('.pdf'):
|
559 |
-
url_key = next((k for k, v in st.session_state['downloaded_pdfs'].items() if v == file), None)
|
560 |
-
if url_key:
|
561 |
-
del st.session_state['downloaded_pdfs'][url_key]
|
562 |
-
st.sidebar.success(f"Asset {os.path.basename(file)} vaporized! π¨")
|
563 |
-
st.rerun()
|
564 |
-
update_gallery()
|
565 |
-
|
566 |
-
st.sidebar.subheader("Model Management ποΈ")
|
567 |
-
model_type = st.sidebar.selectbox("Model Type", ["Causal LM", "Diffusion"], key="sidebar_model_type")
|
568 |
-
model_dirs = get_model_files(model_type)
|
569 |
-
selected_model = st.sidebar.selectbox("Select Saved Model", ["None"] + model_dirs, key="sidebar_model_select")
|
570 |
-
if selected_model != "None" and st.sidebar.button("Load Model π"):
|
571 |
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
|
572 |
-
|
573 |
-
builder.
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
filename = generate_filename("cam0")
|
603 |
-
with open(filename, "wb") as f:
|
604 |
-
f.write(cam0_img.getvalue())
|
605 |
-
entry = f"Snapshot from Cam 0: {filename}"
|
606 |
-
if entry not in st.session_state['history']:
|
607 |
-
st.session_state['history'] = [e for e in st.session_state['history'] if not e.startswith("Snapshot from Cam 0:")] + [entry]
|
608 |
-
st.image(Image.open(filename), caption="Camera 0", use_container_width=True)
|
609 |
-
logger.info(f"Saved snapshot from Camera 0: {filename}")
|
610 |
-
update_gallery()
|
611 |
-
with cols[1]:
|
612 |
-
cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1")
|
613 |
-
if cam1_img:
|
614 |
-
filename = generate_filename("cam1")
|
615 |
-
with open(filename, "wb") as f:
|
616 |
-
f.write(cam1_img.getvalue())
|
617 |
-
entry = f"Snapshot from Cam 1: {filename}"
|
618 |
-
if entry not in st.session_state['history']:
|
619 |
-
st.session_state['history'] = [e for e in st.session_state['history'] if not e.startswith("Snapshot from Cam 1:")] + [entry]
|
620 |
-
st.image(Image.open(filename), caption="Camera 1", use_container_width=True)
|
621 |
-
logger.info(f"Saved snapshot from Camera 1: {filename}")
|
622 |
-
update_gallery()
|
623 |
-
|
624 |
-
with tab2:
|
625 |
-
st.header("Download PDFs π₯")
|
626 |
-
if st.button("Examples π"):
|
627 |
-
example_urls = [
|
628 |
-
"https://arxiv.org/pdf/2308.03892",
|
629 |
-
"https://arxiv.org/pdf/1912.01703",
|
630 |
-
"https://arxiv.org/pdf/2408.11039",
|
631 |
-
"https://arxiv.org/pdf/2109.10282",
|
632 |
-
"https://arxiv.org/pdf/2112.10752",
|
633 |
-
"https://arxiv.org/pdf/2308.11236",
|
634 |
-
"https://arxiv.org/pdf/1706.03762",
|
635 |
-
"https://arxiv.org/pdf/2006.11239",
|
636 |
-
"https://arxiv.org/pdf/2305.11207",
|
637 |
-
"https://arxiv.org/pdf/2106.09685",
|
638 |
-
"https://arxiv.org/pdf/2005.11401",
|
639 |
-
"https://arxiv.org/pdf/2106.10504"
|
640 |
-
]
|
641 |
-
st.session_state['pdf_urls'] = "\n".join(example_urls)
|
642 |
-
|
643 |
-
url_input = st.text_area("Enter PDF URLs (one per line)", value=st.session_state.get('pdf_urls', ""), height=200)
|
644 |
-
if st.button("Robo-Download π€"):
|
645 |
-
urls = url_input.strip().split("\n")
|
646 |
-
progress_bar = st.progress(0)
|
647 |
-
status_text = st.empty()
|
648 |
-
total_urls = len(urls)
|
649 |
-
existing_pdfs = get_pdf_files()
|
650 |
-
for idx, url in enumerate(urls):
|
651 |
-
if url:
|
652 |
-
output_path = pdf_url_to_filename(url)
|
653 |
-
status_text.text(f"Fetching {idx + 1}/{total_urls}: {os.path.basename(output_path)}...")
|
654 |
-
if output_path not in existing_pdfs:
|
655 |
-
if download_pdf(url, output_path):
|
656 |
-
st.session_state['downloaded_pdfs'][url] = output_path
|
657 |
-
logger.info(f"Downloaded PDF from {url} to {output_path}")
|
658 |
-
entry = f"Downloaded PDF: {output_path}"
|
659 |
-
if entry not in st.session_state['history']:
|
660 |
-
st.session_state['history'].append(entry)
|
661 |
-
else:
|
662 |
-
st.error(f"Failed to nab {url} πΏ")
|
663 |
-
else:
|
664 |
-
st.info(f"Already got {os.path.basename(output_path)}! Skipping... πΎ")
|
665 |
-
st.session_state['downloaded_pdfs'][url] = output_path
|
666 |
-
progress_bar.progress((idx + 1) / total_urls)
|
667 |
-
status_text.text("Robo-Download complete! π")
|
668 |
-
update_gallery()
|
669 |
-
|
670 |
-
mode = st.selectbox("Snapshot Mode", ["Single Page (High-Res)", "Two Pages (High-Res)", "All Pages (High-Res)"], key="download_mode")
|
671 |
-
if st.button("Snapshot Selected πΈ"):
|
672 |
-
selected_pdfs = [path for path in get_gallery_files() if path.endswith('.pdf') and st.session_state['asset_checkboxes'].get(path, False)]
|
673 |
-
if selected_pdfs:
|
674 |
-
for pdf_path in selected_pdfs:
|
675 |
-
mode_key = {"Single Page (High-Res)": "single", "Two Pages (High-Res)": "twopage", "All Pages (High-Res)": "allpages"}[mode]
|
676 |
-
snapshots = asyncio.run(process_pdf_snapshot(pdf_path, mode_key))
|
677 |
-
for snapshot in snapshots:
|
678 |
-
st.image(Image.open(snapshot), caption=snapshot, use_container_width=True)
|
679 |
-
else:
|
680 |
-
st.warning("No PDFs selected for snapshotting! Check some boxes in the sidebar gallery.")
|
681 |
-
|
682 |
-
with tab3:
|
683 |
-
st.header("Build Titan π±")
|
684 |
-
model_type = st.selectbox("Model Type", ["Causal LM", "Diffusion"], key="build_type")
|
685 |
-
base_model = st.selectbox("Select Tiny Model",
|
686 |
-
["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"] if model_type == "Causal LM" else
|
687 |
-
["OFA-Sys/small-stable-diffusion-v0", "stabilityai/stable-diffusion-2-base"])
|
688 |
-
model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}")
|
689 |
-
domain = st.text_input("Target Domain", "general")
|
690 |
-
if st.button("Download Model β¬οΈ"):
|
691 |
-
config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=model_name, base_model=base_model, size="small", domain=domain)
|
692 |
-
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
|
693 |
-
builder.load_model(base_model, config)
|
694 |
-
builder.save_model(config.model_path)
|
695 |
-
st.session_state['builder'] = builder
|
696 |
-
st.session_state['model_loaded'] = True
|
697 |
-
entry = f"Built {model_type} model: {model_name}"
|
698 |
-
if entry not in st.session_state['history']:
|
699 |
-
st.session_state['history'].append(entry)
|
700 |
-
st.success(f"Model downloaded and saved to {config.model_path}! π")
|
701 |
-
st.rerun()
|
702 |
-
|
703 |
-
with tab4:
|
704 |
-
st.header("Fine-Tune Titan π§")
|
705 |
-
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
|
706 |
-
st.warning("Please build or load a Titan first! β οΈ")
|
707 |
-
else:
|
708 |
-
if isinstance(st.session_state['builder'], ModelBuilder):
|
709 |
-
if st.button("Generate Sample CSV π"):
|
710 |
-
sample_data = [
|
711 |
-
{"prompt": "What is AI?", "response": "AI is artificial intelligence, simulating human smarts in machines."},
|
712 |
-
{"prompt": "Explain machine learning", "response": "Machine learning is AIβs gym where models bulk up on data."},
|
713 |
-
]
|
714 |
-
csv_path = f"sft_data_{int(time.time())}.csv"
|
715 |
-
with open(csv_path, "w", newline="") as f:
|
716 |
-
writer = csv.DictWriter(f, fieldnames=["prompt", "response"])
|
717 |
-
writer.writeheader()
|
718 |
-
writer.writerows(sample_data)
|
719 |
-
st.markdown(get_download_link(csv_path, "text/csv", "Download Sample CSV"), unsafe_allow_html=True)
|
720 |
-
st.success(f"Sample CSV generated as {csv_path}! β
")
|
721 |
-
|
722 |
-
uploaded_csv = st.file_uploader("Upload CSV for SFT", type="csv")
|
723 |
-
if uploaded_csv and st.button("Fine-Tune with Uploaded CSV π"):
|
724 |
-
csv_path = f"uploaded_sft_data_{int(time.time())}.csv"
|
725 |
-
with open(csv_path, "wb") as f:
|
726 |
-
f.write(uploaded_csv.read())
|
727 |
-
new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}"
|
728 |
-
new_config = ModelConfig(name=new_model_name, base_model=st.session_state['builder'].config.base_model, size="small", domain=st.session_state['builder'].config.domain)
|
729 |
-
st.session_state['builder'].config = new_config
|
730 |
-
st.session_state['builder'].fine_tune_sft(csv_path)
|
731 |
-
st.session_state['builder'].save_model(new_config.model_path)
|
732 |
-
zip_path = f"{new_config.model_path}.zip"
|
733 |
-
zip_directory(new_config.model_path, zip_path)
|
734 |
-
entry = f"Fine-tuned Causal LM: {new_model_name}"
|
735 |
-
if entry not in st.session_state['history']:
|
736 |
-
st.session_state['history'].append(entry)
|
737 |
-
st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned Titan"), unsafe_allow_html=True)
|
738 |
-
st.rerun()
|
739 |
-
elif isinstance(st.session_state['builder'], DiffusionBuilder):
|
740 |
-
selected_files = [path for path in get_gallery_files() if st.session_state['asset_checkboxes'].get(path, False)]
|
741 |
-
if len(selected_files) >= 2:
|
742 |
-
demo_data = [{"image": file, "text": f"Asset {os.path.basename(file).split('.')[0]}"} for file in selected_files]
|
743 |
-
edited_data = st.data_editor(pd.DataFrame(demo_data), num_rows="dynamic")
|
744 |
-
if st.button("Fine-Tune with Dataset π"):
|
745 |
-
images = [Image.open(row["image"]) if row["image"].endswith('.png') else Image.frombytes("RGB", fitz.open(row["image"])[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)).size, fitz.open(row["image"])[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)).samples) for _, row in edited_data.iterrows()]
|
746 |
-
texts = [row["text"] for _, row in edited_data.iterrows()]
|
747 |
-
new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}"
|
748 |
-
new_config = DiffusionConfig(name=new_model_name, base_model=st.session_state['builder'].config.base_model, size="small", domain=st.session_state['builder'].config.domain)
|
749 |
-
st.session_state['builder'].config = new_config
|
750 |
-
st.session_state['builder'].fine_tune_sft(images, texts)
|
751 |
-
st.session_state['builder'].save_model(new_config.model_path)
|
752 |
-
zip_path = f"{new_config.model_path}.zip"
|
753 |
-
zip_directory(new_config.model_path, zip_path)
|
754 |
-
entry = f"Fine-tuned Diffusion: {new_model_name}"
|
755 |
-
if entry not in st.session_state['history']:
|
756 |
-
st.session_state['history'].append(entry)
|
757 |
-
st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned Diffusion Model"), unsafe_allow_html=True)
|
758 |
-
csv_path = f"sft_dataset_{int(time.time())}.csv"
|
759 |
-
with open(csv_path, "w", newline="") as f:
|
760 |
-
writer = csv.writer(f)
|
761 |
-
writer.writerow(["image", "text"])
|
762 |
-
for _, row in edited_data.iterrows():
|
763 |
-
writer.writerow([row["image"], row["text"]])
|
764 |
-
st.markdown(get_download_link(csv_path, "text/csv", "Download SFT Dataset CSV"), unsafe_allow_html=True)
|
765 |
-
|
766 |
-
with tab5:
|
767 |
-
st.header("Test Titan π§ͺ")
|
768 |
-
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
|
769 |
-
st.warning("Please build or load a Titan first! β οΈ")
|
770 |
-
else:
|
771 |
-
if isinstance(st.session_state['builder'], ModelBuilder):
|
772 |
-
if st.session_state['builder'].sft_data:
|
773 |
-
st.write("Testing with SFT Data:")
|
774 |
-
for item in st.session_state['builder'].sft_data[:3]:
|
775 |
-
prompt = item["prompt"]
|
776 |
-
expected = item["response"]
|
777 |
-
status_container = st.empty()
|
778 |
-
generated = st.session_state['builder'].evaluate(prompt, status_container)
|
779 |
-
st.write(f"**Prompt**: {prompt}")
|
780 |
-
st.write(f"**Expected**: {expected}")
|
781 |
-
st.write(f"**Generated**: {generated}")
|
782 |
-
st.write("---")
|
783 |
-
status_container.empty()
|
784 |
-
test_prompt = st.text_area("Enter Test Prompt", "What is AI?")
|
785 |
-
if st.button("Run Test βΆοΈ"):
|
786 |
-
status_container = st.empty()
|
787 |
-
result = st.session_state['builder'].evaluate(test_prompt, status_container)
|
788 |
-
entry = f"Causal LM Test: {test_prompt} -> {result}"
|
789 |
-
if entry not in st.session_state['history']:
|
790 |
-
st.session_state['history'].append(entry)
|
791 |
-
st.write(f"**Generated Response**: {result}")
|
792 |
-
status_container.empty()
|
793 |
-
elif isinstance(st.session_state['builder'], DiffusionBuilder):
|
794 |
-
test_prompt = st.text_area("Enter Test Prompt", "Neon Batman")
|
795 |
-
if st.button("Run Test βΆοΈ"):
|
796 |
-
image = st.session_state['builder'].generate(test_prompt)
|
797 |
-
output_file = generate_filename("diffusion_test", "png")
|
798 |
-
image.save(output_file)
|
799 |
-
entry = f"Diffusion Test: {test_prompt} -> {output_file}"
|
800 |
-
if entry not in st.session_state['history']:
|
801 |
-
st.session_state['history'].append(entry)
|
802 |
-
st.image(image, caption="Generated Image")
|
803 |
-
update_gallery()
|
804 |
-
|
805 |
-
with tab6:
|
806 |
-
st.header("Agentic RAG Party π")
|
807 |
-
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
|
808 |
-
st.warning("Please build or load a Titan first! β οΈ")
|
809 |
-
else:
|
810 |
-
if isinstance(st.session_state['builder'], ModelBuilder):
|
811 |
-
if st.button("Run NLP RAG Demo π"):
|
812 |
-
agent = PartyPlannerAgent(st.session_state['builder'].model, st.session_state['builder'].tokenizer)
|
813 |
-
task = "Plan a luxury superhero-themed party at Wayne Manor."
|
814 |
-
plan_df = agent.plan_party(task)
|
815 |
-
entry = f"NLP RAG Demo: Planned party at Wayne Manor"
|
816 |
-
if entry not in st.session_state['history']:
|
817 |
-
st.session_state['history'].append(entry)
|
818 |
-
st.dataframe(plan_df)
|
819 |
-
elif isinstance(st.session_state['builder'], DiffusionBuilder):
|
820 |
-
if st.button("Run CV RAG Demo π"):
|
821 |
-
agent = CVPartyPlannerAgent(st.session_state['builder'].pipeline)
|
822 |
-
task = "Generate images for a luxury superhero-themed party."
|
823 |
-
plan_df = agent.plan_party(task)
|
824 |
-
entry = f"CV RAG Demo: Generated party images"
|
825 |
-
if entry not in st.session_state['history']:
|
826 |
-
st.session_state['history'].append(entry)
|
827 |
-
st.dataframe(plan_df)
|
828 |
-
for _, row in plan_df.iterrows():
|
829 |
-
image = agent.generate(row["Image Idea"])
|
830 |
-
output_file = generate_filename(f"cv_rag_{row['Theme'].lower()}", "png")
|
831 |
-
image.save(output_file)
|
832 |
-
st.image(image, caption=f"{row['Theme']} - {row['Image Idea']}")
|
833 |
-
update_gallery()
|
834 |
-
|
835 |
-
with tab7:
|
836 |
-
st.header("Test OCR π")
|
837 |
-
all_files = [path for path in get_gallery_files() if st.session_state['asset_checkboxes'].get(path, False)]
|
838 |
-
if all_files:
|
839 |
-
selected_file = st.selectbox("Select Image or PDF", all_files, key="ocr_select")
|
840 |
-
if selected_file:
|
841 |
-
if selected_file.endswith('.png'):
|
842 |
-
image = Image.open(selected_file)
|
843 |
-
else:
|
844 |
-
doc = fitz.open(selected_file)
|
845 |
-
pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
846 |
-
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
847 |
-
doc.close()
|
848 |
-
st.image(image, caption="Input Image", use_container_width=True)
|
849 |
-
if st.button("Run OCR π", key="ocr_run"):
|
850 |
-
output_file = generate_filename("ocr_output", "txt")
|
851 |
-
st.session_state['processing']['ocr'] = True
|
852 |
-
result = asyncio.run(process_ocr(image, output_file))
|
853 |
-
entry = f"OCR Test: {selected_file} -> {output_file}"
|
854 |
-
if entry not in st.session_state['history']:
|
855 |
-
st.session_state['history'].append(entry)
|
856 |
-
st.text_area("OCR Result", result, height=200, key="ocr_result")
|
857 |
-
st.success(f"OCR output saved to {output_file}")
|
858 |
-
st.session_state['processing']['ocr'] = False
|
859 |
-
else:
|
860 |
-
st.warning("No images or PDFs selected yet. Check some boxes in the sidebar gallery!")
|
861 |
-
|
862 |
-
with tab8:
|
863 |
-
st.header("Test Image Gen π¨")
|
864 |
-
all_files = [path for path in get_gallery_files() if st.session_state['asset_checkboxes'].get(path, False)]
|
865 |
-
if all_files:
|
866 |
-
selected_file = st.selectbox("Select Image or PDF", all_files, key="gen_select")
|
867 |
-
if selected_file:
|
868 |
-
if selected_file.endswith('.png'):
|
869 |
-
image = Image.open(selected_file)
|
870 |
-
else:
|
871 |
-
doc = fitz.open(selected_file)
|
872 |
-
pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
873 |
-
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
874 |
-
doc.close()
|
875 |
-
st.image(image, caption="Reference Image", use_container_width=True)
|
876 |
-
prompt = st.text_area("Prompt", "Generate a similar superhero image", key="gen_prompt")
|
877 |
-
if st.button("Run Image Gen π", key="gen_run"):
|
878 |
-
output_file = generate_filename("gen_output", "png")
|
879 |
-
st.session_state['processing']['gen'] = True
|
880 |
-
result = asyncio.run(process_image_gen(prompt, output_file))
|
881 |
-
entry = f"Image Gen Test: {prompt} -> {output_file}"
|
882 |
-
if entry not in st.session_state['history']:
|
883 |
-
st.session_state['history'].append(entry)
|
884 |
-
st.image(result, caption="Generated Image", use_container_width=True)
|
885 |
-
st.success(f"Image saved to {output_file}")
|
886 |
-
st.session_state['processing']['gen'] = False
|
887 |
-
else:
|
888 |
-
st.warning("No images or PDFs selected yet. Check some boxes in the sidebar gallery!")
|
889 |
-
|
890 |
-
with tab9:
|
891 |
-
st.header("Custom Diffusion π¨π€")
|
892 |
-
st.write("Unleash your inner artist with our tiny diffusion models!")
|
893 |
-
all_files = [path for path in get_gallery_files() if st.session_state['asset_checkboxes'].get(path, False)]
|
894 |
-
if all_files:
|
895 |
-
st.subheader("Select Images or PDFs to Train")
|
896 |
-
selected_files = st.multiselect("Pick Images or PDFs", all_files, key="diffusion_select")
|
897 |
-
images = []
|
898 |
-
for file in selected_files:
|
899 |
-
if file.endswith('.png'):
|
900 |
-
images.append(Image.open(file))
|
901 |
-
else:
|
902 |
-
doc = fitz.open(file)
|
903 |
-
pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
904 |
-
images.append(Image.frombytes("RGB", [pix.width, pix.height], pix.samples))
|
905 |
-
doc.close()
|
906 |
|
907 |
-
|
908 |
-
(
|
909 |
-
|
910 |
-
|
911 |
-
|
912 |
-
|
913 |
-
|
914 |
-
|
915 |
-
|
916 |
-
|
917 |
-
|
918 |
-
|
919 |
-
|
920 |
-
|
921 |
-
|
922 |
-
|
923 |
-
|
924 |
-
|
925 |
-
|
926 |
-
|
927 |
-
|
928 |
-
|
929 |
-
|
930 |
-
|
931 |
-
|
932 |
-
|
933 |
-
|
934 |
-
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import base64
|
5 |
import time
|
6 |
import shutil
|
|
|
7 |
import pandas as pd
|
8 |
import torch
|
9 |
import torch.nn as nn
|
|
|
27 |
import math
|
28 |
import random
|
29 |
import re
|
30 |
+
import gradio as gr
|
31 |
|
32 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
33 |
logger = logging.getLogger(__name__)
|
|
|
39 |
|
40 |
logger.addHandler(LogCaptureHandler())
|
41 |
|
42 |
+
# Data Classes and Models (unchanged from your original code)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
@dataclass
|
44 |
class ModelConfig:
|
45 |
name: str
|
|
|
82 |
labels[:prompt_len] = -100
|
83 |
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels}
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
class TinyUNet(nn.Module):
|
86 |
def __init__(self, in_channels=3, out_channels=3):
|
87 |
super(TinyUNet, self).__init__()
|
|
|
96 |
def forward(self, x, t):
|
97 |
t_embed = F.relu(self.time_embed(t.unsqueeze(-1)))
|
98 |
t_embed = t_embed.view(t_embed.size(0), t_embed.size(1), 1, 1)
|
|
|
99 |
x1 = F.relu(self.down1(x))
|
100 |
x2 = F.relu(self.down2(x1))
|
101 |
x_mid = F.relu(self.mid(x2)) + t_embed
|
|
|
147 |
x = torch.clamp(x * 255, 0, 255).byte()
|
148 |
return Image.fromarray(x.squeeze(0).permute(1, 2, 0).cpu().numpy())
|
149 |
|
150 |
+
class TinyDiffusionDataset(Dataset):
|
151 |
+
def __init__(self, images):
|
152 |
+
self.images = [torch.tensor(np.array(img.convert("RGB")).transpose(2, 0, 1), dtype=torch.float32) / 255.0 for img in images]
|
153 |
+
def __len__(self):
|
154 |
+
return len(self.images)
|
155 |
+
def __getitem__(self, idx):
|
156 |
+
return self.images[idx]
|
157 |
|
158 |
class ModelBuilder:
|
159 |
def __init__(self):
|
|
|
161 |
self.model = None
|
162 |
self.tokenizer = None
|
163 |
self.sft_data = None
|
|
|
164 |
def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
|
165 |
+
self.model = AutoModelForCausalLM.from_pretrained(model_path)
|
166 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
167 |
+
if self.tokenizer.pad_token is None:
|
168 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
169 |
+
if config:
|
170 |
+
self.config = config
|
171 |
+
self.model.to("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
172 |
return self
|
173 |
def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4):
|
174 |
self.sft_data = []
|
|
|
183 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
184 |
self.model.to(device)
|
185 |
for epoch in range(epochs):
|
186 |
+
total_loss = 0
|
187 |
+
for batch in dataloader:
|
188 |
+
optimizer.zero_grad()
|
189 |
+
input_ids = batch["input_ids"].to(device)
|
190 |
+
attention_mask = batch["attention_mask"].to(device)
|
191 |
+
labels = batch["labels"].to(device)
|
192 |
+
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
|
193 |
+
loss = outputs.loss
|
194 |
+
loss.backward()
|
195 |
+
optimizer.step()
|
196 |
+
total_loss += loss.item()
|
197 |
+
logger.info(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
|
|
|
|
|
198 |
return self
|
199 |
def save_model(self, path: str):
|
200 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
201 |
+
self.model.save_pretrained(path)
|
202 |
+
self.tokenizer.save_pretrained(path)
|
203 |
+
def evaluate(self, prompt: str):
|
|
|
|
|
204 |
self.model.eval()
|
205 |
+
with torch.no_grad():
|
206 |
+
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device)
|
207 |
+
outputs = self.model.generate(**inputs, max_new_tokens=50, do_sample=True, top_p=0.95, temperature=0.7)
|
208 |
+
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
|
210 |
class DiffusionBuilder:
|
211 |
def __init__(self):
|
212 |
self.config = None
|
213 |
self.pipeline = None
|
214 |
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None):
|
215 |
+
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cpu")
|
216 |
+
if config:
|
217 |
+
self.config = config
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
return self
|
|
|
|
|
|
|
|
|
|
|
219 |
def generate(self, prompt: str):
|
220 |
return self.pipeline(prompt, num_inference_steps=20).images[0]
|
221 |
|
222 |
+
# Utility Functions
|
223 |
def generate_filename(sequence, ext="png"):
|
224 |
+
timestamp = time.strftime("%d%m%Y%HM%S")
|
225 |
return f"{sequence}_{timestamp}.{ext}"
|
226 |
|
227 |
def pdf_url_to_filename(url):
|
228 |
safe_name = re.sub(r'[<>:"/\\|?*]', '_', url)
|
229 |
return f"{safe_name}.pdf"
|
230 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
def get_gallery_files(file_types=["png", "pdf"]):
|
232 |
return sorted(list(set([f for ext in file_types for f in glob.glob(f"*.{ext}")]))) # Deduplicate files
|
233 |
|
|
|
|
|
|
|
234 |
def download_pdf(url, output_path):
|
235 |
try:
|
236 |
response = requests.get(url, stream=True, timeout=10)
|
|
|
244 |
return False
|
245 |
|
246 |
async def process_pdf_snapshot(pdf_path, mode="single"):
|
247 |
+
doc = fitz.open(pdf_path)
|
248 |
+
output_files = []
|
249 |
+
if mode == "single":
|
250 |
+
page = doc[0]
|
251 |
+
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
252 |
+
output_file = generate_filename("single", "png")
|
253 |
+
pix.save(output_file)
|
254 |
+
output_files.append(output_file)
|
255 |
+
doc.close()
|
256 |
+
return output_files
|
257 |
+
|
258 |
+
# Gradio Interface Functions
|
259 |
+
def update_gallery(history):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
all_files = get_gallery_files()
|
261 |
+
gallery_content = "\n".join([f"- {f}" for f in all_files[:5]])
|
262 |
+
history.append(f"Gallery updated: {len(all_files)} files")
|
263 |
+
return gallery_content, history
|
264 |
+
|
265 |
+
def camera_snap(image, history):
|
266 |
+
if image is not None:
|
267 |
+
filename = generate_filename("cam")
|
268 |
+
image.save(filename)
|
269 |
+
history.append(f"Snapshot saved: {filename}")
|
270 |
+
return f"Image saved as {filename}", history
|
271 |
+
return "No image captured", history
|
272 |
+
|
273 |
+
def download_pdfs(urls, history):
|
274 |
+
urls = urls.strip().split("\n")
|
275 |
+
downloaded = []
|
276 |
+
for url in urls:
|
277 |
+
if url:
|
278 |
+
output_path = pdf_url_to_filename(url)
|
279 |
+
if download_pdf(url, output_path):
|
280 |
+
downloaded.append(output_path)
|
281 |
+
history.append(f"Downloaded PDF: {output_path}")
|
282 |
+
return f"Downloaded {len(downloaded)} PDFs", history
|
283 |
+
|
284 |
+
def build_model(model_type, base_model, model_name, domain, history):
|
285 |
+
config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=model_name, base_model=base_model, size="small", domain=domain)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
|
287 |
+
builder.load_model(base_model, config)
|
288 |
+
builder.save_model(config.model_path)
|
289 |
+
history.append(f"Built {model_type} model: {model_name}")
|
290 |
+
return builder, f"Model saved to {config.model_path}", history
|
291 |
+
|
292 |
+
def test_model(builder, prompt, history):
|
293 |
+
if builder is None:
|
294 |
+
return "No model loaded", history
|
295 |
+
if isinstance(builder, ModelBuilder):
|
296 |
+
result = builder.evaluate(prompt)
|
297 |
+
history.append(f"Tested Causal LM: {prompt} -> {result}")
|
298 |
+
return result, history
|
299 |
+
elif isinstance(builder, DiffusionBuilder):
|
300 |
+
image = builder.generate(prompt)
|
301 |
+
output_file = generate_filename("diffusion_test")
|
302 |
+
image.save(output_file)
|
303 |
+
history.append(f"Tested Diffusion: {prompt} -> {output_file}")
|
304 |
+
return output_file, history
|
305 |
+
|
306 |
+
# Gradio UI
|
307 |
+
with gr.Blocks(title="AI Vision & SFT Titans π") as demo:
|
308 |
+
gr.Markdown("# AI Vision & SFT Titans π")
|
309 |
+
history = gr.State(value=[])
|
310 |
+
builder = gr.State(value=None)
|
311 |
+
|
312 |
+
with gr.Row():
|
313 |
+
with gr.Column(scale=1):
|
314 |
+
gr.Markdown("## Captured Files π")
|
315 |
+
gallery_output = gr.Textbox(label="Gallery", lines=5)
|
316 |
+
gr.Button("Update Gallery").click(update_gallery, inputs=[history], outputs=[gallery_output, history])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
317 |
|
318 |
+
with gr.Column(scale=3):
|
319 |
+
with gr.Tabs():
|
320 |
+
with gr.TabItem("Camera Snap π·"):
|
321 |
+
camera_input = gr.Image(type="pil", label="Take a Picture")
|
322 |
+
snap_output = gr.Textbox(label="Status")
|
323 |
+
gr.Button("Capture").click(camera_snap, inputs=[camera_input, history], outputs=[snap_output, history])
|
324 |
+
|
325 |
+
with gr.TabItem("Download PDFs π₯"):
|
326 |
+
url_input = gr.Textbox(label="Enter PDF URLs (one per line)", lines=5)
|
327 |
+
pdf_output = gr.Textbox(label="Status")
|
328 |
+
gr.Button("Download").click(download_pdfs, inputs=[url_input, history], outputs=[pdf_output, history])
|
329 |
+
|
330 |
+
with gr.TabItem("Build Titan π±"):
|
331 |
+
model_type = gr.Dropdown(["Causal LM", "Diffusion"], label="Model Type")
|
332 |
+
base_model = gr.Dropdown(
|
333 |
+
choices=["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"] if model_type.value == "Causal LM" else ["OFA-Sys/small-stable-diffusion-v0", "stabilityai/stable-diffusion-2-base"],
|
334 |
+
label="Base Model"
|
335 |
+
)
|
336 |
+
model_name = gr.Textbox(label="Model Name", value=f"tiny-titan-{int(time.time())}")
|
337 |
+
domain = gr.Textbox(label="Domain", value="general")
|
338 |
+
build_output = gr.Textbox(label="Status")
|
339 |
+
gr.Button("Build").click(build_model, inputs=[model_type, base_model, model_name, domain, history], outputs=[builder, build_output, history])
|
340 |
+
|
341 |
+
with gr.TabItem("Test Titan π§ͺ"):
|
342 |
+
test_prompt = gr.Textbox(label="Test Prompt", value="What is AI?")
|
343 |
+
test_output = gr.Textbox(label="Result")
|
344 |
+
gr.Button("Test").click(test_model, inputs=[builder, test_prompt, history], outputs=[test_output, history])
|
345 |
+
|
346 |
+
with gr.Row():
|
347 |
+
gr.Markdown("## History π")
|
348 |
+
history_output = gr.Textbox(value="\n".join(history.value), label="History", lines=5, interactive=False)
|
349 |
+
|
350 |
+
demo.launch()
|