Update app.py
Browse files
app.py
CHANGED
@@ -1,80 +1,74 @@
|
|
1 |
-
|
|
|
|
|
|
|
2 |
import torch
|
3 |
import torch.nn as nn
|
4 |
-
import
|
|
|
5 |
from PIL import Image
|
|
|
6 |
import torchvision.transforms as transforms
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
#
|
10 |
norm_layer = nn.InstanceNorm2d
|
11 |
|
12 |
-
#
|
13 |
class ResidualBlock(nn.Module):
|
14 |
def __init__(self, in_features):
|
15 |
super(ResidualBlock, self).__init__()
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
self.conv_block = nn.Sequential(*conv_block)
|
27 |
|
28 |
def forward(self, x):
|
29 |
return x + self.conv_block(x)
|
30 |
|
31 |
-
#
|
32 |
class Generator(nn.Module):
|
33 |
def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True):
|
34 |
super(Generator, self).__init__()
|
35 |
-
|
36 |
-
# π Initial convolution block
|
37 |
-
model0 = [ nn.ReflectionPad2d(3),
|
38 |
-
nn.Conv2d(input_nc, 64, 7),
|
39 |
-
norm_layer(64),
|
40 |
-
nn.ReLU(inplace=True) ]
|
41 |
self.model0 = nn.Sequential(*model0)
|
42 |
-
|
43 |
-
# π½ Downsampling
|
44 |
model1 = []
|
45 |
-
in_features = 64
|
46 |
-
out_features = in_features*2
|
47 |
for _ in range(2):
|
48 |
-
model1 += [
|
49 |
-
|
50 |
-
nn.ReLU(inplace=True) ]
|
51 |
-
in_features = out_features
|
52 |
-
out_features = in_features*2
|
53 |
self.model1 = nn.Sequential(*model1)
|
54 |
-
|
55 |
-
# π Residual blocks
|
56 |
-
model2 = []
|
57 |
-
for _ in range(n_residual_blocks):
|
58 |
-
model2 += [ResidualBlock(in_features)]
|
59 |
self.model2 = nn.Sequential(*model2)
|
60 |
-
|
61 |
-
# πΌ Upsampling
|
62 |
model3 = []
|
63 |
-
out_features = in_features//2
|
64 |
for _ in range(2):
|
65 |
-
model3 += [
|
66 |
-
|
67 |
-
nn.ReLU(inplace=True) ]
|
68 |
-
in_features = out_features
|
69 |
-
out_features = in_features//2
|
70 |
self.model3 = nn.Sequential(*model3)
|
71 |
-
|
72 |
-
# π Output layer
|
73 |
-
model4 = [ nn.ReflectionPad2d(3),
|
74 |
-
nn.Conv2d(64, output_nc, 7)]
|
75 |
if sigmoid:
|
76 |
model4 += [nn.Sigmoid()]
|
77 |
-
|
78 |
self.model4 = nn.Sequential(*model4)
|
79 |
|
80 |
def forward(self, x, cond=None):
|
@@ -83,71 +77,204 @@ class Generator(nn.Module):
|
|
83 |
out = self.model2(out)
|
84 |
out = self.model3(out)
|
85 |
out = self.model4(out)
|
86 |
-
|
87 |
return out
|
88 |
|
89 |
-
#
|
90 |
model1 = Generator(3, 1, 3)
|
91 |
-
model1.load_state_dict(torch.load('model.pth', map_location=torch.device('cpu'), weights_only=True))
|
92 |
-
model1.eval()
|
93 |
-
|
94 |
model2 = Generator(3, 1, 3)
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
96 |
model2.eval()
|
97 |
|
98 |
-
#
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
transform = transforms.Compose([
|
106 |
transforms.Resize(256, Image.BICUBIC),
|
107 |
transforms.ToTensor(),
|
108 |
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
|
109 |
])
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
121 |
|
122 |
-
|
123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
-
|
126 |
-
output_img = output_img.resize(original_size, Image.BICUBIC)
|
127 |
-
|
128 |
-
return output_img
|
129 |
-
|
130 |
-
# π Title for the Gradio interface
|
131 |
-
title="ποΈ Image to Line Drawings - Complex and Simple Portraits and Landscapes"
|
132 |
-
|
133 |
-
# πΌοΈ Dynamically generate examples from images in the directory
|
134 |
-
examples = []
|
135 |
-
image_dir = '.' # Assuming images are in the current directory
|
136 |
-
for file in os.listdir(image_dir):
|
137 |
-
if file.lower().endswith(('.png', '.jpg', '.jpeg', '.gif')):
|
138 |
-
examples.append([file, 'Simple Lines'])
|
139 |
-
examples.append([file, 'Complex Lines'])
|
140 |
-
|
141 |
-
# π Create and launch the Gradio interface
|
142 |
-
iface = gr.Interface(
|
143 |
-
fn=predict,
|
144 |
-
inputs=[
|
145 |
-
gr.Image(type='filepath'),
|
146 |
-
gr.Radio(['Complex Lines', 'Simple Lines'], label='version', value='Simple Lines')
|
147 |
-
],
|
148 |
-
outputs=gr.Image(type="pil"),
|
149 |
-
title=title,
|
150 |
-
examples=examples
|
151 |
-
)
|
152 |
-
|
153 |
-
iface.launch()
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import os
|
3 |
+
import base64
|
4 |
+
import time
|
5 |
import torch
|
6 |
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import numpy as np
|
9 |
from PIL import Image
|
10 |
+
import gradio as gr
|
11 |
import torchvision.transforms as transforms
|
12 |
+
from transformers import AutoModel, AutoTokenizer
|
13 |
+
from diffusers import StableDiffusionPipeline
|
14 |
+
from torch.utils.data import Dataset, DataLoader
|
15 |
+
import asyncio
|
16 |
+
import aiofiles
|
17 |
+
import fitz # PyMuPDF
|
18 |
+
import requests
|
19 |
+
import logging
|
20 |
+
from io import BytesIO
|
21 |
+
from dataclasses import dataclass
|
22 |
+
from typing import Optional
|
23 |
+
|
24 |
+
# Logging setup
|
25 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
26 |
+
logger = logging.getLogger(__name__)
|
27 |
|
28 |
+
# Neural network layers for line drawing
|
29 |
norm_layer = nn.InstanceNorm2d
|
30 |
|
31 |
+
# Residual Block for Generator
|
32 |
class ResidualBlock(nn.Module):
|
33 |
def __init__(self, in_features):
|
34 |
super(ResidualBlock, self).__init__()
|
35 |
+
conv_block = [
|
36 |
+
nn.ReflectionPad2d(1),
|
37 |
+
nn.Conv2d(in_features, in_features, 3),
|
38 |
+
norm_layer(in_features),
|
39 |
+
nn.ReLU(inplace=True),
|
40 |
+
nn.ReflectionPad2d(1),
|
41 |
+
nn.Conv2d(in_features, in_features, 3),
|
42 |
+
norm_layer(in_features)
|
43 |
+
]
|
|
|
44 |
self.conv_block = nn.Sequential(*conv_block)
|
45 |
|
46 |
def forward(self, x):
|
47 |
return x + self.conv_block(x)
|
48 |
|
49 |
+
# Generator for Line Drawings
|
50 |
class Generator(nn.Module):
|
51 |
def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True):
|
52 |
super(Generator, self).__init__()
|
53 |
+
model0 = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, 64, 7), norm_layer(64), nn.ReLU(inplace=True)]
|
|
|
|
|
|
|
|
|
|
|
54 |
self.model0 = nn.Sequential(*model0)
|
|
|
|
|
55 |
model1 = []
|
56 |
+
in_features, out_features = 64, 128
|
|
|
57 |
for _ in range(2):
|
58 |
+
model1 += [nn.Conv2d(in_features, out_features, 3, stride=2, padding=1), norm_layer(out_features), nn.ReLU(inplace=True)]
|
59 |
+
in_features, out_features = out_features, out_features * 2
|
|
|
|
|
|
|
60 |
self.model1 = nn.Sequential(*model1)
|
61 |
+
model2 = [ResidualBlock(in_features) for _ in range(n_residual_blocks)]
|
|
|
|
|
|
|
|
|
62 |
self.model2 = nn.Sequential(*model2)
|
|
|
|
|
63 |
model3 = []
|
64 |
+
out_features = in_features // 2
|
65 |
for _ in range(2):
|
66 |
+
model3 += [nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1), norm_layer(out_features), nn.ReLU(inplace=True)]
|
67 |
+
in_features, out_features = out_features, out_features // 2
|
|
|
|
|
|
|
68 |
self.model3 = nn.Sequential(*model3)
|
69 |
+
model4 = [nn.ReflectionPad2d(3), nn.Conv2d(64, output_nc, 7)]
|
|
|
|
|
|
|
70 |
if sigmoid:
|
71 |
model4 += [nn.Sigmoid()]
|
|
|
72 |
self.model4 = nn.Sequential(*model4)
|
73 |
|
74 |
def forward(self, x, cond=None):
|
|
|
77 |
out = self.model2(out)
|
78 |
out = self.model3(out)
|
79 |
out = self.model4(out)
|
|
|
80 |
return out
|
81 |
|
82 |
+
# Load Line Drawing Models
|
83 |
model1 = Generator(3, 1, 3)
|
|
|
|
|
|
|
84 |
model2 = Generator(3, 1, 3)
|
85 |
+
try:
|
86 |
+
model1.load_state_dict(torch.load('model.pth', map_location='cpu', weights_only=True))
|
87 |
+
model2.load_state_dict(torch.load('model2.pth', map_location='cpu', weights_only=True))
|
88 |
+
except FileNotFoundError:
|
89 |
+
logger.warning("Model files not found. Please ensure 'model.pth' and 'model2.pth' are available.")
|
90 |
+
model1.eval()
|
91 |
model2.eval()
|
92 |
|
93 |
+
# Tiny Diffusion Model
|
94 |
+
class TinyUNet(nn.Module):
|
95 |
+
def __init__(self, in_channels=3, out_channels=3):
|
96 |
+
super(TinyUNet, self).__init__()
|
97 |
+
self.down1 = nn.Conv2d(in_channels, 32, 3, padding=1)
|
98 |
+
self.down2 = nn.Conv2d(32, 64, 3, padding=1, stride=2)
|
99 |
+
self.mid = nn.Conv2d(64, 128, 3, padding=1)
|
100 |
+
self.up1 = nn.ConvTranspose2d(128, 64, 3, stride=2, padding=1, output_padding=1)
|
101 |
+
self.up2 = nn.Conv2d(64 + 32, 32, 3, padding=1)
|
102 |
+
self.out = nn.Conv2d(32, out_channels, 3, padding=1)
|
103 |
+
self.time_embed = nn.Linear(1, 64)
|
104 |
|
105 |
+
def forward(self, x, t):
|
106 |
+
t_embed = F.relu(self.time_embed(t.unsqueeze(-1))).view(t_embed.size(0), t_embed.size(1), 1, 1)
|
107 |
+
x1 = F.relu(self.down1(x))
|
108 |
+
x2 = F.relu(self.down2(x1))
|
109 |
+
x_mid = F.relu(self.mid(x2)) + t_embed
|
110 |
+
x_up1 = F.relu(self.up1(x_mid))
|
111 |
+
x_up2 = F.relu(self.up2(torch.cat([x_up1, x1], dim=1)))
|
112 |
+
return self.out(x_up2)
|
113 |
+
|
114 |
+
class TinyDiffusion:
|
115 |
+
def __init__(self, model, timesteps=100):
|
116 |
+
self.model = model
|
117 |
+
self.timesteps = timesteps
|
118 |
+
self.beta = torch.linspace(0.0001, 0.02, timesteps)
|
119 |
+
self.alpha = 1 - self.beta
|
120 |
+
self.alpha_cumprod = torch.cumprod(self.alpha, dim=0)
|
121 |
+
|
122 |
+
def train(self, images, epochs=10):
|
123 |
+
dataset = [torch.tensor(np.array(img.convert("RGB")).transpose(2, 0, 1), dtype=torch.float32) / 255.0 for img in images]
|
124 |
+
dataloader = DataLoader(dataset, batch_size=1, shuffle=True)
|
125 |
+
optimizer = torch.optim.Adam(self.model.parameters(), lr=1e-4)
|
126 |
+
device = torch.device("cpu")
|
127 |
+
self.model.to(device)
|
128 |
+
for epoch in range(epochs):
|
129 |
+
total_loss = 0
|
130 |
+
for x in dataloader:
|
131 |
+
x = x.to(device)
|
132 |
+
t = torch.randint(0, self.timesteps, (x.size(0),), device=device).float()
|
133 |
+
noise = torch.randn_like(x)
|
134 |
+
alpha_t = self.alpha_cumprod[t.long()].view(-1, 1, 1, 1)
|
135 |
+
x_noisy = torch.sqrt(alpha_t) * x + torch.sqrt(1 - alpha_t) * noise
|
136 |
+
pred_noise = self.model(x_noisy, t)
|
137 |
+
loss = F.mse_loss(pred_noise, noise)
|
138 |
+
optimizer.zero_grad()
|
139 |
+
loss.backward()
|
140 |
+
optimizer.step()
|
141 |
+
total_loss += loss.item()
|
142 |
+
logger.info(f"Epoch {epoch + 1}/{epochs}, Loss: {total_loss / len(dataloader):.4f}")
|
143 |
+
return self
|
144 |
+
|
145 |
+
def generate(self, size=(64, 64), steps=100):
|
146 |
+
device = torch.device("cpu")
|
147 |
+
x = torch.randn(1, 3, size[0], size[1], device=device)
|
148 |
+
for t in reversed(range(steps)):
|
149 |
+
t_tensor = torch.full((1,), t, device=device, dtype=torch.float32)
|
150 |
+
alpha_t = self.alpha_cumprod[t].view(-1, 1, 1, 1)
|
151 |
+
pred_noise = self.model(x, t_tensor)
|
152 |
+
x = (x - (1 - self.alpha[t]) / torch.sqrt(1 - alpha_t) * pred_noise) / torch.sqrt(self.alpha[t])
|
153 |
+
if t > 0:
|
154 |
+
x += torch.sqrt(self.beta[t]) * torch.randn_like(x)
|
155 |
+
x = torch.clamp(x * 255, 0, 255).byte()
|
156 |
+
return Image.fromarray(x.squeeze(0).permute(1, 2, 0).cpu().numpy())
|
157 |
+
|
158 |
+
# Utility Functions
|
159 |
+
def generate_filename(sequence, ext="png"):
|
160 |
+
timestamp = time.strftime("%d%m%Y%H%M%S")
|
161 |
+
return f"{sequence}_{timestamp}.{ext}"
|
162 |
+
|
163 |
+
def predict_line_drawing(input_img, ver):
|
164 |
+
original_img = Image.open(input_img) if isinstance(input_img, str) else input_img
|
165 |
+
original_size = original_img.size
|
166 |
transform = transforms.Compose([
|
167 |
transforms.Resize(256, Image.BICUBIC),
|
168 |
transforms.ToTensor(),
|
169 |
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
|
170 |
])
|
171 |
+
input_tensor = transform(original_img).unsqueeze(0)
|
172 |
+
with torch.no_grad():
|
173 |
+
output = model2(input_tensor) if ver == 'Simple Lines' else model1(input_tensor)
|
174 |
+
output_img = transforms.ToPILImage()(output.squeeze().cpu().clamp(0, 1))
|
175 |
+
return output_img.resize(original_size, Image.BICUBIC)
|
176 |
|
177 |
+
async def process_ocr(image):
|
178 |
+
tokenizer = AutoTokenizer.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True)
|
179 |
+
model = AutoModel.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval()
|
180 |
+
result = model.chat(tokenizer, image, ocr_type='ocr')
|
181 |
+
output_file = generate_filename("ocr_output", "txt")
|
182 |
+
async with aiofiles.open(output_file, "w") as f:
|
183 |
+
await f.write(result)
|
184 |
+
return result, output_file
|
185 |
|
186 |
+
async def process_diffusion(images):
|
187 |
+
unet = TinyUNet()
|
188 |
+
diffusion = TinyDiffusion(unet)
|
189 |
+
diffusion.train(images)
|
190 |
+
gen_image = diffusion.generate()
|
191 |
+
output_file = generate_filename("diffusion_output", "png")
|
192 |
+
gen_image.save(output_file)
|
193 |
+
return gen_image, output_file
|
194 |
|
195 |
+
def download_pdf(url):
|
196 |
+
output_path = f"pdf_{int(time.time())}.pdf"
|
197 |
+
response = requests.get(url, stream=True, timeout=10)
|
198 |
+
if response.status_code == 200:
|
199 |
+
with open(output_path, "wb") as f:
|
200 |
+
for chunk in response.iter_content(chunk_size=8192):
|
201 |
+
f.write(chunk)
|
202 |
+
return output_path
|
203 |
+
return None
|
204 |
+
|
205 |
+
# Gradio Blocks UI
|
206 |
+
with gr.Blocks(title="Mystical AI Vision Studio π", css="""
|
207 |
+
.gr-button {background-color: #4CAF50; color: white;}
|
208 |
+
.gr-tab {border: 2px solid #2196F3; border-radius: 5px;}
|
209 |
+
#gallery img {border: 1px solid #ddd; border-radius: 4px;}
|
210 |
+
""") as demo:
|
211 |
+
gr.Markdown("<h1 style='text-align: center; color: #2196F3;'>Mystical AI Vision Studio π</h1>")
|
212 |
+
gr.Markdown("<p style='text-align: center;'>Transform images into line drawings, extract text with OCR, and craft unique art with diffusion!</p>")
|
213 |
+
|
214 |
+
with gr.Tab("Image to Line Drawings π¨"):
|
215 |
+
with gr.Row():
|
216 |
+
with gr.Column():
|
217 |
+
img_input = gr.Image(type="pil", label="Upload Image")
|
218 |
+
version = gr.Radio(['Complex Lines', 'Simple Lines'], label='Style', value='Simple Lines')
|
219 |
+
submit_btn = gr.Button("Generate Line Drawing")
|
220 |
+
with gr.Column():
|
221 |
+
line_output = gr.Image(type="pil", label="Line Drawing")
|
222 |
+
download_btn = gr.Button("Download Output")
|
223 |
+
submit_btn.click(predict_line_drawing, inputs=[img_input, version], outputs=line_output)
|
224 |
+
download_btn.click(lambda x: gr.File(x, label="Download Line Drawing"), inputs=line_output, outputs=None)
|
225 |
+
|
226 |
+
with gr.Tab("OCR Vision π"):
|
227 |
+
with gr.Row():
|
228 |
+
with gr.Column():
|
229 |
+
ocr_input = gr.Image(type="pil", label="Upload Image or PDF Snapshot")
|
230 |
+
ocr_btn = gr.Button("Extract Text")
|
231 |
+
with gr.Column():
|
232 |
+
ocr_text = gr.Textbox(label="Extracted Text", interactive=False)
|
233 |
+
ocr_file = gr.File(label="Download OCR Result")
|
234 |
+
async def run_ocr(img):
|
235 |
+
result, file_path = await process_ocr(img)
|
236 |
+
return result, file_path
|
237 |
+
ocr_btn.click(run_ocr, inputs=ocr_input, outputs=[ocr_text, ocr_file])
|
238 |
+
|
239 |
+
with gr.Tab("Custom Diffusion π¨π€"):
|
240 |
+
with gr.Row():
|
241 |
+
with gr.Column():
|
242 |
+
diffusion_input = gr.File(label="Upload Images for Training", multiple=True)
|
243 |
+
diffusion_btn = gr.Button("Train & Generate")
|
244 |
+
with gr.Column():
|
245 |
+
diffusion_output = gr.Image(type="pil", label="Generated Art")
|
246 |
+
diffusion_file = gr.File(label="Download Art")
|
247 |
+
async def run_diffusion(files):
|
248 |
+
images = [Image.open(BytesIO(f.read())) for f in files]
|
249 |
+
img, file_path = await process_diffusion(images)
|
250 |
+
return img, file_path
|
251 |
+
diffusion_btn.click(run_diffusion, inputs=diffusion_input, outputs=[diffusion_output, diffusion_file])
|
252 |
+
|
253 |
+
with gr.Tab("PDF Downloader π₯"):
|
254 |
+
with gr.Row():
|
255 |
+
pdf_url = gr.Textbox(label="Enter PDF URL")
|
256 |
+
pdf_btn = gr.Button("Download PDF")
|
257 |
+
pdf_output = gr.File(label="Downloaded PDF")
|
258 |
+
pdf_btn.click(download_pdf, inputs=pdf_url, outputs=pdf_output)
|
259 |
+
|
260 |
+
with gr.Tab("Gallery πΈ"):
|
261 |
+
gallery = gr.Gallery(label="Processed Outputs", elem_id="gallery")
|
262 |
+
def update_gallery():
|
263 |
+
files = [f for f in os.listdir('.') if f.endswith(('.png', '.txt', '.pdf'))]
|
264 |
+
return [f for f in files]
|
265 |
+
gr.Button("Refresh Gallery").click(update_gallery, outputs=gallery)
|
266 |
+
|
267 |
+
# JavaScript for dynamic UI enhancements
|
268 |
+
gr.HTML("""
|
269 |
+
<script>
|
270 |
+
document.addEventListener('DOMContentLoaded', () => {
|
271 |
+
const buttons = document.querySelectorAll('.gr-button');
|
272 |
+
buttons.forEach(btn => {
|
273 |
+
btn.addEventListener('mouseover', () => btn.style.backgroundColor = '#45a049');
|
274 |
+
btn.addEventListener('mouseout', () => btn.style.backgroundColor = '#4CAF50');
|
275 |
+
});
|
276 |
+
});
|
277 |
+
</script>
|
278 |
+
""")
|
279 |
|
280 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|