#!/usr/bin/env python3 import os import glob import base64 import time import pandas as pd import torch import torch.nn as nn import torch.nn.functional as F from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel from diffusers import StableDiffusionPipeline from torch.utils.data import Dataset, DataLoader import csv import fitz import requests from PIL import Image import numpy as np import logging import asyncio import aiofiles from io import BytesIO from dataclasses import dataclass from typing import Optional, Tuple import zipfile import math import random import re import gradio as gr logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") logger = logging.getLogger(__name__) log_records = [] class LogCaptureHandler(logging.Handler): def emit(self, record): log_records.append(record) logger.addHandler(LogCaptureHandler()) @dataclass class ModelConfig: name: str base_model: str size: str domain: Optional[str] = None model_type: str = "causal_lm" @property def model_path(self): return f"models/{self.name}" @dataclass class DiffusionConfig: name: str base_model: str size: str domain: Optional[str] = None @property def model_path(self): return f"diffusion_models/{self.name}" class ModelBuilder: def __init__(self): self.config = None self.model = None self.tokenizer = None self.jokes = ["Why did the AI go to therapy? Too many layers to unpack! 😂", "Training complete! Time for a binary coffee break. ☕"] def load_model(self, model_path: str, config: Optional[ModelConfig] = None): self.model = AutoModelForCausalLM.from_pretrained(model_path) self.tokenizer = AutoTokenizer.from_pretrained(model_path) if self.tokenizer.pad_token is None: self.tokenizer.pad_token = self.tokenizer.eos_token if config: self.config = config self.model.to("cuda" if torch.cuda.is_available() else "cpu") return self def save_model(self, path: str): os.makedirs(os.path.dirname(path), exist_ok=True) self.model.save_pretrained(path) self.tokenizer.save_pretrained(path) class DiffusionBuilder: def __init__(self): self.config = None self.pipeline = None def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None): self.pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cpu") if config: self.config = config return self def save_model(self, path: str): os.makedirs(os.path.dirname(path), exist_ok=True) self.pipeline.save_pretrained(path) def generate(self, prompt: str): return self.pipeline(prompt, num_inference_steps=20).images[0] def generate_filename(sequence, ext="png"): timestamp = time.strftime("%d%m%Y%H%M%S") return f"{sequence}_{timestamp}.{ext}" def pdf_url_to_filename(url): safe_name = re.sub(r'[<>:"/\\|?*]', '_', url) return f"{safe_name}.pdf" def get_gallery_files(file_types=["png", "pdf"]): return sorted(list(set([f for ext in file_types for f in glob.glob(f"*.{ext}")]))) # Deduplicate files def get_model_files(model_type="causal_lm"): path = "models/*" if model_type == "causal_lm" else "diffusion_models/*" dirs = [d for d in glob.glob(path) if os.path.isdir(d)] return dirs if dirs else ["None"] def download_pdf(url, output_path): try: response = requests.get(url, stream=True, timeout=10) if response.status_code == 200: with open(output_path, "wb") as f: for chunk in response.iter_content(chunk_size=8192): f.write(chunk) return True except requests.RequestException as e: logger.error(f"Failed to download {url}: {e}") return False async def process_pdf_snapshot(pdf_path, mode="single"): doc = fitz.open(pdf_path) output_files = [] if mode == "single": page = doc[0] pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) output_file = generate_filename("single", "png") pix.save(output_file) output_files.append(output_file) elif mode == "twopage": for i in range(min(2, len(doc))): page = doc[i] pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) output_file = generate_filename(f"twopage_{i}", "png") pix.save(output_file) output_files.append(output_file) elif mode == "allpages": for i in range(len(doc)): page = doc[i] pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) output_file = generate_filename(f"page_{i}", "png") pix.save(output_file) output_files.append(output_file) doc.close() return output_files async def process_ocr(image, output_file): tokenizer = AutoTokenizer.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True) model = AutoModel.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval() temp_file = f"temp_{int(time.time())}.png" image.save(temp_file) result = model.chat(tokenizer, temp_file, ocr_type='ocr') os.remove(temp_file) async with aiofiles.open(output_file, "w") as f: await f.write(result) return result async def process_image_gen(prompt, output_file, builder): if builder and isinstance(builder, DiffusionBuilder) and builder.pipeline: pipeline = builder.pipeline else: pipeline = StableDiffusionPipeline.from_pretrained("OFA-Sys/small-stable-diffusion-v0", torch_dtype=torch.float32).to("cpu") gen_image = pipeline(prompt, num_inference_steps=20).images[0] gen_image.save(output_file) return gen_image # Gradio Interface Functions def update_gallery(history, asset_checkboxes): all_files = get_gallery_files() gallery_images = [] for file in all_files[:5]: # Limit to 5 for display if file.endswith('.png'): gallery_images.append(Image.open(file)) else: doc = fitz.open(file) pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5)) img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) gallery_images.append(img) doc.close() history.append(f"Gallery updated: {len(all_files)} files") return gallery_images, history, asset_checkboxes def camera_snap(image, cam_id, history, asset_checkboxes, cam_files): if image is not None: filename = generate_filename(f"cam{cam_id}") image.save(filename) history.append(f"Snapshot from Cam {cam_id}: {filename}") asset_checkboxes[filename] = True cam_files[cam_id] = filename return f"Image saved as {filename}", Image.open(filename), history, asset_checkboxes, cam_files elif cam_files.get(cam_id) and os.path.exists(cam_files[cam_id]): return f"Showing previous capture: {cam_files[cam_id]}", Image.open(cam_files[cam_id]), history, asset_checkboxes, cam_files return "No image captured", None, history, asset_checkboxes, cam_files def download_pdfs(urls, history, asset_checkboxes): urls = urls.strip().split("\n") downloaded = [] for url in urls: if url: output_path = pdf_url_to_filename(url) if download_pdf(url, output_path): downloaded.append(output_path) history.append(f"Downloaded PDF: {output_path}") asset_checkboxes[output_path] = True return f"Downloaded {len(downloaded)} PDFs", history, asset_checkboxes def upload_pdfs(pdf_files, history, asset_checkboxes): uploaded = [] for pdf_file in pdf_files: if pdf_file: output_path = f"uploaded_{int(time.time())}_{pdf_file.name}" with open(output_path, "wb") as f: f.write(pdf_file.read()) uploaded.append(output_path) history.append(f"Uploaded PDF: {output_path}") asset_checkboxes[output_path] = True return f"Uploaded {len(uploaded)} PDFs", history, asset_checkboxes def snapshot_pdfs(mode, history, asset_checkboxes): selected_pdfs = [path for path in get_gallery_files() if path.endswith('.pdf') and asset_checkboxes.get(path, False)] if not selected_pdfs: return "No PDFs selected", [], history, asset_checkboxes snapshots = [] mode_key = {"Single Page (High-Res)": "single", "Two Pages (High-Res)": "twopage", "All Pages (High-Res)": "allpages"}[mode] for pdf_path in selected_pdfs: snap_files = asyncio.run(process_pdf_snapshot(pdf_path, mode_key)) for snap in snap_files: snapshots.append(Image.open(snap)) asset_checkboxes[snap] = True history.append(f"Snapshot {mode_key}: {snap}") return f"Generated {len(snapshots)} snapshots", snapshots, history, asset_checkboxes def process_ocr_all(history, asset_checkboxes): all_files = get_gallery_files() if not all_files: return "No assets to OCR", history, asset_checkboxes full_text = "# OCR Results\n\n" for file in all_files: if file.endswith('.png'): image = Image.open(file) else: doc = fitz.open(file) pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) doc.close() output_file = generate_filename(f"ocr_{os.path.basename(file)}", "txt") result = asyncio.run(process_ocr(image, output_file)) full_text += f"## {os.path.basename(file)}\n\n{result}\n\n" history.append(f"OCR Test: {file} -> {output_file}") md_output_file = f"full_ocr_{int(time.time())}.md" with open(md_output_file, "w") as f: f.write(full_text) return f"Full OCR saved to {md_output_file}", history, asset_checkboxes def process_ocr_single(file_path, history, asset_checkboxes): if not file_path: return "No file selected", None, "", history, asset_checkboxes if file_path.endswith('.png'): image = Image.open(file_path) else: doc = fitz.open(file_path) pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) doc.close() output_file = generate_filename("ocr_output", "txt") result = asyncio.run(process_ocr(image, output_file)) history.append(f"OCR Test: {file_path} -> {output_file}") return f"OCR output saved to {output_file}", image, result, history, asset_checkboxes def build_model(model_type, base_model, model_name, domain, history): config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=model_name, base_model=base_model, size="small", domain=domain) builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder() builder.load_model(base_model, config) builder.save_model(config.model_path) history.append(f"Built {model_type} model: {model_name}") return builder, f"Model saved to {config.model_path}", history def image_gen(prompt, file_path, builder, history, asset_checkboxes): if not file_path: return "No file selected", None, history, asset_checkboxes if file_path.endswith('.png'): image = Image.open(file_path) else: doc = fitz.open(file_path) pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) doc.close() output_file = generate_filename("gen_output", "png") gen_image = asyncio.run(process_image_gen(prompt, output_file, builder)) history.append(f"Image Gen Test: {prompt} -> {output_file}") asset_checkboxes[output_file] = True return f"Image saved to {output_file}", gen_image, history, asset_checkboxes # Gradio UI with gr.Blocks(title="AI Vision & SFT Titans 🚀") as demo: gr.Markdown("# AI Vision & SFT Titans 🚀") history = gr.State(value=[]) builder = gr.State(value=None) asset_checkboxes = gr.State(value={}) cam_files = gr.State(value={}) with gr.Row(): with gr.Column(scale=1): gr.Markdown("## Captured Files 📜") gallery_output = gr.Gallery(label="Asset Gallery", columns=2, height="auto") gr.Button("Update Gallery").click(update_gallery, inputs=[history, asset_checkboxes], outputs=[gallery_output, history, asset_checkboxes]) gr.Markdown("## History 📜") history_output = gr.Textbox(label="History", lines=5, interactive=False) gr.Markdown("## Action Logs 📜") log_output = gr.Textbox(label="Logs", value="\n".join([f"{r.asctime} - {r.levelname} - {r.message}" for r in log_records]), lines=5, interactive=False) with gr.Column(scale=3): with gr.Tabs(): with gr.TabItem("Camera Snap 📷"): with gr.Row(): cam0_input = gr.Image(type="pil", label="Camera 0") cam1_input = gr.Image(type="pil", label="Camera 1") with gr.Row(): cam0_output = gr.Textbox(label="Cam 0 Status") cam1_output = gr.Textbox(label="Cam 1 Status") with gr.Row(): cam0_image = gr.Image(label="Cam 0 Preview") cam1_image = gr.Image(label="Cam 1 Preview") gr.Button("Capture Cam 0").click(camera_snap, inputs=[cam0_input, gr.State(value=0), history, asset_checkboxes, cam_files], outputs=[cam0_output, cam0_image, history, asset_checkboxes, cam_files]) gr.Button("Capture Cam 1").click(camera_snap, inputs=[cam1_input, gr.State(value=1), history, asset_checkboxes, cam_files], outputs=[cam1_output, cam1_image, history, asset_checkboxes, cam_files]) with gr.TabItem("Download PDFs 📥"): url_input = gr.Textbox(label="Enter PDF URLs (one per line)", lines=5) pdf_upload = gr.File(label="Upload PDFs", file_count="multiple", type="binary") pdf_output = gr.Textbox(label="Status") snapshot_mode = gr.Dropdown(["Single Page (High-Res)", "Two Pages (High-Res)", "All Pages (High-Res)"], label="Snapshot Mode") snapshot_output = gr.Textbox(label="Snapshot Status") snapshot_images = gr.Gallery(label="Snapshots", columns=2, height="auto") gr.Button("Download URLs").click(download_pdfs, inputs=[url_input, history, asset_checkboxes], outputs=[pdf_output, history, asset_checkboxes]) gr.Button("Upload PDFs").click(upload_pdfs, inputs=[pdf_upload, history, asset_checkboxes], outputs=[pdf_output, history, asset_checkboxes]) gr.Button("Snapshot Selected").click(snapshot_pdfs, inputs=[snapshot_mode, history, asset_checkboxes], outputs=[snapshot_output, snapshot_images, history, asset_checkboxes]) with gr.TabItem("Test OCR 🔍"): all_files = gr.Dropdown(choices=get_gallery_files(), label="Select File") ocr_output = gr.Textbox(label="Status") ocr_image = gr.Image(label="Input Image") ocr_result = gr.Textbox(label="OCR Result", lines=5) gr.Button("OCR All Assets").click(process_ocr_all, inputs=[history, asset_checkboxes], outputs=[ocr_output, history, asset_checkboxes]) gr.Button("OCR Selected").click(process_ocr_single, inputs=[all_files, history, asset_checkboxes], outputs=[ocr_output, ocr_image, ocr_result, history, asset_checkboxes]) with gr.TabItem("Build Titan 🌱"): model_type = gr.Dropdown(["Causal LM", "Diffusion"], label="Model Type") base_model = gr.Dropdown( choices=["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"], label="Base Model", value="HuggingFaceTB/SmolLM-135M" ) model_name = gr.Textbox(label="Model Name", value=f"tiny-titan-{int(time.time())}") domain = gr.Textbox(label="Target Domain", value="general") build_output = gr.Textbox(label="Status") gr.Button("Build").click(build_model, inputs=[model_type, base_model, model_name, domain, history], outputs=[builder, build_output, history]) with gr.TabItem("Test Image Gen 🎨"): gen_file = gr.Dropdown(choices=get_gallery_files(), label="Select Reference File") gen_prompt = gr.Textbox(label="Prompt", value="Generate a neon superhero version of this image") gen_output = gr.Textbox(label="Status") gen_image = gr.Image(label="Generated Image") gr.Button("Generate").click(image_gen, inputs=[gen_prompt, gen_file, builder, history, asset_checkboxes], outputs=[gen_output, gen_image, history, asset_checkboxes]) # Update history output on every interaction demo.load(lambda h: "\n".join(h[-5:]), inputs=[history], outputs=[history_output]) demo.launch()