Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -96,6 +96,7 @@ def add_witty_humor_buttons():
|
|
96 |
|
97 |
|
98 |
# Function to Stream Inference Client for Inference Endpoint Responses
|
|
|
99 |
def StreamLLMChatResponse(prompt):
|
100 |
|
101 |
try:
|
@@ -174,8 +175,7 @@ def StreamLLMChatResponse(prompt):
|
|
174 |
except:
|
175 |
st.write('DromeLlama is asleep. Starting up now on A10 - please give 5 minutes then retry as KEDA scales up from zero to activate running container(s).')
|
176 |
|
177 |
-
|
178 |
-
|
179 |
def query(payload):
|
180 |
response = requests.post(API_URL, headers=headers, json=payload)
|
181 |
st.markdown(response.json())
|
@@ -191,6 +191,7 @@ def generate_filename(prompt, file_type):
|
|
191 |
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90]
|
192 |
return f"{safe_date_time}_{safe_prompt}.{file_type}"
|
193 |
|
|
|
194 |
def transcribe_audio(openai_key, file_path, model):
|
195 |
openai.api_key = openai_key
|
196 |
OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions"
|
@@ -224,6 +225,7 @@ def save_and_play_audio(audio_recorder):
|
|
224 |
return filename
|
225 |
return None
|
226 |
|
|
|
227 |
def create_file(filename, prompt, response, should_save=True):
|
228 |
if not should_save:
|
229 |
return
|
@@ -248,6 +250,7 @@ def truncate_document(document, length):
|
|
248 |
def divide_document(document, max_length):
|
249 |
return [document[i:i+max_length] for i in range(0, len(document), max_length)]
|
250 |
|
|
|
251 |
def get_table_download_link(file_path):
|
252 |
with open(file_path, 'r') as file:
|
253 |
try:
|
@@ -282,6 +285,7 @@ def CompressXML(xml_text):
|
|
282 |
elem.parent.remove(elem)
|
283 |
return ET.tostring(root, encoding='unicode', method="xml")
|
284 |
|
|
|
285 |
def read_file_content(file,max_length):
|
286 |
if file.type == "application/json":
|
287 |
content = json.load(file)
|
@@ -303,6 +307,7 @@ def read_file_content(file,max_length):
|
|
303 |
else:
|
304 |
return ""
|
305 |
|
|
|
306 |
def chat_with_model(prompt, document_section, model_choice='gpt-3.5-turbo'):
|
307 |
model = model_choice
|
308 |
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
|
@@ -331,6 +336,7 @@ def chat_with_model(prompt, document_section, model_choice='gpt-3.5-turbo'):
|
|
331 |
st.write(time.time() - start_time)
|
332 |
return full_reply_content
|
333 |
|
|
|
334 |
def chat_with_file_contents(prompt, file_content, model_choice='gpt-3.5-turbo'):
|
335 |
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
|
336 |
conversation.append({'role': 'user', 'content': prompt})
|
@@ -362,6 +368,7 @@ def extract_file_extension(file):
|
|
362 |
else:
|
363 |
raise ValueError(f"Unable to extract file extension from {file_name}")
|
364 |
|
|
|
365 |
def pdf2txt(docs):
|
366 |
text = ""
|
367 |
for file in docs:
|
@@ -383,10 +390,12 @@ def txt2chunks(text):
|
|
383 |
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len)
|
384 |
return text_splitter.split_text(text)
|
385 |
|
|
|
386 |
def vector_store(text_chunks):
|
387 |
embeddings = OpenAIEmbeddings(openai_api_key=key)
|
388 |
return FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
389 |
|
|
|
390 |
def get_chain(vectorstore):
|
391 |
llm = ChatOpenAI()
|
392 |
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
|
@@ -419,6 +428,7 @@ def divide_prompt(prompt, max_length):
|
|
419 |
chunks.append(' '.join(current_chunk))
|
420 |
return chunks
|
421 |
|
|
|
422 |
def create_zip_of_files(files):
|
423 |
zip_name = "all_files.zip"
|
424 |
with zipfile.ZipFile(zip_name, 'w') as zipf:
|
@@ -426,6 +436,7 @@ def create_zip_of_files(files):
|
|
426 |
zipf.write(file)
|
427 |
return zip_name
|
428 |
|
|
|
429 |
def get_zip_download_link(zip_file):
|
430 |
with open(zip_file, 'rb') as f:
|
431 |
data = f.read()
|
@@ -440,6 +451,7 @@ headers = {
|
|
440 |
"Content-Type": "audio/wav"
|
441 |
}
|
442 |
|
|
|
443 |
def query(filename):
|
444 |
with open(filename, "rb") as f:
|
445 |
data = f.read()
|
@@ -454,6 +466,7 @@ def generate_filename(prompt, file_type):
|
|
454 |
return f"{safe_date_time}_{safe_prompt}.{file_type}"
|
455 |
|
456 |
# 10. Audio recorder to Wav file:
|
|
|
457 |
def save_and_play_audio(audio_recorder):
|
458 |
audio_bytes = audio_recorder()
|
459 |
if audio_bytes:
|
@@ -506,14 +519,7 @@ def main():
|
|
506 |
openai.api_key = os.getenv('OPENAI_KEY')
|
507 |
menu = ["txt", "htm", "xlsx", "csv", "md", "py"]
|
508 |
choice = st.sidebar.selectbox("Output File Type:", menu)
|
509 |
-
model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301'))
|
510 |
-
|
511 |
-
#filename = save_and_play_audio(audio_recorder)
|
512 |
-
#if filename is not None:
|
513 |
-
# transcription = transcribe_audio(key, filename, "whisper-1")
|
514 |
-
# st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
|
515 |
-
# filename = None
|
516 |
-
|
517 |
user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100)
|
518 |
collength, colupload = st.columns([2,3]) # adjust the ratio as needed
|
519 |
with collength:
|
|
|
96 |
|
97 |
|
98 |
# Function to Stream Inference Client for Inference Endpoint Responses
|
99 |
+
@st.cache_resource
|
100 |
def StreamLLMChatResponse(prompt):
|
101 |
|
102 |
try:
|
|
|
175 |
except:
|
176 |
st.write('DromeLlama is asleep. Starting up now on A10 - please give 5 minutes then retry as KEDA scales up from zero to activate running container(s).')
|
177 |
|
178 |
+
@st.cache_resource
|
|
|
179 |
def query(payload):
|
180 |
response = requests.post(API_URL, headers=headers, json=payload)
|
181 |
st.markdown(response.json())
|
|
|
191 |
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90]
|
192 |
return f"{safe_date_time}_{safe_prompt}.{file_type}"
|
193 |
|
194 |
+
@st.cache_resource
|
195 |
def transcribe_audio(openai_key, file_path, model):
|
196 |
openai.api_key = openai_key
|
197 |
OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions"
|
|
|
225 |
return filename
|
226 |
return None
|
227 |
|
228 |
+
@st.cache_resource
|
229 |
def create_file(filename, prompt, response, should_save=True):
|
230 |
if not should_save:
|
231 |
return
|
|
|
250 |
def divide_document(document, max_length):
|
251 |
return [document[i:i+max_length] for i in range(0, len(document), max_length)]
|
252 |
|
253 |
+
@st.cache_resource
|
254 |
def get_table_download_link(file_path):
|
255 |
with open(file_path, 'r') as file:
|
256 |
try:
|
|
|
285 |
elem.parent.remove(elem)
|
286 |
return ET.tostring(root, encoding='unicode', method="xml")
|
287 |
|
288 |
+
@st.cache_resource
|
289 |
def read_file_content(file,max_length):
|
290 |
if file.type == "application/json":
|
291 |
content = json.load(file)
|
|
|
307 |
else:
|
308 |
return ""
|
309 |
|
310 |
+
@st.cache_resource
|
311 |
def chat_with_model(prompt, document_section, model_choice='gpt-3.5-turbo'):
|
312 |
model = model_choice
|
313 |
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
|
|
|
336 |
st.write(time.time() - start_time)
|
337 |
return full_reply_content
|
338 |
|
339 |
+
@st.cache_resource
|
340 |
def chat_with_file_contents(prompt, file_content, model_choice='gpt-3.5-turbo'):
|
341 |
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
|
342 |
conversation.append({'role': 'user', 'content': prompt})
|
|
|
368 |
else:
|
369 |
raise ValueError(f"Unable to extract file extension from {file_name}")
|
370 |
|
371 |
+
@st.cache_resource
|
372 |
def pdf2txt(docs):
|
373 |
text = ""
|
374 |
for file in docs:
|
|
|
390 |
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len)
|
391 |
return text_splitter.split_text(text)
|
392 |
|
393 |
+
@st.cache_resource
|
394 |
def vector_store(text_chunks):
|
395 |
embeddings = OpenAIEmbeddings(openai_api_key=key)
|
396 |
return FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
397 |
|
398 |
+
@st.cache_resource
|
399 |
def get_chain(vectorstore):
|
400 |
llm = ChatOpenAI()
|
401 |
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
|
|
|
428 |
chunks.append(' '.join(current_chunk))
|
429 |
return chunks
|
430 |
|
431 |
+
@st.cache_resource
|
432 |
def create_zip_of_files(files):
|
433 |
zip_name = "all_files.zip"
|
434 |
with zipfile.ZipFile(zip_name, 'w') as zipf:
|
|
|
436 |
zipf.write(file)
|
437 |
return zip_name
|
438 |
|
439 |
+
@st.cache_resource
|
440 |
def get_zip_download_link(zip_file):
|
441 |
with open(zip_file, 'rb') as f:
|
442 |
data = f.read()
|
|
|
451 |
"Content-Type": "audio/wav"
|
452 |
}
|
453 |
|
454 |
+
@st.cache_resource
|
455 |
def query(filename):
|
456 |
with open(filename, "rb") as f:
|
457 |
data = f.read()
|
|
|
466 |
return f"{safe_date_time}_{safe_prompt}.{file_type}"
|
467 |
|
468 |
# 10. Audio recorder to Wav file:
|
469 |
+
@st.cache_resource
|
470 |
def save_and_play_audio(audio_recorder):
|
471 |
audio_bytes = audio_recorder()
|
472 |
if audio_bytes:
|
|
|
519 |
openai.api_key = os.getenv('OPENAI_KEY')
|
520 |
menu = ["txt", "htm", "xlsx", "csv", "md", "py"]
|
521 |
choice = st.sidebar.selectbox("Output File Type:", menu)
|
522 |
+
model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
523 |
user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100)
|
524 |
collength, colupload = st.columns([2,3]) # adjust the ratio as needed
|
525 |
with collength:
|