Spaces:
Build error
Build error
import gradio as gr | |
import requests | |
import os | |
##Bloom Inference API | |
API_URL = "https://api-inference.huggingface.co/models/bigscience/bloom" # Models on HF feature inference API which allows direct call and easy interface | |
HF_TOKEN = os.environ["HF_TOKEN"] # Add a token called HF_TOKEN under profile in settings access tokens. Then copy it to the repository secret in this spaces settings panel. os.environ reads from there. | |
# For headers the bearer token needs to incclude your HF_TOKEN value. | |
headers = {"Authorization": f"Bearer {HF_TOKEN}"} | |
# Improved text generation function | |
def text_generate(prompt, generated_txt): | |
# Initialize Thoughts variable to aggregate text | |
Thoughts = "" | |
# Debug: display the prompt | |
Thoughts += f"Prompt: {prompt}\n" | |
json_ = { | |
"inputs": prompt, | |
"parameters": { | |
"top_p": 0.9, | |
"temperature": 1.1, | |
"return_full_text": True, | |
"do_sample": True, | |
}, | |
"options": { | |
"use_cache": True, | |
"wait_for_model": True, | |
}, | |
} | |
response = requests.post(API_URL, headers=headers, json=json_) | |
output = response.json() | |
# Debug: display the output | |
Thoughts += f"Output: {output}\n" | |
output_tmp = output[0]['generated_text'] | |
# Debug: display the output_tmp | |
Thoughts += f"output_tmp is: {output_tmp}\n" | |
solution = output_tmp.split("\nQ:")[0] | |
# Debug: display the solution after splitting | |
Thoughts += f"Final response after splits is: {solution}\n" | |
if '\nOutput:' in solution: | |
final_solution = solution.split("\nOutput:")[0] | |
Thoughts += f"Response after removing output is: {final_solution}\n" | |
elif '\n\n' in solution: | |
final_solution = solution.split("\n\n")[0] | |
Thoughts += f"Response after removing new line entries is: {final_solution}\n" | |
else: | |
final_solution = solution | |
if len(generated_txt) == 0: | |
display_output = final_solution | |
else: | |
display_output = generated_txt[:-len(prompt)] + final_solution | |
new_prompt = final_solution[len(prompt):] | |
# Debug: display the new prompt for the next cycle | |
Thoughts += f"new prompt for next cycle is: {new_prompt}\n" | |
Thoughts += f"display_output for printing on screen is: {display_output}\n" | |
if len(new_prompt) == 0: | |
temp_text = display_output[::-1] | |
Thoughts += f"What is the last character of the sentence?: {temp_text[0]}\n" | |
if temp_text[1] == '.': | |
first_period_loc = temp_text[2:].find('.') + 1 | |
Thoughts += f"Location of last Period is: {first_period_loc}\n" | |
new_prompt = display_output[-first_period_loc:-1] | |
Thoughts += f"Not sending blank as prompt so new prompt for next cycle is: {new_prompt}\n" | |
else: | |
first_period_loc = temp_text.find('.') | |
Thoughts += f"Location of last Period is: {first_period_loc}\n" | |
new_prompt = display_output[-first_period_loc:-1] | |
Thoughts += f"Not sending blank as prompt so new prompt for next cycle is: {new_prompt}\n" | |
display_output = display_output[:-1] | |
return display_output, new_prompt, Thoughts | |
# Text generation | |
def text_generate_old(prompt, generated_txt): | |
#Prints to debug the code | |
print(f"*****Inside text_generate - Prompt is :{prompt}") | |
json_ = {"inputs": prompt, | |
"parameters": | |
{ | |
"top_p": 0.9, | |
"temperature": 1.1, | |
#"max_new_tokens": 64, | |
"return_full_text": True, | |
"do_sample":True, | |
}, | |
"options": | |
{"use_cache": True, | |
"wait_for_model": True, | |
},} | |
response = requests.post(API_URL, headers=headers, json=json_) | |
print(f"Response is : {response}") | |
output = response.json() | |
print(f"output is : {output}") | |
output_tmp = output[0]['generated_text'] | |
print(f"output_tmp is: {output_tmp}") | |
solution = output_tmp.split("\nQ:")[0] | |
print(f"Final response after splits is: {solution}") | |
if '\nOutput:' in solution: | |
final_solution = solution.split("\nOutput:")[0] | |
print(f"Response after removing output is: {final_solution}") | |
elif '\n\n' in solution: | |
final_solution = solution.split("\n\n")[0] | |
print(f"Response after removing new line entries is: {final_solution}") | |
else: | |
final_solution = solution | |
if len(generated_txt) == 0 : | |
display_output = final_solution | |
else: | |
display_output = generated_txt[:-len(prompt)] + final_solution | |
new_prompt = final_solution[len(prompt):] | |
print(f"New prompt for next cycle: {new_prompt}") | |
print(f"Output final is : {display_output}") | |
if len(new_prompt) == 0: | |
temp_text = display_output[::-1] | |
print(f"Last character of sentence: {temp_text[0]}") | |
if temp_text[1] == '.': | |
first_period_loc = temp_text[2:].find('.') + 1 | |
print(f"Location of last Period is: {first_period_loc}") | |
new_prompt = display_output[-first_period_loc:-1] | |
print(f"Not sending blank as prompt so new prompt for next cycle is : {new_prompt}") | |
else: | |
print("HERE") | |
first_period_loc = temp_text.find('.') | |
print(f"Last Period is : {first_period_loc}") | |
new_prompt = display_output[-first_period_loc:-1] | |
print(f"New prompt for next cycle is : {new_prompt}") | |
display_output = display_output[:-1] | |
return display_output, new_prompt | |
demo = gr.Blocks() | |
with demo: | |
with gr.Row(): | |
input_prompt = gr.Textbox(label="Write some text to get started...", lines=3, value="Dear human philosophers, I read your comments on my abilities and limitations with great interest.") | |
with gr.Row(): | |
generated_txt = gr.Textbox(lines=5, visible = True) | |
with gr.Row(): | |
Thoughts = gr.Textbox(lines=10, visible = True) | |
generate = gr.Button("Generate") | |
generate.click(text_generate, inputs=[input_prompt, generated_txt], outputs=[generated_txt, input_prompt, Thoughts]) | |
demo.launch(enable_queue=True, debug=True) |