Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from queue import Queue
|
2 |
+
from threading import Thread
|
3 |
+
from typing import Optional
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from transformers import MusicgenForConditionalGeneration, MusicgenProcessor, set_seed
|
9 |
+
from transformers.generation.streamers import BaseStreamer
|
10 |
+
|
11 |
+
import gradio as gr
|
12 |
+
import spaces
|
13 |
+
|
14 |
+
|
15 |
+
model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
|
16 |
+
processor = MusicgenProcessor.from_pretrained("facebook/musicgen-small")
|
17 |
+
|
18 |
+
title = "MusicGen Streaming"
|
19 |
+
|
20 |
+
description = """
|
21 |
+
Stream the outputs of the MusicGen text-to-music model by playing the generated audio as soon as the first chunk is ready.
|
22 |
+
Demo uses [MusicGen Small](https://huggingface.co/facebook/musicgen-small) in the 🤗 Transformers library. Note that the
|
23 |
+
demo works best on the Chrome browser. If there is no audio output, try switching browsers to Chrome.
|
24 |
+
"""
|
25 |
+
|
26 |
+
article = """
|
27 |
+
## How Does It Work?
|
28 |
+
MusicGen is an auto-regressive transformer-based model, meaning generates audio codes (tokens) in a causal fashion.
|
29 |
+
At each decoding step, the model generates a new set of audio codes, conditional on the text input and all previous audio codes. From the
|
30 |
+
frame rate of the [EnCodec model](https://huggingface.co/facebook/encodec_32khz) used to decode the generated codes to audio waveform,
|
31 |
+
each set of generated audio codes corresponds to 0.02 seconds. This means we require a total of 1000 decoding steps to generate
|
32 |
+
20 seconds of audio.
|
33 |
+
Rather than waiting for the entire audio sequence to be generated, which would require the full 1000 decoding steps, we can start
|
34 |
+
playing the audio after a specified number of decoding steps have been reached, a techinque known as [*streaming*](https://huggingface.co/docs/transformers/main/en/generation_strategies#streaming).
|
35 |
+
For example, after 250 steps we have the first 5 seconds of audio ready, and so can play this without waiting for the remaining
|
36 |
+
750 decoding steps to be complete. As we continue to generate with the MusicGen model, we append new chunks of generated audio
|
37 |
+
to our output waveform on-the-fly. After the full 1000 decoding steps, the generated audio is complete, and is composed of four
|
38 |
+
chunks of audio, each corresponding to 250 tokens.
|
39 |
+
This method of playing incremental generations reduces the latency of the MusicGen model from the total time to generate 1000 tokens,
|
40 |
+
to the time taken to play the first chunk of audio (250 tokens). This can result in significant improvements to perceived latency,
|
41 |
+
particularly when the chunk size is chosen to be small. In practice, the chunk size should be tuned to your device: using a
|
42 |
+
smaller chunk size will mean that the first chunk is ready faster, but should not be chosen so small that the model generates slower
|
43 |
+
than the time it takes to play the audio.
|
44 |
+
For details on how the streaming class works, check out the source code for the [MusicgenStreamer](https://huggingface.co/spaces/sanchit-gandhi/musicgen-streaming/blob/main/app.py#L52).
|
45 |
+
"""
|
46 |
+
|
47 |
+
|
48 |
+
class MusicgenStreamer(BaseStreamer):
|
49 |
+
def __init__(
|
50 |
+
self,
|
51 |
+
model: MusicgenForConditionalGeneration,
|
52 |
+
device: Optional[str] = None,
|
53 |
+
play_steps: Optional[int] = 10,
|
54 |
+
stride: Optional[int] = None,
|
55 |
+
timeout: Optional[float] = None,
|
56 |
+
):
|
57 |
+
"""
|
58 |
+
Streamer that stores playback-ready audio in a queue, to be used by a downstream application as an iterator. This is
|
59 |
+
useful for applications that benefit from acessing the generated audio in a non-blocking way (e.g. in an interactive
|
60 |
+
Gradio demo).
|
61 |
+
Parameters:
|
62 |
+
model (`MusicgenForConditionalGeneration`):
|
63 |
+
The MusicGen model used to generate the audio waveform.
|
64 |
+
device (`str`, *optional*):
|
65 |
+
The torch device on which to run the computation. If `None`, will default to the device of the model.
|
66 |
+
play_steps (`int`, *optional*, defaults to 10):
|
67 |
+
The number of generation steps with which to return the generated audio array. Using fewer steps will
|
68 |
+
mean the first chunk is ready faster, but will require more codec decoding steps overall. This value
|
69 |
+
should be tuned to your device and latency requirements.
|
70 |
+
stride (`int`, *optional*):
|
71 |
+
The window (stride) between adjacent audio samples. Using a stride between adjacent audio samples reduces
|
72 |
+
the hard boundary between them, giving smoother playback. If `None`, will default to a value equivalent to
|
73 |
+
play_steps // 6 in the audio space.
|
74 |
+
timeout (`int`, *optional*):
|
75 |
+
The timeout for the audio queue. If `None`, the queue will block indefinitely. Useful to handle exceptions
|
76 |
+
in `.generate()`, when it is called in a separate thread.
|
77 |
+
"""
|
78 |
+
self.decoder = model.decoder
|
79 |
+
self.audio_encoder = model.audio_encoder
|
80 |
+
self.generation_config = model.generation_config
|
81 |
+
self.device = device if device is not None else model.device
|
82 |
+
|
83 |
+
# variables used in the streaming process
|
84 |
+
self.play_steps = play_steps
|
85 |
+
if stride is not None:
|
86 |
+
self.stride = stride
|
87 |
+
else:
|
88 |
+
hop_length = np.prod(self.audio_encoder.config.upsampling_ratios)
|
89 |
+
self.stride = hop_length * (play_steps - self.decoder.num_codebooks) // 6
|
90 |
+
self.token_cache = None
|
91 |
+
self.to_yield = 0
|
92 |
+
|
93 |
+
# varibles used in the thread process
|
94 |
+
self.audio_queue = Queue()
|
95 |
+
self.stop_signal = None
|
96 |
+
self.timeout = timeout
|
97 |
+
|
98 |
+
def apply_delay_pattern_mask(self, input_ids):
|
99 |
+
# build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to MusicGen)
|
100 |
+
_, decoder_delay_pattern_mask = self.decoder.build_delay_pattern_mask(
|
101 |
+
input_ids[:, :1],
|
102 |
+
pad_token_id=self.generation_config.decoder_start_token_id,
|
103 |
+
max_length=input_ids.shape[-1],
|
104 |
+
)
|
105 |
+
# apply the pattern mask to the input ids
|
106 |
+
input_ids = self.decoder.apply_delay_pattern_mask(input_ids, decoder_delay_pattern_mask)
|
107 |
+
|
108 |
+
# revert the pattern delay mask by filtering the pad token id
|
109 |
+
input_ids = input_ids[input_ids != self.generation_config.pad_token_id].reshape(
|
110 |
+
1, self.decoder.num_codebooks, -1
|
111 |
+
)
|
112 |
+
|
113 |
+
# append the frame dimension back to the audio codes
|
114 |
+
input_ids = input_ids[None, ...]
|
115 |
+
|
116 |
+
# send the input_ids to the correct device
|
117 |
+
input_ids = input_ids.to(self.audio_encoder.device)
|
118 |
+
|
119 |
+
output_values = self.audio_encoder.decode(
|
120 |
+
input_ids,
|
121 |
+
audio_scales=[None],
|
122 |
+
)
|
123 |
+
audio_values = output_values.audio_values[0, 0]
|
124 |
+
return audio_values.cpu().float().numpy()
|
125 |
+
|
126 |
+
def put(self, value):
|
127 |
+
batch_size = value.shape[0] // self.decoder.num_codebooks
|
128 |
+
if batch_size > 1:
|
129 |
+
raise ValueError("MusicgenStreamer only supports batch size 1")
|
130 |
+
|
131 |
+
if self.token_cache is None:
|
132 |
+
self.token_cache = value
|
133 |
+
else:
|
134 |
+
self.token_cache = torch.concatenate([self.token_cache, value[:, None]], dim=-1)
|
135 |
+
|
136 |
+
if self.token_cache.shape[-1] % self.play_steps == 0:
|
137 |
+
audio_values = self.apply_delay_pattern_mask(self.token_cache)
|
138 |
+
self.on_finalized_audio(audio_values[self.to_yield : -self.stride])
|
139 |
+
self.to_yield += len(audio_values) - self.to_yield - self.stride
|
140 |
+
|
141 |
+
def end(self):
|
142 |
+
"""Flushes any remaining cache and appends the stop symbol."""
|
143 |
+
if self.token_cache is not None:
|
144 |
+
audio_values = self.apply_delay_pattern_mask(self.token_cache)
|
145 |
+
else:
|
146 |
+
audio_values = np.zeros(self.to_yield)
|
147 |
+
|
148 |
+
self.on_finalized_audio(audio_values[self.to_yield :], stream_end=True)
|
149 |
+
|
150 |
+
def on_finalized_audio(self, audio: np.ndarray, stream_end: bool = False):
|
151 |
+
"""Put the new audio in the queue. If the stream is ending, also put a stop signal in the queue."""
|
152 |
+
self.audio_queue.put(audio, timeout=self.timeout)
|
153 |
+
if stream_end:
|
154 |
+
self.audio_queue.put(self.stop_signal, timeout=self.timeout)
|
155 |
+
|
156 |
+
def __iter__(self):
|
157 |
+
return self
|
158 |
+
|
159 |
+
def __next__(self):
|
160 |
+
value = self.audio_queue.get(timeout=self.timeout)
|
161 |
+
if not isinstance(value, np.ndarray) and value == self.stop_signal:
|
162 |
+
raise StopIteration()
|
163 |
+
else:
|
164 |
+
return value
|
165 |
+
|
166 |
+
|
167 |
+
sampling_rate = model.audio_encoder.config.sampling_rate
|
168 |
+
frame_rate = model.audio_encoder.config.frame_rate
|
169 |
+
|
170 |
+
target_dtype = np.int16
|
171 |
+
max_range = np.iinfo(target_dtype).max
|
172 |
+
|
173 |
+
|
174 |
+
@spaces.GPU
|
175 |
+
def generate_audio(text_prompt, audio_length_in_s=10.0, play_steps_in_s=2.0, seed=0):
|
176 |
+
max_new_tokens = int(frame_rate * audio_length_in_s)
|
177 |
+
play_steps = int(frame_rate * play_steps_in_s)
|
178 |
+
|
179 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
180 |
+
if device != model.device:
|
181 |
+
model.to(device)
|
182 |
+
if device == "cuda:0":
|
183 |
+
model.half()
|
184 |
+
|
185 |
+
inputs = processor(
|
186 |
+
text=text_prompt,
|
187 |
+
padding=True,
|
188 |
+
return_tensors="pt",
|
189 |
+
)
|
190 |
+
|
191 |
+
streamer = MusicgenStreamer(model, device=device, play_steps=play_steps)
|
192 |
+
|
193 |
+
generation_kwargs = dict(
|
194 |
+
**inputs.to(device),
|
195 |
+
streamer=streamer,
|
196 |
+
max_new_tokens=max_new_tokens,
|
197 |
+
)
|
198 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
199 |
+
thread.start()
|
200 |
+
|
201 |
+
set_seed(seed)
|
202 |
+
for new_audio in streamer:
|
203 |
+
print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds")
|
204 |
+
new_audio = (new_audio * max_range).astype(np.int16)
|
205 |
+
yield (sampling_rate, new_audio)
|
206 |
+
|
207 |
+
|
208 |
+
demo = gr.Interface(
|
209 |
+
fn=generate_audio,
|
210 |
+
inputs=[
|
211 |
+
gr.Text(label="Prompt", value="80s pop track with synth and instrumentals"),
|
212 |
+
gr.Slider(10, 30, value=15, step=5, label="Audio length in seconds"),
|
213 |
+
gr.Slider(0.5, 2.5, value=0.5, step=0.5, label="Streaming interval in seconds", info="Lower = shorter chunks, lower latency, more codec steps"),
|
214 |
+
gr.Slider(0, 10, value=5, step=1, label="Seed for random generations"),
|
215 |
+
],
|
216 |
+
outputs=[
|
217 |
+
gr.Audio(label="Generated Music", streaming=True, autoplay=True)
|
218 |
+
],
|
219 |
+
examples=[
|
220 |
+
["An 80s driving pop song with heavy drums and synth pads in the background", 20, 0.5, 5],
|
221 |
+
["A cheerful country song with acoustic guitars", 15, 0.5, 5],
|
222 |
+
["90s rock song with electric guitar and heavy drums", 15, 0.5, 5],
|
223 |
+
["a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions bpm: 130", 30, 0.5, 5],
|
224 |
+
["lofi slow bpm electro chill with organic samples", 30, 0.5, 5],
|
225 |
+
],
|
226 |
+
title=title,
|
227 |
+
description=description,
|
228 |
+
article=article,
|
229 |
+
cache_examples=False,
|
230 |
+
)
|
231 |
+
|
232 |
+
|
233 |
+
demo.queue().launch()
|