File size: 44,406 Bytes
58aea7a
de2802f
58aea7a
31a2b78
58aea7a
 
 
 
 
 
 
 
 
 
31a2b78
58aea7a
 
 
 
 
 
 
 
de2802f
 
58aea7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de2802f
58aea7a
de2802f
58aea7a
de2802f
58aea7a
 
 
 
 
 
 
de2802f
 
58aea7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31a2b78
58aea7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
import io
import os
import re
import base64
import glob
import logging
import random
import shutil
import time
import zipfile
import json
import asyncio
import aiofiles
import toml
from datetime import datetime
from collections import Counter
from dataclasses import dataclass, field
from io import BytesIO
from typing import Optional, List, Dict, Any
import pandas as pd
import pytz
import streamlit as st
from PIL import Image, ImageDraw
from reportlab.pdfgen import canvas
from reportlab.lib.utils import ImageReader
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, PageBreak
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib.enums import TA_JUSTIFY
import fitz
import requests
try:
    import torch
    from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor, AutoModelForVision2Seq, pipeline
    _transformers_available = True
except ImportError:
    _transformers_available = False
    st.sidebar.warning("AI/ML libraries (torch, transformers) not found. Local model features disabled.")
try:
    from diffusers import StableDiffusionPipeline
    _diffusers_available = True
except ImportError:
    _diffusers_available = False
    if _transformers_available:
        st.sidebar.warning("Diffusers library not found. Diffusion model features disabled.")
try:
    from openai import OpenAI
    _openai_available = True
except ImportError:
    _openai_available = False
    st.sidebar.warning("OpenAI library not found. OpenAI model features disabled.")
from huggingface_hub import InferenceClient, HfApi, list_models
from huggingface_hub.utils import RepositoryNotFoundError, GatedRepoError

# --- App Configuration ---
st.set_page_config(
    page_title="Vision & Layout Titans ๐Ÿš€๐Ÿ–ผ๏ธ",
    page_icon="๐Ÿค–",
    layout="wide",
    initial_sidebar_state="expanded",
    menu_items={
        'Get Help': 'https://huggingface.co/docs',
        'Report a Bug': None,
        'About': "Combined App: Image/MD->PDF Layout + AI-Powered Tools ๐ŸŒŒ"
    }
)

# --- Secrets Management ---
try:
    secrets = toml.load(".streamlit/secrets.toml") if os.path.exists(".streamlit/secrets.toml") else {}
    HF_TOKEN = secrets.get("HF_TOKEN", os.getenv("HF_TOKEN", ""))
    OPENAI_API_KEY = secrets.get("OPENAI_API_KEY", os.getenv("OPENAI_API_KEY", ""))
except Exception as e:
    st.error(f"Error loading secrets: {e}")
    HF_TOKEN = os.getenv("HF_TOKEN", "")
    OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "")

if not HF_TOKEN:
    st.sidebar.warning("Hugging Face token not found in secrets or environment. Some features may be limited.")
if not OPENAI_API_KEY and _openai_available:
    st.sidebar.warning("OpenAI API key not found in secrets or environment. OpenAI features disabled.")

# --- Logging Setup ---
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
log_records = []
class LogCaptureHandler(logging.Handler):
    def emit(self, record):
        log_records.append(record)
logger.addHandler(LogCaptureHandler())

# --- Model Initialization ---
DEFAULT_PROVIDER = "hf-inference"
FEATURED_MODELS_LIST = [
    "meta-llama/Meta-Llama-3.1-8B-Instruct",
    "mistralai/Mistral-7B-Instruct-v0.3",
    "google/gemma-2-9b-it",
    "Qwen/Qwen2-7B-Instruct",
    "microsoft/Phi-3-mini-4k-instruct",
    "HuggingFaceH4/zephyr-7b-beta",
    "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
    "HuggingFaceTB/SmolLM-1.7B-Instruct"
]
VISION_MODELS_LIST = [
    "Salesforce/blip-image-captioning-large",
    "microsoft/trocr-large-handwritten",
    "llava-hf/llava-1.5-7b-hf",
    "google/vit-base-patch16-224"
]
DIFFUSION_MODELS_LIST = [
    "stabilityai/stable-diffusion-xl-base-1.0",
    "runwayml/stable-diffusion-v1-5",
    "OFA-Sys/small-stable-diffusion-v0"
]
OPENAI_MODELS_LIST = [
    "gpt-4o",
    "gpt-4-turbo",
    "gpt-3.5-turbo",
    "text-davinci-003"
]
st.session_state.setdefault('local_models', {})
st.session_state.setdefault('hf_inference_client', None)
st.session_state.setdefault('openai_client', None)
if _openai_available and OPENAI_API_KEY:
    try:
        st.session_state['openai_client'] = OpenAI(api_key=OPENAI_API_KEY)
        logger.info("OpenAI client initialized successfully.")
    except Exception as e:
        st.error(f"Failed to initialize OpenAI client: {e}")
        logger.error(f"OpenAI client initialization failed: {e}")
        st.session_state['openai_client'] = None

# --- Session State Initialization ---
st.session_state.setdefault('layout_snapshots', [])
st.session_state.setdefault('layout_new_uploads', [])
st.session_state.setdefault('history', [])
st.session_state.setdefault('processing', {})
st.session_state.setdefault('asset_checkboxes', {'image': {}, 'md': {}, 'pdf': {}})
st.session_state.setdefault('downloaded_pdfs', {})
st.session_state.setdefault('unique_counter', 0)
st.session_state.setdefault('cam0_file', None)
st.session_state.setdefault('cam1_file', None)
st.session_state.setdefault('characters', [])
st.session_state.setdefault('char_form_reset_key', 0)
st.session_state.setdefault('gallery_size', 10)
st.session_state.setdefault('hf_provider', DEFAULT_PROVIDER)
st.session_state.setdefault('hf_custom_key', "")
st.session_state.setdefault('hf_selected_api_model', FEATURED_MODELS_LIST[0])
st.session_state.setdefault('hf_custom_api_model', "")
st.session_state.setdefault('openai_selected_model', OPENAI_MODELS_LIST[0] if _openai_available else "")
st.session_state.setdefault('selected_local_model_path', None)
st.session_state.setdefault('gen_max_tokens', 512)
st.session_state.setdefault('gen_temperature', 0.7)
st.session_state.setdefault('gen_top_p', 0.95)
st.session_state.setdefault('gen_frequency_penalty', 0.0)
if 'asset_gallery_container' not in st.session_state:
    st.session_state['asset_gallery_container'] = {'image': st.sidebar.empty(), 'md': st.sidebar.empty(), 'pdf': st.sidebar.empty()}

# --- Dataclasses ---
@dataclass
class LocalModelConfig:
    name: str
    hf_id: str
    model_type: str
    size_category: str = "unknown"
    domain: Optional[str] = None
    local_path: str = field(init=False)
    def __post_init__(self):
        type_folder = f"{self.model_type}_models"
        safe_name = re.sub(r'[^\w\-]+', '_', self.name)
        self.local_path = os.path.join(type_folder, safe_name)
    def get_full_path(self):
        return os.path.abspath(self.local_path)

@dataclass
class DiffusionConfig:
    name: str
    base_model: str
    size: str
    domain: Optional[str] = None
    @property
    def model_path(self):
        return f"diffusion_models/{self.name}"

# --- Helper Functions ---
def generate_filename(sequence, ext="png"):
    timestamp = time.strftime('%Y%m%d_%H%M%S')
    safe_sequence = re.sub(r'[^\w\-]+', '_', str(sequence))
    return f"{safe_sequence}_{timestamp}.{ext}"

def pdf_url_to_filename(url):
    name = re.sub(r'^https?://', '', url)
    name = re.sub(r'[<>:"/\\|?*]', '_', name)
    return name[:100] + ".pdf"

def get_download_link(file_path, mime_type="application/octet-stream", label="Download"):
    if not os.path.exists(file_path):
        return f"{label} (File not found)"
    try:
        with open(file_path, "rb") as f:
            file_bytes = f.read()
        b64 = base64.b64encode(file_bytes).decode()
        return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label}</a>'
    except Exception as e:
        logger.error(f"Error creating download link for {file_path}: {e}")
        return f"{label} (Error)"

def zip_directory(directory_path, zip_path):
    with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
        for root, _, files in os.walk(directory_path):
            for file in files:
                file_path = os.path.join(root, file)
                zipf.write(file_path, os.path.relpath(file_path, os.path.dirname(directory_path)))

def get_local_model_paths(model_type="causal"):
    pattern = f"{model_type}_models/*"
    dirs = [d for d in glob.glob(pattern) if os.path.isdir(d)]
    return dirs

def get_gallery_files(file_types=("png", "pdf", "jpg", "jpeg", "md", "txt")):
    all_files = set()
    for ext in file_types:
        all_files.update(glob.glob(f"*.{ext.lower()}"))
        all_files.update(glob.glob(f"*.{ext.upper()}"))
    return sorted([f for f in all_files if os.path.basename(f).lower() != 'readme.md'])

def get_typed_gallery_files(file_type):
    if file_type == 'image':
        return get_gallery_files(('png', 'jpg', 'jpeg'))
    elif file_type == 'md':
        return get_gallery_files(('md',))
    elif file_type == 'pdf':
        return get_gallery_files(('pdf',))
    return []

def download_pdf(url, output_path):
    try:
        headers = {'User-Agent': 'Mozilla/5.0'}
        response = requests.get(url, stream=True, timeout=20, headers=headers)
        response.raise_for_status()
        with open(output_path, "wb") as f:
            for chunk in response.iter_content(chunk_size=8192):
                f.write(chunk)
        logger.info(f"Successfully downloaded {url} to {output_path}")
        return True
    except requests.exceptions.RequestException as e:
        logger.error(f"Failed to download {url}: {e}")
        if os.path.exists(output_path):
            try:
                os.remove(output_path)
            except:
                pass
        return False
    except Exception as e:
        logger.error(f"An unexpected error occurred during download of {url}: {e}")
        if os.path.exists(output_path):
            try:
                os.remove(output_path)
            except:
                pass
        return False

async def process_pdf_snapshot(pdf_path, mode="single", resolution_factor=2.0):
    start_time = time.time()
    status_placeholder = st.empty()
    status_placeholder.text(f"Processing PDF Snapshot ({mode}, Res: {resolution_factor}x)... (0s)")
    output_files = []
    try:
        doc = fitz.open(pdf_path)
        matrix = fitz.Matrix(resolution_factor, resolution_factor)
        num_pages_to_process = min(1, len(doc)) if mode == "single" else min(2, len(doc)) if mode == "twopage" else len(doc)
        for i in range(num_pages_to_process):
            page_start_time = time.time()
            page = doc[i]
            pix = page.get_pixmap(matrix=matrix)
            base_name = os.path.splitext(os.path.basename(pdf_path))[0]
            output_file = generate_filename(f"{base_name}_pg{i+1}_{mode}", "png")
            await asyncio.to_thread(pix.save, output_file)
            output_files.append(output_file)
            elapsed_page = int(time.time() - page_start_time)
            status_placeholder.text(f"Processing PDF Snapshot ({mode}, Res: {resolution_factor}x)... Page {i+1}/{num_pages_to_process} done ({elapsed_page}s)")
            await asyncio.sleep(0.01)
        doc.close()
        elapsed = int(time.time() - start_time)
        status_placeholder.success(f"PDF Snapshot ({mode}, {len(output_files)} files) completed in {elapsed}s!")
        return output_files
    except Exception as e:
        logger.error(f"Failed to process PDF snapshot for {pdf_path}: {e}")
        status_placeholder.error(f"Failed to process PDF {os.path.basename(pdf_path)}: {e}")
        for f in output_files:
            if os.path.exists(f):
                os.remove(f)
        return []

def get_hf_client() -> Optional[InferenceClient]:
    provider = st.session_state.hf_provider
    custom_key = st.session_state.hf_custom_key.strip()
    token_to_use = custom_key if custom_key else HF_TOKEN
    if not token_to_use and provider != "hf-inference":
        st.error(f"Provider '{provider}' requires a Hugging Face API token.")
        return None
    if provider == "hf-inference" and not token_to_use:
        logger.warning("Using hf-inference provider without a token. Rate limits may apply.")
        token_to_use = None
    current_client = st.session_state.get('hf_inference_client')
    needs_reinit = True
    if current_client:
        client_uses_custom = hasattr(current_client, '_token') and current_client._token == custom_key
        client_uses_default = hasattr(current_client, '_token') and current_client._token == HF_TOKEN
        client_uses_no_token = not hasattr(current_client, '_token') or current_client._token is None
        if current_client.provider == provider:
            if custom_key and client_uses_custom:
                needs_reinit = False
            elif not custom_key and HF_TOKEN and client_uses_default:
                needs_reinit = False
            elif not custom_key and not HF_TOKEN and client_uses_no_token:
                needs_reinit = False
    if needs_reinit:
        try:
            logger.info(f"Initializing InferenceClient for provider: {provider}.")
            st.session_state.hf_inference_client = InferenceClient(token=token_to_use, provider=provider)
            logger.info("InferenceClient initialized successfully.")
        except Exception as e:
            st.error(f"Failed to initialize Hugging Face client: {e}")
            logger.error(f"InferenceClient initialization failed: {e}")
            st.session_state.hf_inference_client = None
    return st.session_state.hf_inference_client

def process_text_hf(text: str, prompt: str, use_api: bool, model_id: str = None) -> str:
    status_placeholder = st.empty()
    start_time = time.time()
    result_text = ""
    params = {
        "max_new_tokens": st.session_state.gen_max_tokens,
        "temperature": st.session_state.gen_temperature,
        "top_p": st.session_state.gen_top_p,
        "repetition_penalty": st.session_state.gen_frequency_penalty + 1.0,
    }
    seed = st.session_state.gen_seed
    if seed != -1:
        params["seed"] = seed
    system_prompt = "You are a helpful assistant. Process the following text based on the user's request."
    full_prompt = f"{prompt}\n\n---\n\n{text}"
    messages = [
        {"role": "system", "content": system_prompt},
        {"role": "user", "content": full_prompt}
    ]
    if use_api:
        status_placeholder.info("Processing text using Hugging Face API...")
        client = get_hf_client()
        if not client:
            return "Error: Hugging Face client not available."
        model_id = model_id or st.session_state.hf_custom_api_model.strip() or st.session_state.hf_selected_api_model
        status_placeholder.info(f"Using API Model: {model_id}")
        try:
            response = client.chat_completion(
                model=model_id,
                messages=messages,
                max_tokens=params['max_new_tokens'],
                temperature=params['temperature'],
                top_p=params['top_p'],
            )
            result_text = response.choices[0].message.content or ""
            logger.info(f"HF API text processing successful for model {model_id}.")
        except Exception as e:
            logger.error(f"HF API text processing failed for model {model_id}: {e}")
            result_text = f"Error during Hugging Face API inference: {str(e)}"
    else:
        status_placeholder.info("Processing text using local model...")
        if not _transformers_available:
            return "Error: Transformers library not available."
        model_path = st.session_state.get('selected_local_model_path')
        if not model_path or model_path not in st.session_state.get('local_models', {}):
            return "Error: No suitable local model selected."
        local_model_data = st.session_state['local_models'][model_path]
        if local_model_data.get('type') != 'causal':
            return f"Error: Loaded model '{os.path.basename(model_path)}' is not a Causal LM."
        status_placeholder.info(f"Using Local Model: {os.path.basename(model_path)}")
        model = local_model_data.get('model')
        tokenizer = local_model_data.get('tokenizer')
        if not model or not tokenizer:
            return f"Error: Model or tokenizer not found for {os.path.basename(model_path)}."
        try:
            try:
                prompt_for_model = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
            except Exception:
                logger.warning(f"Could not apply chat template for {model_path}. Using basic formatting.")
                prompt_for_model = f"System: {system_prompt}\nUser: {full_prompt}\nAssistant:"
            inputs = tokenizer(prompt_for_model, return_tensors="pt", padding=True, truncation=True, max_length=params['max_new_tokens'] * 2)
            inputs = {k: v.to(model.device) for k, v in inputs.items()}
            generate_params = {
                "max_new_tokens": params['max_new_tokens'],
                "temperature": params['temperature'],
                "top_p": params['top_p'],
                "repetition_penalty": params.get('repetition_penalty', 1.0),
                "do_sample": True if params['temperature'] > 0.1 else False,
                "pad_token_id": tokenizer.eos_token_id
            }
            with torch.no_grad():
                outputs = model.generate(**inputs, **generate_params)
            input_length = inputs['input_ids'].shape[1]
            generated_ids = outputs[0][input_length:]
            result_text = tokenizer.decode(generated_ids, skip_special_tokens=True)
            logger.info(f"Local text processing successful for model {model_path}.")
        except Exception as e:
            logger.error(f"Local text processing failed for model {model_path}: {e}")
            result_text = f"Error during local model inference: {str(e)}"
    elapsed = int(time.time() - start_time)
    status_placeholder.success(f"Text processing completed in {elapsed}s.")
    return result_text

def process_text_openai(text: str, prompt: str, model_id: str) -> str:
    if not _openai_available or not st.session_state.get('openai_client'):
        return "Error: OpenAI client not available or API key missing."
    status_placeholder = st.empty()
    start_time = time.time()
    client = st.session_state['openai_client']
    system_prompt = "You are a helpful assistant. Process the following text based on the user's request."
    full_prompt = f"{prompt}\n\n---\n\n{text}"
    messages = [
        {"role": "system", "content": system_prompt},
        {"role": "user", "content": full_prompt}
    ]
    status_placeholder.info(f"Processing text using OpenAI model: {model_id}...")
    try:
        response = client.chat.completions.create(
            model=model_id,
            messages=messages,
            max_tokens=st.session_state.gen_max_tokens,
            temperature=st.session_state.gen_temperature,
            top_p=st.session_state.gen_top_p,
        )
        result_text = response.choices[0].message.content or ""
        logger.info(f"OpenAI text processing successful for model {model_id}.")
    except Exception as e:
        logger.error(f"OpenAI text processing failed for model {model_id}: {e}")
        result_text = f"Error during OpenAI inference: {str(e)}"
    elapsed = int(time.time() - start_time)
    status_placeholder.success(f"Text processing completed in {elapsed}s.")
    return result_text

def process_image_hf(image: Image.Image, prompt: str, use_api: bool, model_id: str = None) -> str:
    status_placeholder = st.empty()
    start_time = time.time()
    result_text = ""
    if use_api:
        status_placeholder.info("Processing image using Hugging Face API...")
        client = get_hf_client()
        if not client:
            return "Error: HF client not configured."
        buffered = BytesIO()
        image.save(buffered, format="PNG" if image.format != 'JPEG' else 'JPEG')
        img_bytes = buffered.getvalue()
        model_id = model_id or "Salesforce/blip-image-captioning-large"
        status_placeholder.info(f"Using API Image-to-Text Model: {model_id}")
        try:
            response_list = client.image_to_text(data=img_bytes, model=model_id)
            if response_list and isinstance(response_list, list) and 'generated_text' in response_list[0]:
                result_text = response_list[0]['generated_text']
                logger.info(f"HF API image captioning successful for model {model_id}.")
            else:
                result_text = "Error: Unexpected response format from image-to-text API."
                logger.warning(f"Unexpected API response for image-to-text: {response_list}")
        except Exception as e:
            logger.error(f"HF API image processing failed: {e}")
            result_text = f"Error during Hugging Face API image inference: {str(e)}"
    else:
        status_placeholder.info("Processing image using local model...")
        if not _transformers_available:
            return "Error: Transformers library needed."
        model_path = st.session_state.get('selected_local_model_path')
        if not model_path or model_path not in st.session_state.get('local_models', {}):
            return "Error: No suitable local model selected."
        local_model_data = st.session_state['local_models'][model_path]
        model_type = local_model_data.get('type')
        if model_type == 'vision':
            processor = local_model_data.get('processor')
            model = local_model_data.get('model')
            if processor and model:
                try:
                    inputs = processor(images=image, text=prompt, return_tensors="pt").to(model.device)
                    generated_ids = model.generate(**inputs, max_new_tokens=st.session_state.gen_max_tokens)
                    result_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
                except Exception as e:
                    result_text = f"Error during local vision model inference: {e}"
            else:
                result_text = "Error: Processor or model missing for local vision task."
        elif model_type == 'ocr':
            processor = local_model_data.get('processor')
            model = local_model_data.get('model')
            if processor and model:
                try:
                    pixel_values = processor(images=image, return_tensors="pt").pixel_values.to(model.device)
                    generated_ids = model.generate(pixel_values, max_new_tokens=st.session_state.gen_max_tokens)
                    result_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
                except Exception as e:
                    result_text = f"Error during local OCR model inference: {e}"
            else:
                result_text = "Error: Processor or model missing for local OCR task."
        else:
            result_text = f"Error: Loaded model '{os.path.basename(model_path)}' is not a recognized vision/OCR type."
    elapsed = int(time.time() - start_time)
    status_placeholder.success(f"Image processing completed in {elapsed}s.")
    return result_text

def process_image_openai(image: Image.Image, prompt: str, model_id: str = "gpt-4o") -> str:
    if not _openai_available or not st.session_state.get('openai_client'):
        return "Error: OpenAI client not available or API key missing."
    status_placeholder = st.empty()
    start_time = time.time()
    client = st.session_state['openai_client']
    buffered = BytesIO()
    image.save(buffered, format="PNG")
    img_b64 = base64.b64encode(buffered.getvalue()).decode()
    status_placeholder.info(f"Processing image using OpenAI model: {model_id}...")
    try:
        response = client.chat.completions.create(
            model=model_id,
            messages=[
                {"role": "user", "content": [
                    {"type": "text", "text": prompt},
                    {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{img_b64}"}}
                ]}
            ],
            max_tokens=st.session_state.gen_max_tokens,
            temperature=st.session_state.gen_temperature,
        )
        result_text = response.choices[0].message.content or ""
        logger.info(f"OpenAI image processing successful for model {model_id}.")
    except Exception as e:
        logger.error(f"OpenAI image processing failed for model {model_id}: {e}")
        result_text = f"Error during OpenAI image inference: {str(e)}"
    elapsed = int(time.time() - start_time)
    status_placeholder.success(f"Image processing completed in {elapsed}s.")
    return result_text

async def process_hf_ocr(image: Image.Image, output_file: str, use_api: bool, model_id: str = None) -> str:
    ocr_prompt = "Extract text content from this image."
    result = process_image_hf(image, ocr_prompt, use_api, model_id=model_id or "microsoft/trocr-large-handwritten")
    if result and not result.startswith("Error") and not result.startswith("["):
        try:
            async with aiofiles.open(output_file, "w", encoding='utf-8') as f:
                await f.write(result)
            logger.info(f"HF OCR result saved to {output_file}")
        except IOError as e:
            logger.error(f"Failed to save HF OCR output to {output_file}: {e}")
            result += f"\n[Error saving file: {e}]"
    elif os.path.exists(output_file):
        try:
            os.remove(output_file)
        except OSError:
            pass
    return result

async def process_openai_ocr(image: Image.Image, output_file: str, model_id: str = "gpt-4o") -> str:
    ocr_prompt = "Extract text content from this image."
    result = process_image_openai(image, ocr_prompt, model_id)
    if result and not result.startswith("Error"):
        try:
            async with aiofiles.open(output_file, "w", encoding='utf-8') as f:
                await f.write(result)
            logger.info(f"OpenAI OCR result saved to {output_file}")
        except IOError as e:
            logger.error(f"Failed to save OpenAI OCR output to {output_file}: {e}")
            result += f"\n[Error saving file: {e}]"
    elif os.path.exists(output_file):
        try:
            os.remove(output_file)
        except OSError:
            pass
    return result

def randomize_character_content():
    intro_templates = [
        "{char} is a valiant knight...", "{char} is a mischievous thief...",
        "{char} is a wise scholar...", "{char} is a fiery warrior...", "{char} is a gentle healer..."
    ]
    greeting_templates = [
        "'I am from the knight's guild...'", "'I heard you needed helpโ€”nameโ€™s {char}...",
        "'Oh, hello! Iโ€™m {char}, didnโ€™t see you there...'", "'Iโ€™m {char}, and Iโ€™m here to fight...'",
        "'Iโ€™m {char}, here to heal...'"
    ]
    name = f"Character_{random.randint(1000, 9999)}"
    gender = random.choice(["Male", "Female"])
    intro = random.choice(intro_templates).format(char=name)
    greeting = random.choice(greeting_templates).format(char=name)
    return name, gender, intro, greeting

def save_character(character_data):
    characters = st.session_state.get('characters', [])
    if any(c['name'] == character_data['name'] for c in characters):
        st.error(f"Character name '{character_data['name']}' already exists.")
        return False
    characters.append(character_data)
    st.session_state['characters'] = characters
    try:
        with open("characters.json", "w", encoding='utf-8') as f:
            json.dump(characters, f, indent=2)
        logger.info(f"Saved character: {character_data['name']}")
        return True
    except IOError as e:
        logger.error(f"Failed to save characters.json: {e}")
        st.error(f"Failed to save character file: {e}")
        return False

def load_characters():
    if not os.path.exists("characters.json"):
        st.session_state['characters'] = []
        return
    try:
        with open("characters.json", "r", encoding='utf-8') as f:
            characters = json.load(f)
        if isinstance(characters, list):
            st.session_state['characters'] = characters
            logger.info(f"Loaded {len(characters)} characters.")
        else:
            st.session_state['characters'] = []
            logger.warning("characters.json is not a list, resetting.")
            os.remove("characters.json")
    except (json.JSONDecodeError, IOError) as e:
        logger.error(f"Failed to load or decode characters.json: {e}")
        st.error(f"Error loading character file: {e}. Starting fresh.")
        st.session_state['characters'] = []
        try:
            corrupt_filename = f"characters_corrupt_{int(time.time())}.json"
            shutil.copy("characters.json", corrupt_filename)
            logger.info(f"Backed up corrupted character file to {corrupt_filename}")
            os.remove("characters.json")
        except Exception as backup_e:
            logger.error(f"Could not backup corrupted character file: {backup_e}")

def clean_stem(fn: str) -> str:
    name = os.path.splitext(os.path.basename(fn))[0]
    name = name.replace('-', ' ').replace('_', ' ')
    return name.strip().title()

def make_image_sized_pdf(sources, is_markdown_flags):
    if not sources:
        st.warning("No sources provided for PDF generation.")
        return None
    buf = BytesIO()
    styles = getSampleStyleSheet()
    md_style = ParagraphStyle(
        name='Markdown',
        fontSize=10,
        leading=12,
        spaceAfter=6,
        alignment=TA_JUSTIFY,
        fontName='Helvetica'
    )
    doc = SimpleDocTemplate(buf, pagesize=letter, rightMargin=36, leftMargin=36, topMargin=36, bottomMargin=36)
    story = []
    try:
        for idx, (src, is_md) in enumerate(zip(sources, is_markdown_flags), start=1):
            status_placeholder = st.empty()
            filename = 'page_' + str(idx)
            status_placeholder.info(f"Adding page {idx}/{len(sources)}: {os.path.basename(str(src))}...")
            try:
                if is_md:
                    with open(src, 'r', encoding='utf-8') as f:
                        content = f.read()
                    content = re.sub(r'!\[.*?\]\(.*?\)', '', content)
                    paragraphs = content.split('\n\n')
                    for para in paragraphs:
                        if para.strip():
                            story.append(Paragraph(para.strip(), md_style))
                    story.append(PageBreak())
                    status_placeholder.success(f"Added markdown page {idx}/{len(sources)}: {filename}")
                else:
                    if isinstance(src, str):
                        if not os.path.exists(src):
                            logger.warning(f"Image file not found: {src}. Skipping.")
                            status_placeholder.warning(f"Skipping missing file: {os.path.basename(src)}")
                            continue
                        img_obj = Image.open(src)
                        filename = os.path.basename(src)
                    else:
                        src.seek(0)
                        img_obj = Image.open(src)
                        filename = getattr(src, 'name', f'uploaded_image_{idx}')
                        src.seek(0)
                    with img_obj:
                        iw, ih = img_obj.size
                        if iw <= 0 or ih <= 0:
                            logger.warning(f"Invalid image dimensions ({iw}x{ih}) for {filename}. Skipping.")
                            status_placeholder.warning(f"Skipping invalid image: {filename}")
                            continue
                        cap_h = 30
                        c = canvas.Canvas(BytesIO(), pagesize=(iw, ih + cap_h))
                        img_reader = ImageReader(img_obj)
                        c.drawImage(img_reader, 0, cap_h, width=iw, height=ih, preserveAspectRatio=True, anchor='c', mask='auto')
                        caption = clean_stem(filename)
                        c.setFont('Helvetica', 12)
                        c.setFillColorRGB(0, 0, 0)
                        c.drawCentredString(iw / 2, cap_h / 2 + 3, caption)
                        c.setFont('Helvetica', 8)
                        c.setFillColorRGB(0.5, 0.5, 0.5)
                        c.drawRightString(iw - 10, 8, f"Page {idx}")
                        c.save()
                        story.append(PageBreak())
                        status_placeholder.success(f"Added image page {idx}/{len(sources)}: {filename}")
            except Exception as e:
                logger.error(f"Error processing source {src}: {e}")
                status_placeholder.error(f"Error adding page {idx}: {e}")
        doc.build(story)
        buf.seek(0)
        if buf.getbuffer().nbytes < 100:
            st.error("PDF generation resulted in an empty file.")
            return None
        return buf.getvalue()
    except Exception as e:
        logger.error(f"Fatal error during PDF generation: {e}")
        st.error(f"PDF Generation Failed: {e}")
        return None

def update_gallery(gallery_type='image'):
    container = st.session_state['asset_gallery_container'][gallery_type]
    with container:
        st.markdown(f"### {gallery_type.capitalize()} Gallery ๐Ÿ“ธ")
        files = get_typed_gallery_files(gallery_type)
        if not files:
            st.info(f"No {gallery_type} assets found yet.")
            return
        st.caption(f"Found {len(files)} assets:")
        for idx, file in enumerate(files[:st.session_state.gallery_size]):
            st.session_state['unique_counter'] += 1
            unique_id = st.session_state['unique_counter']
            item_key_base = f"{gallery_type}_gallery_item_{os.path.basename(file)}_{unique_id}"
            basename = os.path.basename(file)
            st.markdown(f"**{basename}**")
            try:
                file_ext = os.path.splitext(file)[1].lower()
                if gallery_type == 'image' and file_ext in ['.png', '.jpg', '.jpeg']:
                    with st.expander("Preview", expanded=False):
                        st.image(Image.open(file), use_container_width=True)
                elif gallery_type == 'pdf' and file_ext == '.pdf':
                    with st.expander("Preview (Page 1)", expanded=False):
                        doc = fitz.open(file)
                        if len(doc) > 0:
                            pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5))
                            img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
                            st.image(img, use_container_width=True)
                        else:
                            st.warning("Empty PDF")
                        doc.close()
                elif gallery_type == 'md' and file_ext == '.md':
                    with st.expander("Preview (Start)", expanded=False):
                        with open(file, 'r', encoding='utf-8', errors='ignore') as f:
                            content_preview = f.read(200)
                        st.code(content_preview + "...", language='markdown')
                action_cols = st.columns(3)
                with action_cols[0]:
                    checkbox_key = f"cb_{item_key_base}"
                    st.session_state['asset_checkboxes'][gallery_type][file] = st.checkbox(
                        "Select",
                        value=st.session_state['asset_checkboxes'][gallery_type].get(file, False),
                        key=checkbox_key
                    )
                with action_cols[1]:
                    mime_map = {'.png': 'image/png', '.jpg': 'image/jpeg', '.jpeg': 'image/jpeg', '.pdf': 'application/pdf', '.md': 'text/markdown'}
                    mime_type = mime_map.get(file_ext, "application/octet-stream")
                    dl_key = f"dl_{item_key_base}"
                    try:
                        with open(file, "rb") as fp:
                            st.download_button(
                                label="๐Ÿ“ฅ",
                                data=fp,
                                file_name=basename,
                                mime=mime_type,
                                key=dl_key,
                                help="Download this file"
                            )
                    except Exception as dl_e:
                        st.error(f"Download Error: {dl_e}")
                with action_cols[2]:
                    delete_key = f"del_{item_key_base}"
                    if st.button("๐Ÿ—‘๏ธ", key=delete_key, help=f"Delete {basename}"):
                        try:
                            os.remove(file)
                            st.session_state['asset_checkboxes'][gallery_type].pop(file, None)
                            if file in st.session_state.get('layout_snapshots', []):
                                st.session_state['layout_snapshots'].remove(file)
                            logger.info(f"Deleted {gallery_type} asset: {file}")
                            st.toast(f"Deleted {basename}!", icon="โœ…")
                            st.rerun()
                        except OSError as e:
                            logger.error(f"Error deleting file {file}: {e}")
                            st.error(f"Could not delete {basename}")
            except Exception as e:
                st.error(f"Error displaying {basename}: {e}")
                logger.error(f"Error displaying asset {file}: {e}")
            st.markdown("---")

# --- UI Elements ---
st.sidebar.subheader("๐Ÿค– AI Settings")
with st.sidebar.expander("API Inference Settings", expanded=False):
    st.session_state.hf_custom_key = st.text_input(
        "Custom HF Token",
        value=st.session_state.get('hf_custom_key', ""),
        type="password",
        key="hf_custom_key_input"
    )
    token_status = "Custom Key Set" if st.session_state.hf_custom_key else ("Default HF_TOKEN Set" if HF_TOKEN else "No Token Set")
    st.caption(f"HF Token Status: {token_status}")
    providers_list = ["hf-inference", "cerebras", "together", "sambanova", "novita", "cohere", "fireworks-ai", "hyperbolic", "nebius"]
    st.session_state.hf_provider = st.selectbox(
        "HF Inference Provider",
        options=providers_list,
        index=providers_list.index(st.session_state.get('hf_provider', DEFAULT_PROVIDER)),
        key="hf_provider_select"
    )
    st.session_state.hf_custom_api_model = st.text_input(
        "Custom HF API Model ID",
        value=st.session_state.get('hf_custom_api_model', ""),
        key="hf_custom_model_input"
    )
    effective_hf_model = st.session_state.hf_custom_api_model.strip() or st.session_state.hf_selected_api_model
    st.session_state.hf_selected_api_model = st.selectbox(
        "Featured HF API Model",
        options=FEATURED_MODELS_LIST,
        index=FEATURED_MODELS_LIST.index(st.session_state.get('hf_selected_api_model', FEATURED_MODELS_LIST[0])),
        key="hf_featured_model_select"
    )
    st.caption(f"Effective HF API Model: {effective_hf_model}")
    if _openai_available:
        st.session_state.openai_selected_model = st.selectbox(
            "OpenAI Model",
            options=OPENAI_MODELS_LIST,
            index=OPENAI_MODELS_LIST.index(st.session_state.get('openai_selected_model', OPENAI_MODELS_LIST[0])),
            key="openai_model_select"
        )

with st.sidebar.expander("Local Model Selection", expanded=True):
    if not _transformers_available:
        st.warning("Transformers library not found. Cannot load local models.")
    else:
        local_model_options = ["None"] + list(st.session_state.get('local_models', {}).keys())
        current_selection = st.session_state.get('selected_local_model_path', "None")
        if current_selection not in local_model_options:
            current_selection = "None"
        selected_path = st.selectbox(
            "Active Local Model",
            options=local_model_options,
            index=local_model_options.index(current_selection),
            format_func=lambda x: os.path.basename(x) if x != "None" else "None",
            key="local_model_selector"
        )
        st.session_state.selected_local_model_path = selected_path if selected_path != "None" else None
        if st.session_state.selected_local_model_path:
            model_info = st.session_state.local_models[st.session_state.selected_local_model_path]
            st.caption(f"Type: {model_info.get('type', 'Unknown')}")
            st.caption(f"Device: {model_info.get('model').device if model_info.get('model') else 'N/A'}")
        else:
            st.caption("No local model selected.")

with st.sidebar.expander("Generation Parameters", expanded=False):
    st.session_state.gen_max_tokens = st.slider("Max New Tokens", 1, 4096, st.session_state.get('gen_max_tokens', 512), key="param_max_tokens")
    st.session_state.gen_temperature = st.slider("Temperature", 0.01, 2.0, st.session_state.get('gen_temperature', 0.7), step=0.01, key="param_temp")
    st.session_state.gen_top_p = st.slider("Top-P", 0.01, 1.0, st.session_state.get('gen_top_p', 0.95), step=0.01, key="param_top_p")
    st.session_state.gen_frequency_penalty = st.slider("Repetition Penalty", 0.0, 1.0, st.session_state.get('gen_frequency_penalty', 0.0), step=0.05, key="param_repetition")
    st.session_state.gen_seed = st.slider("Seed", -1, 65535, st.session_state.get('gen_seed', -1), step=1, key="param_seed")

st.sidebar.subheader("๐Ÿ–ผ๏ธ Gallery Settings")
st.slider(
    "Max Items Shown",
    min_value=2,
    max_value=50,
    value=st.session_state.get('gallery_size', 10),
    key="gallery_size_slider"
)
st.session_state.gallery_size = st.session_state.gallery_size_slider
st.sidebar.markdown("---")
update_gallery('image')
update_gallery('md')
update_gallery('pdf')

# --- Main Application ---
st.title("Vision & Layout Titans ๐Ÿš€๐Ÿ–ผ๏ธ๐Ÿ“„")
st.markdown("Create PDFs from images and markdown, process with AI, and manage characters.")
tabs = st.tabs([
    "Image/MD->PDF Layout ๐Ÿ–ผ๏ธโžก๏ธ๐Ÿ“„",
    "Camera Snap ๐Ÿ“ท",
    "Download PDFs ๐Ÿ“ฅ",
    "Build Titan (Local Models) ๐ŸŒฑ",
    "PDF Process (AI) ๐Ÿ“„",
    "Image Process (AI) ๐Ÿ–ผ๏ธ",
    "Text Process (AI) ๐Ÿ“",
    "Test OCR (AI) ๐Ÿ”",
    "Test Image Gen (Diffusers) ๐ŸŽจ",
    "Character Editor ๐Ÿง‘โ€๐ŸŽจ",
    "Character Gallery ๐Ÿ–ผ๏ธ"
])

with tabs[0]:
    st.header("Image/Markdown to PDF Layout Generator")
    st.markdown("Select images and markdown files, reorder them, and generate a PDF.")
    col1, col2 = st.columns(2)
    with col1:
        st.subheader("A. Select Assets")
        selected_images = [f for f in get_typed_gallery_files('image') if st.session_state['asset_checkboxes']['image'].get(f, False)]
        selected_mds = [f for f in get_typed_gallery_files('md') if st.session_state['asset_checkboxes']['md'].get(f, False)]
        st.write(f"Selected Images: {len(selected_images)}")
        st.write(f"Selected Markdown Files: {len(selected_mds)}")
    with col2:
        st.subheader("B. Review and Reorder")
        layout_records = []
        for idx, path in enumerate(selected_images + selected_mds, start=1):
            is_md = path in selected_mds
            try:
                if is_md:
                    with open(path, 'r', encoding='utf-8') as f:
                        content = f.read(50)
                    layout_records.append({
                        "filename": os.path.basename(path),
                        "source": path,
                        "type": "Markdown",
                        "preview": content + "...",
                        "order": idx
                    })
                else:
                    with Image.open(path) as im:
                        w, h = im.size
                        ar = round(w / h, 2) if h > 0 else 0
                        orient = "Square" if 0.9 <= ar <= 1.1 else ("Landscape" if ar > 1.1 else "Portrait")
                    layout_records.append({
                        "filename": os.path.basename(path),
                        "source": path,
                        "type": "Image",
                        "width": w,
                        "height": h,
                        "aspect_ratio": ar,
                        "orientation": orient,
                        "order": idx
                    })
            except Exception as e:
                logger.warning(f"Could not process {path}: {e}")
                st.warning(f"Skipping invalid file: {os.path.basename(path)}")
        if not layout_records:
            st.infoperiod