File size: 9,871 Bytes
a686a3f 58aea7a de2802f 58aea7a 31a2b78 58aea7a 6bd0989 a686a3f 31a2b78 a686a3f 6bd0989 58aea7a a686a3f de2802f a686a3f 6bd0989 a686a3f 6bd0989 a686a3f 58aea7a a686a3f 58aea7a 6bd0989 58aea7a de2802f a686a3f de2802f a686a3f 58aea7a a686a3f 58aea7a a686a3f 6bd0989 58aea7a a686a3f 58aea7a a686a3f 58aea7a a686a3f 58aea7a 6bd0989 a686a3f 58aea7a a686a3f 58aea7a a686a3f 58aea7a a686a3f 58aea7a a686a3f 58aea7a a686a3f 58aea7a a686a3f 6bd0989 a686a3f 58aea7a a686a3f 58aea7a a686a3f 58aea7a a686a3f 6bd0989 a686a3f 6bd0989 a686a3f 6bd0989 a686a3f 58aea7a a686a3f 6bd0989 a686a3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
#!/usr/bin/env python
# app.py
import io
import os
import re
import base64
import glob
import logging
import random
import shutil
import time
import zipfile
import json
import asyncio
from pathlib import Path
from datetime import datetime
from typing import Any, List, Dict, Optional
import pandas as pd
import pytz
import streamlit as st
import aiofiles
import requests
from PIL import Image, ImageDraw, UnidentifiedImageError
from reportlab.pdfgen import canvas
from reportlab.lib.utils import ImageReader
from reportlab.lib.pagesizes import letter
import fitz # PyMuPDF
from huggingface_hub import InferenceClient
from huggingface_hub.utils import RepositoryNotFoundError, GatedRepoError
# Optional AI/ML imports
try:
import torch
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
AutoProcessor,
AutoModelForVision2Seq,
pipeline
)
_transformers_available = True
except ImportError:
_transformers_available = False
try:
from diffusers import StableDiffusionPipeline
_diffusers_available = True
except ImportError:
_diffusers_available = False
# --- Page Configuration ---
st.set_page_config(
page_title="Vision & Layout Titans (HF) ๐๐ผ๏ธ",
page_icon="๐ค",
layout="wide",
initial_sidebar_state="expanded",
menu_items={
'Get Help': 'https://huggingface.co/docs',
'About': "Combined App: ImageโPDF Layout + HF AI Tools ๐"
}
)
# --- Logging Setup ---
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
log_records: List[logging.LogRecord] = []
class LogCaptureHandler(logging.Handler):
def emit(self, record):
log_records.append(record)
logger.addHandler(LogCaptureHandler())
# --- Constants & Defaults ---
HF_TOKEN = os.getenv("HF_TOKEN")
DEFAULT_PROVIDER = "hf-inference"
FEATURED_MODELS_LIST = [
"meta-llama/Meta-Llama-3.1-8B-Instruct",
"mistralai/Mistral-7B-Instruct-v0.3",
"google/gemma-2-9b-it",
"Qwen/Qwen2-7B-Instruct",
"microsoft/Phi-3-mini-4k-instruct",
"HuggingFaceH4/zephyr-7b-beta",
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
"HuggingFaceTB/SmolLM-1.7B-Instruct"
]
# --- Session State Initialization ---
def _init_state(key: str, default: Any):
if key not in st.session_state:
st.session_state[key] = default
for k, v in {
'layout_snapshots': [],
'layout_new_uploads': [],
'layout_last_capture': None,
'history': [],
'processing': {},
'asset_checkboxes': {},
'downloaded_pdfs': {},
'unique_counter': 0,
'cam0_file': None,
'cam1_file': None,
'characters': [],
'char_form_reset_key': 0,
'gallery_size': 10,
'hf_inference_client': None,
'hf_provider': DEFAULT_PROVIDER,
'hf_custom_key': "",
'hf_selected_api_model': FEATURED_MODELS_LIST[0],
'hf_custom_api_model': "",
'local_models': {},
'selected_local_model_path': None,
'gen_max_tokens': 512,
'gen_temperature': 0.7,
'gen_top_p': 0.95,
'gen_frequency_penalty': 0.0,
'gen_seed': -1
}.items():
_init_state(k, v)
# --- Utility Functions ---
def generate_filename(seq: str, ext: str = "png") -> str:
ts = time.strftime('%Y%m%d_%H%M%S')
safe = re.sub(r'[^\w\-]+', '_', seq)
return f"{safe}_{ts}.{ext}"
def clean_stem(fn: str) -> str:
return os.path.splitext(os.path.basename(fn))[0].replace('-', ' ').replace('_', ' ').title()
def get_download_link(path: str, mime: str, label: str = "Download") -> str:
if not os.path.exists(path): return f"{label} (not found)"
data = open(path,'rb').read()
b64 = base64.b64encode(data).decode()
return f'<a href="data:{mime};base64,{b64}" download="{os.path.basename(path)}">{label}</a>'
def get_gallery_files(types: List[str] = ['png','jpg','jpeg','pdf','md','txt']) -> List[str]:
files = set()
for ext in types:
files.update(glob.glob(f"*.{ext}"))
files.update(glob.glob(f"*.{ext.upper()}"))
return sorted(files)
# Delete with rerun
def delete_asset(path: str):
try:
os.remove(path)
st.session_state['asset_checkboxes'].pop(path, None)
if path in st.session_state['layout_snapshots']:
st.session_state['layout_snapshots'].remove(path)
st.toast(f"Deleted {os.path.basename(path)}", icon="โ
")
except OSError as e:
st.error(f"Delete failed: {e}")
st.rerun()
# Sidebar gallery updater
def update_gallery():
st.sidebar.markdown("### Asset Gallery ๐ธ๐")
files = get_gallery_files()
if not files:
st.sidebar.info("No assets.")
return
st.sidebar.caption(f"Found {len(files)} assets.")
for f in files[:st.session_state['gallery_size']]:
name = os.path.basename(f)
ext = os.path.splitext(f)[1].lower()
st.sidebar.markdown(f"**{name}**")
with st.sidebar.expander("Preview", expanded=False):
try:
if ext in ['.png','.jpg','.jpeg']:
st.image(Image.open(f), use_container_width=True)
elif ext == '.pdf':
doc = fitz.open(f)
if doc.page_count:
pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5,0.5))
img = Image.frombytes('RGB',[pix.width,pix.height],pix.samples)
st.image(img, use_container_width=True)
doc.close()
else:
txt = Path(f).read_text(errors='ignore')
st.code(txt[:200]+'โฆ')
except:
st.warning("Preview error")
c1,c2,c3 = st.sidebar.columns(3)
sel = st.session_state['asset_checkboxes'].get(f, False)
c1.checkbox("Select", value=sel, key=f"cb_{f}")
st.session_state['asset_checkboxes'][f] = st.session_state.get(f"cb_{f}")
mime = {'png':'image/png','jpg':'image/jpeg','jpeg':'image/jpeg','pdf':'application/pdf','md':'text/markdown','txt':'text/plain'}.get(ext[1:], 'application/octet-stream')
with open(f,'rb') as fp:
c2.download_button("๐ฅ", data=fp, file_name=name, mime=mime, key=f"dl_{f}")
c3.button("๐๏ธ", key=f"del_{f}", on_click=delete_asset, args=(f,))
st.sidebar.markdown("---")
# --- PDF Snapshot & Generation ---
async def process_pdf_snapshot(path: str, mode: str='single', resF: float=2.0) -> List[str]:
status = st.empty()
status.text("Snapshot start...")
out_files: List[str] = []
try:
doc = fitz.open(path)
mat = fitz.Matrix(resF,resF)
cnt = {'single':1,'twopage':2,'allpages':len(doc)}.get(mode,1)
for i in range(min(cnt,len(doc))):
s = time.time()
page = doc[i]
pix = page.get_pixmap(matrix=mat)
base = os.path.splitext(os.path.basename(path))[0]
fname = generate_filename(f"{base}_pg{i+1}_{mode}","png")
await asyncio.to_thread(pix.save, fname)
out_files.append(fname)
status.text(f"Saved {fname} ({int(time.time()-s)}s)")
doc.close()
status.success(f"Snapshot done: {len(out_files)} files")
except Exception as e:
status.error(f"Snapshot error: {e}")
for f in out_files:
if os.path.exists(f): os.remove(f)
out_files = []
return out_files
from reportlab.lib.pagesizes import letter
def make_image_sized_pdf(sources: List[Any]) -> Optional[bytes]:
# dedupe
seen, uniq = set(), []
for s in sources:
key = s if isinstance(s,str) else getattr(s,'name',None)
if key and key not in seen:
seen.add(key)
uniq.append(s)
if not uniq:
st.warning("No images for PDF")
return None
buf = io.BytesIO()
c = canvas.Canvas(buf, pagesize=letter)
status = st.empty()
for idx,s in enumerate(uniq,1):
try:
img = Image.open(s) if isinstance(s,str) else Image.open(s)
w,h = img.size
cap = 30
c.setPageSize((w,h+cap))
c.drawImage(ImageReader(img),0,cap,w,h,mask='auto')
cap_txt = clean_stem(s if isinstance(s,str) else s.name)
c.setFont('Helvetica',12)
c.drawCentredString(w/2,cap/2,cap_txt)
c.setFont('Helvetica',8)
c.drawRightString(w-10,10,str(idx))
c.showPage()
status.text(f"Page {idx}/{len(uniq)} added")
except Exception as e:
status.error(f"Error page {idx}: {e}")
c.save()
buf.seek(0)
return buf.getvalue()
# --- HF Inference Client ---
def get_hf_client() -> Optional[InferenceClient]:
provider = st.session_state['hf_provider']
token = st.session_state['hf_custom_key'].strip() or HF_TOKEN
if provider!='hf-inference' and not token:
st.error(f"Provider {provider} needs token")
return None
client = st.session_state['hf_inference_client']
if not client:
st.session_state['hf_inference_client'] = InferenceClient(token=token, provider=provider)
return st.session_state['hf_inference_client']
# --- HF Processing ---
def process_text_hf(text: str, prompt: str, use_api: bool) -> str:
stp = st.empty(); stp.text("Processing...")
msgs = [{"role":"system","content":"You are an assistant."},
{"role":"user","content":f"{prompt}\n\n{text}"}]
out = ""
if use_api:
client = get_hf_client()
if not client: return "Client error"
model = st.session_state['hf_custom_api_model'] or st.session_state['hf_selected_api_model']
try:
resp = client.chat_completion(
model=model,
messages=msgs,
max_tokens=st.session_state['gen_max_tokens'],
temperature=st.session
]}]}
|