File size: 97,002 Bytes
15206a4 1d4b8d3 15206a4 1d4b8d3 68478d2 15206a4 68478d2 1d4b8d3 c83dd14 1d4b8d3 68478d2 1d4b8d3 68478d2 15206a4 68478d2 569d4fc 153c3cf 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 1d4b8d3 68478d2 1d4b8d3 68478d2 15206a4 68478d2 15206a4 1d4b8d3 68478d2 15206a4 68478d2 15206a4 68478d2 1d4b8d3 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 8b57823 15206a4 deeb295 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 1d4b8d3 15206a4 1d4b8d3 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 1d4b8d3 15206a4 68478d2 1d4b8d3 15206a4 68478d2 c83dd14 68478d2 c83dd14 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 6679bb8 15206a4 6679bb8 15206a4 6679bb8 68478d2 6679bb8 68478d2 15206a4 68478d2 15206a4 68478d2 6742513 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 6679bb8 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 e773bc1 15206a4 68478d2 6679bb8 4fecb47 15206a4 e773bc1 15206a4 68478d2 6679bb8 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 6679bb8 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 6679bb8 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 1d4b8d3 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 68478d2 15206a4 1d4b8d3 68478d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 |
# --- Combined Imports ------------------------------------
import io
import os
import re
import base64
import glob
import logging
import random
import shutil
import time
import zipfile
import json
import asyncio
import aiofiles
from datetime import datetime
from collections import Counter
from dataclasses import dataclass, field
from io import BytesIO
from typing import Optional, List, Dict, Any
import pandas as pd
import pytz
import streamlit as st
from PIL import Image, ImageDraw # Added ImageDraw
from reportlab.pdfgen import canvas
from reportlab.lib.utils import ImageReader
from reportlab.lib.pagesizes import letter # Default page size
import fitz # PyMuPDF
# --- Hugging Face Imports ---
from huggingface_hub import InferenceClient, HfApi, list_models
from huggingface_hub.utils import RepositoryNotFoundError, GatedRepoError # Import specific exceptions
# --- App Configuration -----------------------------------
st.set_page_config(
page_title="Vision & Layout Titans (HF) ππΌοΈ",
page_icon="π€",
layout="wide",
initial_sidebar_state="expanded",
menu_items={
'Get Help': 'https://huggingface.co/docs',
'Report a Bug': None, # Replace with your bug report link if desired
'About': "Combined App: Image->PDF Layout + Hugging Face Powered AI Tools π"
}
)
# Conditional imports for optional/heavy libraries
try:
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor, AutoModelForVision2Seq, AutoModelForImageToWaveform, pipeline
# Add more AutoModel classes as needed for different tasks (Vision, OCR, etc.)
_transformers_available = True
except ImportError:
_transformers_available = False
st.sidebar.warning("AI/ML libraries (torch, transformers) not found. Local model features disabled.")
try:
from diffusers import StableDiffusionPipeline
_diffusers_available = True
except ImportError:
_diffusers_available = False
# Don't show warning if transformers also missing, handled above
if _transformers_available:
st.sidebar.warning("Diffusers library not found. Diffusion model features disabled.")
import requests # Keep requests import
# --- Logging Setup ---------------------------------------
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
log_records = []
class LogCaptureHandler(logging.Handler):
def emit(self, record):
log_records.append(record)
logger.addHandler(LogCaptureHandler())
# --- Environment Variables & Constants -------------------
HF_TOKEN = os.getenv("HF_TOKEN")
DEFAULT_PROVIDER = "hf-inference"
# Model List (curated, similar to Gradio example) - can be updated
FEATURED_MODELS_LIST = [
"meta-llama/Meta-Llama-3.1-8B-Instruct", # Updated Llama model
"mistralai/Mistral-7B-Instruct-v0.3",
"google/gemma-2-9b-it", # Added Gemma 2
"Qwen/Qwen2-7B-Instruct", # Added Qwen2
"microsoft/Phi-3-mini-4k-instruct",
"HuggingFaceH4/zephyr-7b-beta",
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", # Larger Mixture of Experts
# Add a smaller option
"HuggingFaceTB/SmolLM-1.7B-Instruct"
]
# Add common vision models if planning local loading
VISION_MODELS_LIST = [
"Salesforce/blip-image-captioning-large",
"microsoft/trocr-large-handwritten", # OCR model
"llava-hf/llava-1.5-7b-hf", # Vision Language Model
"google/vit-base-patch16-224", # Basic Vision Transformer
]
DIFFUSION_MODELS_LIST = [
"stabilityai/stable-diffusion-xl-base-1.0", # Common SDXL
"runwayml/stable-diffusion-v1-5", # Classic SD 1.5
"OFA-Sys/small-stable-diffusion-v0", # Tiny diffusion
]
# --- Session State Initialization (Combined & Updated) ---
# Layout PDF specific
st.session_state.setdefault('layout_snapshots', [])
st.session_state.setdefault('layout_new_uploads', [])
# General App State
st.session_state.setdefault('history', [])
st.session_state.setdefault('processing', {})
st.session_state.setdefault('asset_checkboxes', {})
st.session_state.setdefault('downloaded_pdfs', {})
st.session_state.setdefault('unique_counter', 0)
st.session_state.setdefault('cam0_file', None)
st.session_state.setdefault('cam1_file', None)
st.session_state.setdefault('characters', [])
st.session_state.setdefault('char_form_reset_key', 0) # For character form reset
st.session_state.setdefault('gallery_size', 10)
# --- Hugging Face & Local Model State ---
st.session_state.setdefault('hf_inference_client', None) # Store initialized client
st.session_state.setdefault('hf_provider', DEFAULT_PROVIDER)
st.session_state.setdefault('hf_custom_key', "")
st.session_state.setdefault('hf_selected_api_model', FEATURED_MODELS_LIST[0]) # Default API model
st.session_state.setdefault('hf_custom_api_model', "") # User override for API model
# Local Model Management
st.session_state.setdefault('local_models', {}) # Dict to store loaded models: {'path': {'model': obj, 'tokenizer': obj, 'type': 'causal/vision/etc'}}
st.session_state.setdefault('selected_local_model_path', None) # Path of the currently active local model
# Inference Parameters (shared for API and local where applicable)
st.session_state.setdefault('gen_max_tokens', 512)
st.session_state.setdefault('gen_temperature', 0.7)
st.session_state.setdefault('gen_top_p', 0.95)
st.session_state.setdefault('gen_frequency_penalty', 0.0)
st.session_state.setdefault('gen_seed', -1) # -1 for random
if 'asset_gallery_container' not in st.session_state:
st.session_state['asset_gallery_container'] = st.sidebar.empty()
# --- Dataclasses (Refined for Local Models) -------------
@dataclass
class LocalModelConfig:
name: str # User-defined local name
hf_id: str # Hugging Face model ID used for download
model_type: str # 'causal', 'vision', 'diffusion', 'ocr', etc.
size_category: str = "unknown" # e.g., 'small', 'medium', 'large'
domain: Optional[str] = None
local_path: str = field(init=False) # Path where it's saved
def __post_init__(self):
# Define local path based on type and name
type_folder = f"{self.model_type}_models"
safe_name = re.sub(r'[^\w\-]+', '_', self.name) # Sanitize name for path
self.local_path = os.path.join(type_folder, safe_name)
def get_full_path(self):
return os.path.abspath(self.local_path)
# (Keep DiffusionConfig if still using diffusers library separately)
@dataclass
class DiffusionConfig: # Kept for clarity in diffusion tab if needed
name: str
base_model: str
size: str
domain: Optional[str] = None
@property
def model_path(self):
return f"diffusion_models/{self.name}"
# --- Helper Functions (Combined and refined) -------------
# (Keep generate_filename, pdf_url_to_filename, get_download_link, zip_directory)
# ... (previous helper functions like generate_filename, pdf_url_to_filename etc. are assumed here) ...
def generate_filename(sequence, ext="png"):
timestamp = time.strftime('%Y%m%d_%H%M%S')
safe_sequence = re.sub(r'[^\w\-]+', '_', str(sequence))
return f"{safe_sequence}_{timestamp}.{ext}"
def pdf_url_to_filename(url):
name = re.sub(r'^https?://', '', url)
name = re.sub(r'[<>:"/\\|?*]', '_', name)
return name[:100] + ".pdf" # Limit length
def get_download_link(file_path, mime_type="application/octet-stream", label="Download"):
if not os.path.exists(file_path): return f"{label} (File not found)"
try:
with open(file_path, "rb") as f: file_bytes = f.read()
b64 = base64.b64encode(file_bytes).decode()
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label}</a>'
except Exception as e:
logger.error(f"Error creating download link for {file_path}: {e}")
return f"{label} (Error)"
def zip_directory(directory_path, zip_path):
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
for root, _, files in os.walk(directory_path):
for file in files:
file_path = os.path.join(root, file)
zipf.write(file_path, os.path.relpath(file_path, os.path.dirname(directory_path)))
def get_local_model_paths(model_type="causal"):
"""Gets paths of locally saved models of a specific type."""
pattern = f"{model_type}_models/*"
dirs = [d for d in glob.glob(pattern) if os.path.isdir(d)]
return dirs
def get_gallery_files(file_types=("png", "pdf", "jpg", "jpeg", "md", "txt")):
all_files = set()
for ext in file_types:
all_files.update(glob.glob(f"*.{ext.lower()}"))
all_files.update(glob.glob(f"*.{ext.upper()}"))
return sorted(list(all_files))
def get_pdf_files():
return sorted(glob.glob("*.pdf") + glob.glob("*.PDF"))
def download_pdf(url, output_path):
try:
headers = {'User-Agent': 'Mozilla/5.0'}
response = requests.get(url, stream=True, timeout=20, headers=headers)
response.raise_for_status()
with open(output_path, "wb") as f:
for chunk in response.iter_content(chunk_size=8192): f.write(chunk)
logger.info(f"Successfully downloaded {url} to {output_path}")
return True
except requests.exceptions.RequestException as e:
logger.error(f"Failed to download {url}: {e}")
if os.path.exists(output_path):
try:
os.remove(output_path)
except:
pass
return False
except Exception as e:
logger.error(f"An unexpected error occurred during download of {url}: {e}")
if os.path.exists(output_path):
try:
os.remove(output_path)
except:
pass
return False
# (Keep process_pdf_snapshot - it doesn't use AI)
async def process_pdf_snapshot(pdf_path, mode="single", resolution_factor=2.0):
start_time = time.time()
status_placeholder = st.empty()
status_placeholder.text(f"Processing PDF Snapshot ({mode}, Res: {resolution_factor}x)... (0s)")
output_files = []
try:
doc = fitz.open(pdf_path)
matrix = fitz.Matrix(resolution_factor, resolution_factor)
num_pages_to_process = 0
if mode == "single": num_pages_to_process = min(1, len(doc))
elif mode == "twopage": num_pages_to_process = min(2, len(doc))
elif mode == "allpages": num_pages_to_process = len(doc)
for i in range(num_pages_to_process):
page_start_time = time.time()
page = doc[i]
pix = page.get_pixmap(matrix=matrix)
base_name = os.path.splitext(os.path.basename(pdf_path))[0]
output_file = generate_filename(f"{base_name}_pg{i+1}_{mode}", "png")
await asyncio.to_thread(pix.save, output_file)
output_files.append(output_file)
elapsed_page = int(time.time() - page_start_time)
status_placeholder.text(f"Processing PDF Snapshot ({mode}, Res: {resolution_factor}x)... Page {i+1}/{num_pages_to_process} done ({elapsed_page}s)")
await asyncio.sleep(0.01)
doc.close()
elapsed = int(time.time() - start_time)
status_placeholder.success(f"PDF Snapshot ({mode}, {len(output_files)} files) completed in {elapsed}s!")
return output_files
except Exception as e:
logger.error(f"Failed to process PDF snapshot for {pdf_path}: {e}")
status_placeholder.error(f"Failed to process PDF {os.path.basename(pdf_path)}: {e}")
for f in output_files:
if os.path.exists(f): os.remove(f)
return []
# --- HF Inference Client Management ---
def get_hf_client() -> Optional[InferenceClient]:
"""Gets or initializes the Hugging Face Inference Client based on session state."""
provider = st.session_state.hf_provider
custom_key = st.session_state.hf_custom_key.strip()
token_to_use = custom_key if custom_key else HF_TOKEN
if not token_to_use and provider != "hf-inference":
st.error(f"Provider '{provider}' requires a Hugging Face API token (either via HF_TOKEN env var or custom key).")
return None
if provider == "hf-inference" and not token_to_use:
logger.warning("Using hf-inference provider without a token. Rate limits may apply.")
token_to_use = None # Explicitly set to None for public inference API
# Check if client needs re-initialization
current_client = st.session_state.get('hf_inference_client')
# Simple check: re-init if provider or token presence changes
needs_reinit = True
if current_client:
# Basic check, more robust checks could compare client._token etc. if needed
# This assumes provider and token status are the key determinants
client_uses_custom = hasattr(current_client, '_token') and current_client._token == custom_key
client_uses_default = hasattr(current_client, '_token') and current_client._token == HF_TOKEN
client_uses_no_token = not hasattr(current_client, '_token') or current_client._token is None
if current_client.provider == provider:
if custom_key and client_uses_custom: needs_reinit = False
elif not custom_key and HF_TOKEN and client_uses_default: needs_reinit = False
elif not custom_key and not HF_TOKEN and client_uses_no_token: needs_reinit = False
if needs_reinit:
try:
logger.info(f"Initializing InferenceClient for provider: {provider}. Token source: {'Custom Key' if custom_key else ('HF_TOKEN' if HF_TOKEN else 'None')}")
st.session_state.hf_inference_client = InferenceClient(token=token_to_use, provider=provider)
logger.info("InferenceClient initialized successfully.")
except Exception as e:
st.error(f"Failed to initialize Hugging Face client for provider {provider}: {e}")
logger.error(f"InferenceClient initialization failed: {e}")
st.session_state.hf_inference_client = None
return st.session_state.hf_inference_client
# --- HF/Local Model Processing Functions (Replaced OpenAI ones) ---
def process_text_hf(text: str, prompt: str, use_api: bool) -> str:
"""Processes text using either HF Inference API or a loaded local model."""
status_placeholder = st.empty()
start_time = time.time()
result_text = ""
# --- Prepare Parameters ---
params = {
"max_new_tokens": st.session_state.gen_max_tokens, # Note: HF uses max_new_tokens typically
"temperature": st.session_state.gen_temperature,
"top_p": st.session_state.gen_top_p,
"repetition_penalty": st.session_state.gen_frequency_penalty + 1.0, # Adjust HF param name if needed
}
seed = st.session_state.gen_seed
if seed != -1: params["seed"] = seed
# --- Prepare Messages ---
# Simple system prompt + user prompt structure
# More complex chat history could be added here if needed
system_prompt = "You are a helpful assistant. Process the following text based on the user's request." # Default, consider making configurable
full_prompt = f"{prompt}\n\n---\n\n{text}"
# Basic message format for many models, adjust if needed per model type
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": full_prompt}
]
if use_api:
# --- Use Hugging Face Inference API ---
status_placeholder.info("Processing text using Hugging Face API...")
client = get_hf_client()
if not client:
return "Error: Hugging Face client not available or configured correctly."
model_id = st.session_state.hf_custom_api_model.strip() or st.session_state.hf_selected_api_model
if not model_id:
return "Error: No Hugging Face API model selected or specified."
status_placeholder.info(f"Using API Model: {model_id}")
try:
# Non-streaming for simplicity in Streamlit integration first
response = client.chat_completion(
model=model_id,
messages=messages,
max_tokens=params['max_new_tokens'], # chat_completion uses max_tokens
temperature=params['temperature'],
top_p=params['top_p'],
# Add other params if supported by client.chat_completion
)
result_text = response.choices[0].message.content or ""
logger.info(f"HF API text processing successful for model {model_id}.")
except Exception as e:
logger.error(f"HF API text processing failed for model {model_id}: {e}")
result_text = f"Error during Hugging Face API inference: {str(e)}"
else:
# --- Use Loaded Local Model ---
status_placeholder.info("Processing text using local model...")
if not _transformers_available:
return "Error: Transformers library not available for local models."
model_path = st.session_state.get('selected_local_model_path')
if not model_path or model_path not in st.session_state.get('local_models', {}):
return "Error: No suitable local model selected or loaded."
local_model_data = st.session_state['local_models'][model_path]
if local_model_data.get('type') != 'causal':
return f"Error: Loaded model '{os.path.basename(model_path)}' is not a Causal LM."
status_placeholder.info(f"Using Local Model: {os.path.basename(model_path)}")
model = local_model_data.get('model')
tokenizer = local_model_data.get('tokenizer')
if not model or not tokenizer:
return f"Error: Model or tokenizer not found for {os.path.basename(model_path)}."
try:
# Prepare input for local transformers model
# Handle chat template if available, otherwise basic concatenation
try:
prompt_for_model = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
except Exception: # Fallback if template fails or doesn't exist
logger.warning(f"Could not apply chat template for {model_path}. Using basic formatting.")
prompt_for_model = f"System: {system_prompt}\nUser: {full_prompt}\nAssistant:"
inputs = tokenizer(prompt_for_model, return_tensors="pt", padding=True, truncation=True, max_length=params['max_new_tokens'] * 2) # Heuristic length limit
# Move inputs to the same device as the model
inputs = {k: v.to(model.device) for k, v in inputs.items()}
# Generate
# Ensure generate parameters match transformers' expected names
generate_params = {
"max_new_tokens": params['max_new_tokens'],
"temperature": params['temperature'],
"top_p": params['top_p'],
"repetition_penalty": params.get('repetition_penalty', 1.0), # Use adjusted name
"do_sample": True if params['temperature'] > 0.1 else False, # Required for temp/top_p
"pad_token_id": tokenizer.eos_token_id # Avoid PAD warning
}
if 'seed' in params: pass # Seed handling can be complex with transformers, often set globally
with torch.no_grad(): # Disable gradient calculation for inference
outputs = model.generate(**inputs, **generate_params)
# Decode the output, skipping special tokens and the prompt
# output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
# More robust decoding: only decode the newly generated part
input_length = inputs['input_ids'].shape[1]
generated_ids = outputs[0][input_length:]
result_text = tokenizer.decode(generated_ids, skip_special_tokens=True)
logger.info(f"Local text processing successful for model {model_path}.")
except Exception as e:
logger.error(f"Local text processing failed for model {model_path}: {e}")
result_text = f"Error during local model inference: {str(e)}"
elapsed = int(time.time() - start_time)
status_placeholder.success(f"Text processing completed in {elapsed}s.")
return result_text
# --- Image Processing (Placeholder/Basic Implementation) ---
# This needs significant work depending on the chosen vision model type
def process_image_hf(image: Image.Image, prompt: str, use_api: bool) -> str:
"""Processes an image using either HF Inference API or a local model."""
status_placeholder = st.empty()
start_time = time.time()
result_text = "[Image processing not fully implemented with HF models yet]"
if use_api:
# --- Use HF API (Basic Image-to-Text Example) ---
status_placeholder.info("Processing image using Hugging Face API (Image-to-Text)...")
client = get_hf_client()
if not client: return "Error: HF client not configured."
# Convert PIL image to bytes
buffered = BytesIO()
image.save(buffered, format="PNG" if image.format != 'JPEG' else 'JPEG')
img_bytes = buffered.getvalue()
try:
# Example using a generic image-to-text model via API
# NOTE: This does NOT use the 'prompt' effectively like VQA models.
# Need to select an appropriate model ID known for image captioning.
# Using a default BLIP model for demonstration.
captioning_model_id = "Salesforce/blip-image-captioning-large"
status_placeholder.info(f"Using API Image-to-Text Model: {captioning_model_id}")
response_list = client.image_to_text(data=img_bytes, model=captioning_model_id)
if response_list and isinstance(response_list, list) and 'generated_text' in response_list[0]:
result_text = f"API Caption ({captioning_model_id}): {response_list[0]['generated_text']}\n\n(Note: API call did not use custom prompt: '{prompt}')"
logger.info(f"HF API image captioning successful for model {captioning_model_id}.")
else:
result_text = "Error: Unexpected response format from image-to-text API."
logger.warning(f"Unexpected API response for image-to-text: {response_list}")
except Exception as e:
logger.error(f"HF API image processing failed: {e}")
result_text = f"Error during Hugging Face API image inference: {str(e)}"
else:
# --- Use Local Vision Model ---
status_placeholder.info("Processing image using local model...")
if not _transformers_available: return "Error: Transformers library needed."
model_path = st.session_state.get('selected_local_model_path')
if not model_path or model_path not in st.session_state.get('local_models', {}):
return "Error: No suitable local model selected or loaded."
local_model_data = st.session_state['local_models'][model_path]
model_type = local_model_data.get('type')
# --- Placeholder Logic - Requires Specific Model Implementation ---
if model_type == 'vision': # General VQA or Captioning
status_placeholder.warning(f"Local Vision Model ({os.path.basename(model_path)}): Processing logic depends heavily on the specific model architecture (e.g., LLaVA, BLIP). Placeholder implementation.")
# Example: Needs processor + model.generate based on model type
# processor = local_model_data.get('processor')
# model = local_model_data.get('model')
# if processor and model:
# try:
# # inputs = processor(images=image, text=prompt, return_tensors="pt").to(model.device)
# # generated_ids = model.generate(**inputs, max_new_tokens=...)
# # result_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
# result_text = f"[Local vision processing for {os.path.basename(model_path)} needs specific implementation based on its type.] Prompt was: {prompt}"
# except Exception as e:
# result_text = f"Error during local vision model inference: {e}"
# else:
# result_text = "Error: Processor or model missing for local vision task."
result_text = f"[Local vision processing for {os.path.basename(model_path)} needs specific implementation based on its type.] Prompt was: {prompt}" # Placeholder
elif model_type == 'ocr': # OCR Specific Model
status_placeholder.warning(f"Local OCR Model ({os.path.basename(model_path)}): Placeholder implementation.")
# Example for TrOCR style models
# processor = local_model_data.get('processor')
# model = local_model_data.get('model')
# if processor and model:
# try:
# # pixel_values = processor(images=image, return_tensors="pt").pixel_values.to(model.device)
# # generated_ids = model.generate(pixel_values, max_new_tokens=...)
# # result_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
# result_text = f"[Local OCR processing for {os.path.basename(model_path)} needs specific implementation.]"
# except Exception as e:
# result_text = f"Error during local OCR model inference: {e}"
# else:
# result_text = "Error: Processor or model missing for local OCR task."
result_text = f"[Local OCR processing for {os.path.basename(model_path)} needs specific implementation.]" # Placeholder
else:
result_text = f"Error: Loaded model '{os.path.basename(model_path)}' is not a recognized vision/OCR type for this function."
elapsed = int(time.time() - start_time)
status_placeholder.success(f"Image processing attempt completed in {elapsed}s.")
return result_text
# Basic OCR function using the image processor above
async def process_hf_ocr(image: Image.Image, output_file: str, use_api: bool) -> str:
""" Performs OCR using the process_image_hf function framework. """
# Simple prompt for OCR task
ocr_prompt = "Extract text content from this image."
result = process_image_hf(image, ocr_prompt, use_api)
# Save the result if it looks like text (basic check)
if result and not result.startswith("Error") and not result.startswith("["):
try:
async with aiofiles.open(output_file, "w", encoding='utf-8') as f:
await f.write(result)
logger.info(f"HF OCR result saved to {output_file}")
except IOError as e:
logger.error(f"Failed to save HF OCR output to {output_file}: {e}")
result += f"\n[Error saving file: {e}]" # Append error to result if save fails
elif os.path.exists(output_file):
# Remove file if processing failed or was just a placeholder message
try: os.remove(output_file)
except OSError: pass
return result
# --- Character Functions (Keep from previous) -----------
# ... (randomize_character_content, save_character, load_characters are assumed here) ...
def randomize_character_content():
intro_templates = [
"{char} is a valiant knight...", "{char} is a mischievous thief...",
"{char} is a wise scholar...", "{char} is a fiery warrior...", "{char} is a gentle healer..."
]
greeting_templates = [
"'I am from the knight's guild...'", "'I heard you needed helpβnameβs {char}...",
"'Oh, hello! Iβm {char}, didnβt see you there...'", "'Iβm {char}, and Iβm here to fight...'",
"'Iβm {char}, here to heal...'" ]
name = f"Character_{random.randint(1000, 9999)}"
gender = random.choice(["Male", "Female"])
intro = random.choice(intro_templates).format(char=name)
greeting = random.choice(greeting_templates).format(char=name)
return name, gender, intro, greeting
def save_character(character_data):
characters = st.session_state.get('characters', [])
if any(c['name'] == character_data['name'] for c in characters):
st.error(f"Character name '{character_data['name']}' already exists.")
return False
characters.append(character_data)
st.session_state['characters'] = characters
try:
with open("characters.json", "w", encoding='utf-8') as f: json.dump(characters, f, indent=2)
logger.info(f"Saved character: {character_data['name']}")
return True
except IOError as e:
logger.error(f"Failed to save characters.json: {e}")
st.error(f"Failed to save character file: {e}")
return False
def load_characters():
if not os.path.exists("characters.json"): st.session_state['characters'] = []; return
try:
with open("characters.json", "r", encoding='utf-8') as f: characters = json.load(f)
if isinstance(characters, list): st.session_state['characters'] = characters; logger.info(f"Loaded {len(characters)} characters.")
else: st.session_state['characters'] = []; logger.warning("characters.json is not a list, resetting."); os.remove("characters.json")
except (json.JSONDecodeError, IOError) as e:
logger.error(f"Failed to load or decode characters.json: {e}")
st.error(f"Error loading character file: {e}. Starting fresh.")
st.session_state['characters'] = []
try:
corrupt_filename = f"characters_corrupt_{int(time.time())}.json"
shutil.copy("characters.json", corrupt_filename); logger.info(f"Backed up corrupted character file to {corrupt_filename}"); os.remove("characters.json")
except Exception as backup_e: logger.error(f"Could not backup corrupted character file: {backup_e}")
# --- Utility: Clean stems (Keep from previous) ----------
def clean_stem(fn: str) -> str:
name = os.path.splitext(os.path.basename(fn))[0]
name = name.replace('-', ' ').replace('_', ' ')
return name.strip().title()
# --- PDF Creation: Image Sized + Captions (Keep from previous) ---
def make_image_sized_pdf(sources):
if not sources: st.warning("No image sources provided for PDF generation."); return None
buf = io.BytesIO()
c = canvas.Canvas(buf, pagesize=letter) # Default letter
try:
for idx, src in enumerate(sources, start=1):
status_placeholder = st.empty()
status_placeholder.info(f"Adding page {idx}/{len(sources)}: {os.path.basename(str(src))}...")
try:
filename = f'page_{idx}'
if isinstance(src, str):
if not os.path.exists(src): logger.warning(f"Image file not found: {src}. Skipping."); status_placeholder.warning(f"Skipping missing file: {os.path.basename(src)}"); continue
img_obj = Image.open(src); filename = os.path.basename(src)
else:
src.seek(0); img_obj = Image.open(src); filename = getattr(src, 'name', f'uploaded_image_{idx}'); src.seek(0)
with img_obj:
iw, ih = img_obj.size
if iw <= 0 or ih <= 0: logger.warning(f"Invalid image dimensions ({iw}x{ih}) for {filename}. Skipping."); status_placeholder.warning(f"Skipping invalid image: {filename}"); continue
cap_h = 30; pw, ph = iw, ih + cap_h
c.setPageSize((pw, ph))
img_reader = ImageReader(img_obj)
c.drawImage(img_reader, 0, cap_h, width=iw, height=ih, preserveAspectRatio=True, anchor='c', mask='auto')
caption = clean_stem(filename); c.setFont('Helvetica', 12); c.setFillColorRGB(0, 0, 0); c.drawCentredString(pw / 2, cap_h / 2 + 3, caption)
c.setFont('Helvetica', 8); c.setFillColorRGB(0.5, 0.5, 0.5); c.drawRightString(pw - 10, 8, f"Page {idx}")
c.showPage()
status_placeholder.success(f"Added page {idx}/{len(sources)}: {filename}")
except (IOError, OSError, UnidentifiedImageError) as img_err: logger.error(f"Error processing image {src}: {img_err}"); status_placeholder.error(f"Error adding page {idx}: {img_err}")
except Exception as e: logger.error(f"Unexpected error adding page {idx} ({src}): {e}"); status_placeholder.error(f"Unexpected error on page {idx}: {e}")
c.save(); buf.seek(0)
if buf.getbuffer().nbytes < 100: st.error("PDF generation resulted in an empty file."); return None
return buf.getvalue()
except Exception as e:
logger.error(f"Fatal error during PDF generation: {e}")
st.error(f"PDF Generation Failed: {e}")
return None
# --- Sidebar Gallery Update Function (MODIFIED) --------
def update_gallery():
st.sidebar.markdown("### Asset Gallery πΈπ")
all_files = get_gallery_files() # Get currently available files
if not all_files:
st.sidebar.info("No assets (images, PDFs, text files) found yet.")
return
st.sidebar.caption(f"Found {len(all_files)} assets:")
for idx, file in enumerate(all_files):
st.session_state['unique_counter'] += 1
unique_id = st.session_state['unique_counter']
item_key_base = f"gallery_item_{os.path.basename(file)}_{unique_id}"
basename = os.path.basename(file)
st.sidebar.markdown(f"**{basename}**") # Display filename clearly
try:
file_ext = os.path.splitext(file)[1].lower()
# Display previews
if file_ext in ['.png', '.jpg', '.jpeg']:
# Add expander for large galleries
with st.sidebar.expander("Preview", expanded=False):
st.image(Image.open(file), use_container_width=True)
elif file_ext == '.pdf':
with st.sidebar.expander("Preview (Page 1)", expanded=False):
doc = fitz.open(file)
if len(doc) > 0:
pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5)) # Smaller preview
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
st.image(img, use_container_width=True)
else:
st.warning("Empty PDF")
doc.close()
elif file_ext in ['.md', '.txt']:
with st.sidebar.expander("Preview (Start)", expanded=False):
with open(file, 'r', encoding='utf-8', errors='ignore') as f:
content_preview = f.read(200) # Show first 200 chars
st.code(content_preview + "...", language='markdown' if file_ext == '.md' else 'text')
# --- Actions for the file (Select, Download, Delete) ---
action_cols = st.sidebar.columns(3) # Use columns for buttons
with action_cols[0]:
checkbox_key = f"cb_{item_key_base}"
st.session_state['asset_checkboxes'][file] = st.checkbox(
"Select",
value=st.session_state['asset_checkboxes'].get(file, False),
key=checkbox_key
)
with action_cols[1]:
mime_map = {'.png': 'image/png', '.jpg': 'image/jpeg', '.jpeg': 'image/jpeg', '.pdf': 'application/pdf', '.txt': 'text/plain', '.md': 'text/markdown'}
mime_type = mime_map.get(file_ext, "application/octet-stream")
# Use button for download to avoid complex HTML link generation issues sometimes
dl_key = f"dl_{item_key_base}"
try:
with open(file, "rb") as fp:
st.download_button(
label="π₯",
data=fp,
file_name=basename,
mime=mime_type,
key=dl_key,
help="Download this file"
)
except Exception as dl_e:
st.error(f"DL Err: {dl_e}")
with action_cols[2]:
delete_key = f"del_{item_key_base}"
if st.button("ποΈ", key=delete_key, help=f"Delete {basename}"):
try:
os.remove(file)
st.session_state['asset_checkboxes'].pop(file, None) # Remove from selection state
# Remove from layout_snapshots if present
if file in st.session_state.get('layout_snapshots', []):
st.session_state['layout_snapshots'].remove(file)
logger.info(f"Deleted asset: {file}")
st.toast(f"Deleted {basename}!", icon="β
") # Use toast for less intrusive feedback
# REMOVED st.rerun() - Rely on file watcher
except OSError as e:
logger.error(f"Error deleting file {file}: {e}")
st.error(f"Could not delete {basename}")
# Trigger a rerun MANUALLY after deletion completes if file watcher is unreliable
st.rerun()
except (fitz.fitz.FileNotFoundError, FileNotFoundError):
st.sidebar.error(f"File not found: {basename}")
st.session_state['asset_checkboxes'].pop(file, None) # Clean up state
except (fitz.fitz.FileDataError, fitz.fitz.RuntimeException) as pdf_err:
st.sidebar.error(f"Corrupt PDF: {basename}")
logger.warning(f"Error opening PDF {file}: {pdf_err}")
except UnidentifiedImageError:
st.sidebar.error(f"Invalid Image: {basename}")
logger.warning(f"Cannot identify image file {file}")
except Exception as e:
st.sidebar.error(f"Error: {basename}")
logger.error(f"Error displaying asset {file}: {e}")
st.sidebar.markdown("---") # Separator between items
# --- UI Elements -----------------------------------------
# --- Sidebar: HF Inference Settings ---
st.sidebar.subheader("π€ Hugging Face Settings")
st.sidebar.markdown("Configure API inference or select local models.")
# API Settings Expander
with st.sidebar.expander("API Inference Settings", expanded=False):
st.session_state.hf_custom_key = st.text_input(
"Custom HF Token (BYOK)",
value=st.session_state.get('hf_custom_key', ""),
type="password",
key="hf_custom_key_input",
help="Enter your Hugging Face API token. Overrides HF_TOKEN env var."
)
token_status = "Custom Key Set" if st.session_state.hf_custom_key else ("Default HF_TOKEN Set" if HF_TOKEN else "No Token Set")
st.caption(f"Token Status: {token_status}")
providers_list = ["hf-inference", "cerebras", "together", "sambanova", "novita", "cohere", "fireworks-ai", "hyperbolic", "nebius"]
st.session_state.hf_provider = st.selectbox(
"Inference Provider",
options=providers_list,
index=providers_list.index(st.session_state.get('hf_provider', DEFAULT_PROVIDER)),
key="hf_provider_select",
help="Select the backend provider. Some require specific API keys."
)
# Validate provider based on key (simple validation)
if not st.session_state.hf_custom_key and not HF_TOKEN and st.session_state.hf_provider != "hf-inference":
st.warning(f"Provider '{st.session_state.hf_provider}' may require a token. Using 'hf-inference' may work without a token but with rate limits.")
# API Model Selection
st.session_state.hf_custom_api_model = st.text_input(
"Custom API Model ID",
value=st.session_state.get('hf_custom_api_model', ""),
key="hf_custom_model_input",
placeholder="e.g., google/gemma-2-9b-it",
help="Overrides the featured model selection below if provided."
)
# Use custom if provided, otherwise use the selected featured model
effective_api_model = st.session_state.hf_custom_api_model.strip() or st.session_state.hf_selected_api_model
st.session_state.hf_selected_api_model = st.selectbox(
"Featured API Model",
options=FEATURED_MODELS_LIST,
index=FEATURED_MODELS_LIST.index(st.session_state.get('hf_selected_api_model', FEATURED_MODELS_LIST[0])),
key="hf_featured_model_select",
help="Select a common model. Ignored if Custom API Model ID is set."
)
st.caption(f"Effective API Model: {effective_api_model}")
# Local Model Selection Expander
with st.sidebar.expander("Local Model Selection", expanded=True):
if not _transformers_available:
st.warning("Transformers library not found. Cannot load or use local models.")
else:
local_model_options = ["None"] + list(st.session_state.get('local_models', {}).keys())
current_selection = st.session_state.get('selected_local_model_path')
# Ensure current selection is valid
if current_selection not in local_model_options:
current_selection = "None"
selected_path = st.selectbox(
"Active Local Model",
options=local_model_options,
index=local_model_options.index(current_selection),
format_func=lambda x: os.path.basename(x) if x != "None" else "None",
key="local_model_selector",
help="Select a model loaded via the 'Build Titan' tab to use for processing."
)
st.session_state.selected_local_model_path = selected_path if selected_path != "None" else None
if st.session_state.selected_local_model_path:
model_info = st.session_state.local_models[st.session_state.selected_local_model_path]
st.caption(f"Type: {model_info.get('type', 'Unknown')}")
st.caption(f"Device: {model_info.get('model').device if model_info.get('model') else 'N/A'}")
else:
st.caption("No local model selected.")
# Generation Parameters Expander
with st.sidebar.expander("Generation Parameters", expanded=False):
st.session_state.gen_max_tokens = st.slider("Max New Tokens", 1, 4096, st.session_state.get('gen_max_tokens', 512), step=1, key="param_max_tokens")
st.session_state.gen_temperature = st.slider("Temperature", 0.01, 2.0, st.session_state.get('gen_temperature', 0.7), step=0.01, key="param_temp")
st.session_state.gen_top_p = st.slider("Top-P", 0.01, 1.0, st.session_state.get('gen_top_p', 0.95), step=0.01, key="param_top_p")
# Note: HF often uses repetition_penalty instead of frequency_penalty. We'll use it here.
st.session_state.gen_frequency_penalty = st.slider("Repetition Penalty", 1.0, 2.0, st.session_state.get('gen_frequency_penalty', 0.0)+1.0, step=0.05, key="param_repetition", help="1.0 means no penalty.")
st.session_state.gen_seed = st.slider("Seed", -1, 65535, st.session_state.get('gen_seed', -1), step=1, key="param_seed", help="-1 for random.")
st.sidebar.markdown("---") # Separator before gallery settings
# --- ADDED: Gallery Settings Section ---
st.sidebar.subheader("πΌοΈ Gallery Settings")
st.slider(
"Max Items Shown",
min_value=2,
max_value=50, # Adjust max if needed
value=st.session_state.get('gallery_size', 10),
key="gallery_size_slider", # Keep the key, define it ONCE here
help="Controls the maximum number of assets displayed in the sidebar gallery."
)
st.session_state.gallery_size = st.session_state.gallery_size_slider # Ensure sync
st.sidebar.markdown("---") # Separator after gallery settings
# --- App Title -------------------------------------------
st.title("Vision & Layout Titans (HF) ππΌοΈπ")
st.markdown("Combined App: Image-to-PDF Layout + Hugging Face Powered AI Tools")
# --- Main Application Tabs -------------------------------
tab_list = [
"Image->PDF Layout πΌοΈβ‘οΈπ", # From App 1
"Camera Snap π·",
"Download PDFs π₯",
"Build Titan (Local Models) π±", # Renamed for clarity
"Text Process (HF) π", # New tab for text
"Image Process (HF) πΌοΈ", # New tab for image
"Test OCR (HF) π", # Renamed
"Character Editor π§βπ¨",
"Character Gallery πΌοΈ",
# Original Tabs (potentially redundant or integrated now):
# "PDF Process π", (Integrated into Text/Image process conceptually)
# "MD Gallery & Process π", (Use Text Process tab)
# "Test Image Gen π¨", (Separate Diffusion logic)
]
# Filter out redundant tabs if they are fully replaced
# Example: If MD Gallery is fully handled by Text Process, remove it. For now, keep most.
# Let's keep PDF Process and Image Process separate for clarity of input type, but use the new HF functions
tabs_to_create = [
"Image->PDF Layout πΌοΈβ‘οΈπ",
"Camera Snap π·",
"Download PDFs π₯",
"Build Titan (Local Models) π±",
"PDF Process (HF) π", # Use HF functions for PDF pages
"Image Process (HF) πΌοΈ",# Use HF functions for images
"Text Process (HF) π", # Use HF functions for MD/TXT files
"Test OCR (HF) π", # Use HF OCR logic
"Test Image Gen (Diffusers) π¨", # Keep diffusion separate
"Character Editor π§βπ¨",
"Character Gallery πΌοΈ",
]
tabs = st.tabs(tabs_to_create)
# --- Tab Implementations ---
# --- Tab 1: Image -> PDF Layout (Keep from previous merge) ---
with tabs[0]:
# ... (Code from previous merge for this tab remains largely the same) ...
st.header("Image to PDF Layout Generator")
st.markdown("Upload or scan images, reorder them, and generate a PDF where each page matches the image dimensions and includes a simple caption.")
col1, col2 = st.columns(2)
with col1:
st.subheader("A. Scan or Upload Images")
layout_cam = st.camera_input("πΈ Scan Document for Layout PDF", key="layout_cam")
if layout_cam:
now = datetime.now(pytz.timezone("US/Central"))
scan_name = generate_filename(f"layout_scan_{now.strftime('%a').upper()}", "png")
try:
with open(scan_name, "wb") as f: f.write(layout_cam.getvalue())
st.image(Image.open(scan_name), caption=f"Scanned: {scan_name}", use_container_width=True)
if scan_name not in st.session_state['layout_snapshots']: st.session_state['layout_snapshots'].append(scan_name)
st.success(f"Scan saved as {scan_name}")
update_gallery(); # Add to gallery
except Exception as e: st.error(f"Failed to save scan: {e}"); logger.error(f"Failed to save camera scan {scan_name}: {e}")
layout_uploads = st.file_uploader("π Upload PNG/JPG Images for Layout PDF", type=["png","jpg","jpeg"], accept_multiple_files=True, key="layout_uploader")
if layout_uploads: st.session_state['layout_new_uploads'] = layout_uploads # Store for processing below
with col2:
st.subheader("B. Review and Reorder")
layout_records = []
processed_snapshots = set()
# Process snapshots
for idx, path in enumerate(st.session_state.get('layout_snapshots', [])):
if path not in processed_snapshots and os.path.exists(path):
try:
with Image.open(path) as im: w, h = im.size; ar = round(w / h, 2) if h > 0 else 0; orient = "Square" if 0.9 <= ar <= 1.1 else ("Landscape" if ar > 1.1 else "Portrait")
layout_records.append({"filename": os.path.basename(path), "source": path, "width": w, "height": h, "aspect_ratio": ar, "orientation": orient, "order": idx, "type": "Scan"})
processed_snapshots.add(path)
except Exception as e: logger.warning(f"Could not process snapshot {path}: {e}"); st.warning(f"Skipping invalid snapshot: {os.path.basename(path)}")
# Process current uploads
current_uploads = st.session_state.get('layout_new_uploads', [])
if current_uploads:
start_idx = len(layout_records)
for jdx, f_obj in enumerate(current_uploads, start=start_idx):
try:
f_obj.seek(0)
with Image.open(f_obj) as im: w, h = im.size; ar = round(w / h, 2) if h > 0 else 0; orient = "Square" if 0.9 <= ar <= 1.1 else ("Landscape" if ar > 1.1 else "Portrait")
layout_records.append({"filename": f_obj.name, "source": f_obj, "width": w, "height": h, "aspect_ratio": ar, "orientation": orient, "order": jdx, "type": "Upload"})
f_obj.seek(0)
except Exception as e: logger.warning(f"Could not process uploaded file {f_obj.name}: {e}"); st.warning(f"Skipping invalid upload: {f_obj.name}")
if not layout_records: st.info("Scan or upload images using the controls on the left.")
else:
layout_df = pd.DataFrame(layout_records); dims = st.multiselect("Include orientations:", options=["Landscape","Portrait","Square"], default=["Landscape","Portrait","Square"], key="layout_dims_filter")
filtered_df = layout_df[layout_df['orientation'].isin(dims)].copy() if dims else layout_df.copy()
filtered_df['order'] = filtered_df['order'].astype(int); filtered_df = filtered_df.sort_values('order').reset_index(drop=True)
st.markdown("Edit 'Order' column or drag rows to set PDF page sequence:")
edited_df = st.data_editor(filtered_df, column_config={"filename": st.column_config.TextColumn("Filename", disabled=True), "source": None, "width": st.column_config.NumberColumn("Width", disabled=True), "height": st.column_config.NumberColumn("Height", disabled=True), "aspect_ratio": st.column_config.NumberColumn("Aspect Ratio", format="%.2f", disabled=True), "orientation": st.column_config.TextColumn("Orientation", disabled=True), "type": st.column_config.TextColumn("Source Type", disabled=True), "order": st.column_config.NumberColumn("Order", min_value=0, step=1, required=True)}, hide_index=True, use_container_width=True, num_rows="dynamic", key="layout_editor")
ordered_layout_df = edited_df.sort_values('order').reset_index(drop=True)
ordered_sources_for_pdf = ordered_layout_df['source'].tolist()
st.subheader("C. Generate & Download PDF")
if st.button("ποΈ Generate Image-Sized PDF", key="generate_layout_pdf"):
if not ordered_sources_for_pdf: st.warning("No images selected or available after filtering.")
else:
with st.spinner("Generating PDF..."): pdf_bytes = make_image_sized_pdf(ordered_sources_for_pdf)
if pdf_bytes:
now = datetime.now(pytz.timezone("US/Central")); prefix = now.strftime("%Y%m%d-%H%M%p")
stems = [clean_stem(s) if isinstance(s, str) else clean_stem(getattr(s, 'name', 'upload')) for s in ordered_sources_for_pdf[:4]]
basename = " - ".join(stems) or "Layout"; pdf_fname = f"{prefix}_{basename}.pdf"; pdf_fname = re.sub(r'[^\w\- \.]', '_', pdf_fname)
st.success(f"β
PDF ready: **{pdf_fname}**")
st.download_button("β¬οΈ Download PDF", data=pdf_bytes, file_name=pdf_fname, mime="application/pdf", key="download_layout_pdf")
st.markdown("#### Preview First Page")
try:
doc = fitz.open(stream=pdf_bytes, filetype='pdf')
if len(doc) > 0: pix = doc[0].get_pixmap(matrix=fitz.Matrix(1.0, 1.0)); preview_img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); st.image(preview_img, caption=f"Preview of {pdf_fname} (Page 1)", use_container_width=True)
else: st.warning("Generated PDF appears empty.")
doc.close()
except Exception as preview_err: st.warning(f"Could not generate PDF preview: {preview_err}"); logger.warning(f"PDF preview error for {pdf_fname}: {preview_err}")
else: st.error("PDF generation failed. Check logs or image files.")
# --- Tab 2: Camera Snap (Keep from previous merge) ---
with tabs[1]:
# ... (Code from previous merge for this tab) ...
st.header("Camera Snap π·")
st.subheader("Single Capture (Adds to General Gallery)")
cols = st.columns(2)
with cols[0]:
cam0_img = st.camera_input("Take a picture - Cam 0", key="main_cam0")
if cam0_img:
filename = generate_filename("cam0_snap");
if st.session_state.get('cam0_file') and os.path.exists(st.session_state['cam0_file']):
try:
os.remove(st.session_state['cam0_file'])
except OSError:
pass
try:
with open(filename, "wb") as f: f.write(cam0_img.getvalue())
st.session_state['cam0_file'] = filename; st.session_state['history'].append(f"Snapshot from Cam 0: {filename}"); st.image(Image.open(filename), caption="Camera 0 Snap", use_container_width=True); logger.info(f"Saved snapshot from Camera 0: {filename}"); st.success(f"Saved {filename}")
update_gallery();
except Exception as e:
st.error(f"Failed to save Cam 0 snap: {e}"); logger.error(f"Failed to save Cam 0 snap {filename}: {e}")
with cols[1]:
cam1_img = st.camera_input("Take a picture - Cam 1", key="main_cam1")
if cam1_img:
filename = generate_filename("cam1_snap")
if st.session_state.get('cam1_file') and os.path.exists(st.session_state['cam1_file']):
try:
os.remove(st.session_state['cam1_file'])
except OSError:
pass
try:
with open(filename, "wb") as f: f.write(cam1_img.getvalue())
st.session_state['cam1_file'] = filename; st.session_state['history'].append(f"Snapshot from Cam 1: {filename}"); st.image(Image.open(filename), caption="Camera 1 Snap", use_container_width=True); logger.info(f"Saved snapshot from Camera 1: {filename}"); st.success(f"Saved {filename}")
update_gallery();
except Exception as e: st.error(f"Failed to save Cam 1 snap: {e}"); logger.error(f"Failed to save Cam 1 snap {filename}: {e}")
# --- Tab 3: Download PDFs (Keep from previous merge) ---
with tabs[2]:
# ... (Code from previous merge for this tab) ...
st.header("Download PDFs π₯")
st.markdown("Download PDFs from URLs and optionally create image snapshots.")
if st.button("Load Example arXiv URLs π", key="load_examples"):
example_urls = ["https://arxiv.org/pdf/2308.03892", "https://arxiv.org/pdf/1706.03762", "https://arxiv.org/pdf/2402.17764", "https://www.clickdimensions.com/links/ACCERL/"]
st.session_state['pdf_urls_input'] = "\n".join(example_urls)
url_input = st.text_area("Enter PDF URLs (one per line)", value=st.session_state.get('pdf_urls_input', ""), height=150, key="pdf_urls_textarea")
if st.button("Robo-Download PDFs π€", key="download_pdfs_button"):
urls = [url.strip() for url in url_input.strip().split("\n") if url.strip()]
if not urls: st.warning("Please enter at least one URL.")
else:
progress_bar = st.progress(0); status_text = st.empty(); total_urls = len(urls); download_count = 0; existing_pdfs = get_pdf_files()
for idx, url in enumerate(urls):
output_path = pdf_url_to_filename(url); status_text.text(f"Processing {idx + 1}/{total_urls}: {os.path.basename(output_path)}..."); progress_bar.progress((idx + 1) / total_urls)
if output_path in existing_pdfs: st.info(f"Already exists: {os.path.basename(output_path)}"); st.session_state['downloaded_pdfs'][url] = output_path; st.session_state['asset_checkboxes'][output_path] = st.session_state['asset_checkboxes'].get(output_path, False)
else:
if download_pdf(url, output_path): st.session_state['downloaded_pdfs'][url] = output_path; logger.info(f"Downloaded PDF from {url} to {output_path}"); st.session_state['history'].append(f"Downloaded PDF: {output_path}"); st.session_state['asset_checkboxes'][output_path] = False; download_count += 1; existing_pdfs.append(output_path)
else: st.error(f"Failed to download: {url}")
status_text.success(f"Download process complete! Successfully downloaded {download_count} new PDFs.")
if download_count > 0: update_gallery();
st.subheader("Create Snapshots from Gallery PDFs")
snapshot_mode = st.selectbox("Snapshot Mode", ["First Page (High-Res)", "First Two Pages (High-Res)", "All Pages (High-Res)", "First Page (Low-Res Preview)"], key="pdf_snapshot_mode")
resolution_map = {"First Page (High-Res)": 2.0, "First Two Pages (High-Res)": 2.0, "All Pages (High-Res)": 2.0, "First Page (Low-Res Preview)": 1.0}
mode_key_map = {"First Page (High-Res)": "single", "First Two Pages (High-Res)": "twopage", "All Pages (High-Res)": "allpages", "First Page (Low-Res Preview)": "single"}
resolution = resolution_map[snapshot_mode]; mode_key = mode_key_map[snapshot_mode]
if st.button("Snapshot Selected PDFs πΈ", key="snapshot_selected_pdfs"):
selected_pdfs = [path for path in get_gallery_files(['pdf']) if st.session_state['asset_checkboxes'].get(path, False)]
if not selected_pdfs: st.warning("No PDFs selected in the sidebar gallery!")
else:
st.info(f"Starting snapshot process for {len(selected_pdfs)} selected PDF(s)..."); snapshot_count = 0; total_snapshots_generated = 0
for pdf_path in selected_pdfs:
if not os.path.exists(pdf_path): st.warning(f"File not found: {pdf_path}. Skipping."); continue
new_snapshots = asyncio.run(process_pdf_snapshot(pdf_path, mode_key, resolution))
if new_snapshots:
snapshot_count += 1; total_snapshots_generated += len(new_snapshots)
st.write(f"Snapshots for {os.path.basename(pdf_path)}:"); cols = st.columns(3)
for i, snap_path in enumerate(new_snapshots):
with cols[i % 3]: st.image(Image.open(snap_path), caption=os.path.basename(snap_path), use_container_width=True); st.session_state['asset_checkboxes'][snap_path] = False # Add to gallery
if total_snapshots_generated > 0: st.success(f"Generated {total_snapshots_generated} snapshots from {snapshot_count} PDFs."); update_gallery();
else: st.warning("No snapshots were generated. Check logs or PDF files.")
# --- Tab 4: Build Titan (Local Models) ---
with tabs[3]:
st.header("Build Titan (Local Models) π±")
st.markdown("Download and save models from Hugging Face Hub for local use.")
if not _transformers_available:
st.error("Transformers library not available. Cannot download or load local models.")
else:
build_model_type = st.selectbox(
"Select Model Type",
["Causal LM", "Vision/Multimodal", "OCR", "Diffusion"], # Added more types
key="build_type_local"
)
st.subheader(f"Download {build_model_type} Model")
# Model ID Input (allow searching/pasting)
hf_model_id = st.text_input(
"Hugging Face Model ID",
placeholder=f"e.g., {'google/gemma-2-9b-it' if build_model_type == 'Causal LM' else 'llava-hf/llava-1.5-7b-hf' if build_model_type == 'Vision/Multimodal' else 'microsoft/trocr-base-handwritten' if build_model_type == 'OCR' else 'stabilityai/stable-diffusion-xl-base-1.0'}",
key="build_hf_model_id"
)
local_model_name = st.text_input(
"Local Name for this Model",
value=f"{build_model_type.split('/')[0].lower()}_{os.path.basename(hf_model_id).replace('.','') if hf_model_id else 'model'}",
key="build_local_name",
help="A unique name to identify this model locally."
)
# Add a note about token requirements for gated models
st.info("Private or gated models require a valid Hugging Face token (set via HF_TOKEN env var or the Custom Key in sidebar API settings).")
if st.button(f"Download & Save '{hf_model_id}' Locally", key="build_download_button", disabled=not hf_model_id or not local_model_name):
# Validate local name uniqueness
if local_model_name in [os.path.basename(p) for p in st.session_state.get('local_models', {})]:
st.error(f"A local model named '{local_model_name}' already exists. Choose a different name.")
else:
model_type_map = {
"Causal LM": "causal", "Vision/Multimodal": "vision", "OCR": "ocr", "Diffusion": "diffusion"
}
model_type_short = model_type_map.get(build_model_type, "unknown")
config = LocalModelConfig(
name=local_model_name,
hf_id=hf_model_id,
model_type=model_type_short
)
save_path = config.get_full_path()
os.makedirs(os.path.dirname(save_path), exist_ok=True)
st.info(f"Attempting to download '{hf_model_id}' to '{save_path}'...")
progress_bar_build = st.progress(0)
status_text_build = st.empty()
token_build = st.session_state.hf_custom_key or HF_TOKEN or None
try:
if build_model_type == "Diffusion":
# Use Diffusers library download
if not _diffusers_available: raise ImportError("Diffusers library required for diffusion models.")
# Diffusers downloads directly, no explicit save needed after load typically
status_text_build.text("Downloading diffusion model pipeline...")
pipeline_obj = StableDiffusionPipeline.from_pretrained(hf_model_id, token=token_build)
status_text_build.text("Saving diffusion model pipeline...")
pipeline_obj.save_pretrained(save_path)
# Store info, but maybe not the full pipeline object in session state due to size
st.session_state.local_models[save_path] = {'type': 'diffusion', 'hf_id': hf_model_id, 'model':None, 'tokenizer':None} # Mark as downloaded
st.success(f"Diffusion model '{hf_model_id}' downloaded and saved to {save_path}")
else:
# Use Transformers library download
status_text_build.text("Downloading model components...")
# Determine AutoModel class based on type (can be refined)
if model_type_short == 'causal':
model_class = AutoModelForCausalLM
tokenizer_class = AutoTokenizer
processor_class = None
elif model_type_short == 'vision':
model_class = AutoModelForVision2Seq # Common for VQA/Captioning
processor_class = AutoProcessor # Handles image+text
tokenizer_class = None # Usually part of processor
elif model_type_short == 'ocr':
model_class = AutoModelForVision2Seq # TrOCR uses this
processor_class = AutoProcessor
tokenizer_class = None
else:
raise ValueError(f"Unknown model type for downloading: {model_type_short}")
# Download and save model
model_obj = model_class.from_pretrained(hf_model_id, token=token_build)
model_obj.save_pretrained(save_path)
status_text_build.text(f"Model saved. Downloading processor/tokenizer...")
# Download and save tokenizer/processor
if processor_class:
processor_obj = processor_class.from_pretrained(hf_model_id, token=token_build)
processor_obj.save_pretrained(save_path)
tokenizer_obj = getattr(processor_obj, 'tokenizer', None) # Get tokenizer from processor if exists
elif tokenizer_class:
tokenizer_obj = tokenizer_class.from_pretrained(hf_model_id, token=token_build)
tokenizer_obj.save_pretrained(save_path)
processor_obj = None # No separate processor
else: # Should not happen with current logic
tokenizer_obj = None
processor_obj = None
# --- Load into memory and store in session state ---
# This might consume significant memory! Consider loading on demand instead.
status_text_build.text(f"Loading '{local_model_name}' into memory...")
device = "cuda" if torch.cuda.is_available() else "cpu"
reloaded_model = model_class.from_pretrained(save_path).to(device)
reloaded_processor = processor_class.from_pretrained(save_path) if processor_class else None
reloaded_tokenizer = tokenizer_class.from_pretrained(save_path) if tokenizer_class and not reloaded_processor else getattr(reloaded_processor, 'tokenizer', None)
st.session_state.local_models[save_path] = {
'type': model_type_short,
'hf_id': hf_model_id,
'model': reloaded_model,
'tokenizer': reloaded_tokenizer,
'processor': reloaded_processor, # Store processor if it exists
}
st.success(f"{build_model_type} model '{hf_model_id}' downloaded to {save_path} and loaded into memory ({device}).")
# Optionally select the newly loaded model
st.session_state.selected_local_model_path = save_path
except (RepositoryNotFoundError, GatedRepoError) as e:
st.error(f"Download failed: Repository not found or requires specific access/token. Check Model ID and your HF token. Error: {e}")
logger.error(f"Download failed for {hf_model_id}: {e}")
if os.path.exists(save_path): shutil.rmtree(save_path) # Clean up partial download
except ImportError as e:
st.error(f"Download failed: Required library missing. {e}")
logger.error(f"ImportError during download of {hf_model_id}: {e}")
except Exception as e:
st.error(f"An unexpected error occurred during download: {e}")
logger.error(f"Download failed for {hf_model_id}: {e}")
if os.path.exists(save_path): shutil.rmtree(save_path) # Clean up
finally:
progress_bar_build.progress(1.0)
status_text_build.empty()
st.subheader("Manage Local Models")
loaded_model_paths = list(st.session_state.get('local_models', {}).keys())
if not loaded_model_paths:
st.info("No models downloaded yet.")
else:
models_df_data = []
for path, data in st.session_state.local_models.items():
models_df_data.append({
"Local Name": os.path.basename(path),
"Type": data.get('type', 'N/A'),
"HF ID": data.get('hf_id', 'N/A'),
"Loaded": "Yes" if data.get('model') else "No (Info only)",
"Path": path
})
models_df = pd.DataFrame(models_df_data)
st.dataframe(models_df, use_container_width=True, hide_index=True, column_order=["Local Name", "Type", "HF ID", "Loaded"])
model_to_delete = st.selectbox("Select model to delete", [""] + [os.path.basename(p) for p in loaded_model_paths], key="delete_model_select")
if model_to_delete and st.button(f"Delete Local Model '{model_to_delete}'", type="primary"):
path_to_delete = next((p for p in loaded_model_paths if os.path.basename(p) == model_to_delete), None)
if path_to_delete:
try:
# Remove from session state first
del st.session_state.local_models[path_to_delete]
if st.session_state.selected_local_model_path == path_to_delete:
st.session_state.selected_local_model_path = None
# Delete from disk
if os.path.exists(path_to_delete):
shutil.rmtree(path_to_delete)
st.success(f"Deleted model '{model_to_delete}' and its files.")
logger.info(f"Deleted local model: {path_to_delete}")
except Exception as e:
st.error(f"Failed to delete model '{model_to_delete}': {e}")
logger.error(f"Failed to delete model {path_to_delete}: {e}")
# --- Tab 5: PDF Process (HF) ---
with tabs[4]:
st.header("PDF Process with HF Models π")
st.markdown("Upload PDFs, view pages, and extract text using selected HF models (API or Local).")
# Inference Source Selection
pdf_use_api = st.radio(
"Choose Processing Method",
["Hugging Face API", "Loaded Local Model"],
key="pdf_process_source",
horizontal=True,
help="API uses settings from sidebar. Local uses the selected local model (if suitable)."
)
if pdf_use_api == "Hugging Face API":
st.info(f"Using API Model: {st.session_state.hf_custom_api_model.strip() or st.session_state.hf_selected_api_model}")
else:
if st.session_state.selected_local_model_path:
st.info(f"Using Local Model: {os.path.basename(st.session_state.selected_local_model_path)}")
else:
st.warning("No local model selected. Please select one in the sidebar.")
uploaded_pdfs_process_hf = st.file_uploader("Upload PDF files to process", type=["pdf"], accept_multiple_files=True, key="pdf_process_uploader_hf")
if uploaded_pdfs_process_hf:
# Simplified: Process only the first page for demonstration
process_all_pages_pdf = st.checkbox("Process All Pages (can be slow/expensive)", value=False, key="pdf_process_all_hf")
pdf_prompt = st.text_area("Prompt for PDF Page Processing", "Extract the text content from this page.", key="pdf_process_prompt_hf")
if st.button("Process Uploaded PDFs with HF", key="process_uploaded_pdfs_hf"):
if pdf_use_api == "Loaded Local Model" and not st.session_state.selected_local_model_path:
st.error("Cannot process locally: No local model selected.")
else:
combined_text_output_hf = f"# HF PDF Processing Results ({'API' if pdf_use_api else 'Local'})\n\n"
total_pages_processed_hf = 0
output_placeholder_hf = st.container()
for pdf_file in uploaded_pdfs_process_hf:
output_placeholder_hf.markdown(f"--- \n### Processing: {pdf_file.name}")
# Read PDF bytes
pdf_bytes = pdf_file.read()
try:
doc = fitz.open("pdf", pdf_bytes) # Open from bytes
num_pages = len(doc)
pages_to_process = range(num_pages) if process_all_pages_pdf else range(min(1, num_pages)) # Limit to 1 unless checked
output_placeholder_hf.info(f"Processing {len(pages_to_process)} of {num_pages} pages...")
doc_text = f"## File: {pdf_file.name}\n\n"
for i in pages_to_process:
page_placeholder = output_placeholder_hf.empty()
page_placeholder.info(f"Processing Page {i + 1}/{num_pages}...")
page = doc[i]
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
# Display image and process
cols_pdf = output_placeholder_hf.columns(2)
cols_pdf[0].image(img, caption=f"Page {i+1}", use_container_width=True)
with cols_pdf[1]:
# Use the new image processing function
# NOTE: This relies on the process_image_hf implementation
# which is currently basic/placeholder for local models.
with st.spinner("Processing page with HF model..."):
hf_text = process_image_hf(img, pdf_prompt, use_api=pdf_use_api)
st.text_area(f"Result (Page {i+1})", hf_text, height=250, key=f"pdf_hf_out_{pdf_file.name}_{i}")
doc_text += f"### Page {i + 1}\n\n{hf_text}\n\n---\n\n"
total_pages_processed_hf += 1
page_placeholder.empty() # Clear status message
combined_text_output_hf += doc_text
doc.close()
except (fitz.fitz.FileDataError, fitz.fitz.RuntimeException) as pdf_err:
output_placeholder_hf.error(f"Error opening PDF {pdf_file.name}: {pdf_err}. Skipping.")
except Exception as e:
output_placeholder_hf.error(f"Error processing {pdf_file.name}: {str(e)}")
if total_pages_processed_hf > 0:
st.markdown("--- \n### Combined Processing Results")
st.text_area("Full Output", combined_text_output_hf, height=400, key="combined_pdf_hf_output")
output_filename_pdf_hf = generate_filename("hf_processed_pdfs", "md")
try:
with open(output_filename_pdf_hf, "w", encoding="utf-8") as f: f.write(combined_text_output_hf)
st.success(f"Combined output saved to {output_filename_pdf_hf}")
st.markdown(get_download_link(output_filename_pdf_hf, "text/markdown", "Download Combined MD"), unsafe_allow_html=True)
st.session_state['asset_checkboxes'][output_filename_pdf_hf] = False; update_gallery()
except IOError as e: st.error(f"Failed to save combined output file: {e}")
# --- Tab 6: Image Process (HF) ---
with tabs[5]:
st.header("Image Process with HF Models πΌοΈ")
st.markdown("Upload images and process them using selected HF models (API or Local).")
img_use_api = st.radio(
"Choose Processing Method",
["Hugging Face API", "Loaded Local Model"],
key="img_process_source_hf",
horizontal=True
)
if img_use_api == "Hugging Face API":
st.info(f"Using API Model: {st.session_state.hf_custom_api_model.strip() or st.session_state.hf_selected_api_model}")
else:
if st.session_state.selected_local_model_path: st.info(f"Using Local Model: {os.path.basename(st.session_state.selected_local_model_path)}")
else: st.warning("No local model selected.")
img_prompt_hf = st.text_area("Prompt for Image Processing", "Describe this image in detail.", key="img_process_prompt_hf")
uploaded_images_process_hf = st.file_uploader("Upload image files", type=["png", "jpg", "jpeg"], accept_multiple_files=True, key="image_process_uploader_hf")
if uploaded_images_process_hf:
if st.button("Process Uploaded Images with HF", key="process_images_hf"):
if img_use_api == "Loaded Local Model" and not st.session_state.selected_local_model_path:
st.error("Cannot process locally: No local model selected.")
else:
combined_img_text_hf = f"# HF Image Processing Results ({'API' if img_use_api else 'Local'})\n\n**Prompt:** {img_prompt_hf}\n\n---\n\n"
images_processed_hf = 0
output_img_placeholder_hf = st.container()
for img_file in uploaded_images_process_hf:
output_img_placeholder_hf.markdown(f"### Processing: {img_file.name}")
try:
img = Image.open(img_file)
cols_img_hf = output_img_placeholder_hf.columns(2)
cols_img_hf[0].image(img, caption=f"Input: {img_file.name}", use_container_width=True)
with cols_img_hf[1], st.spinner("Processing image with HF model..."):
# Use the new image processing function
hf_img_text = process_image_hf(img, img_prompt_hf, use_api=img_use_api)
st.text_area(f"Result", hf_img_text, height=300, key=f"img_hf_out_{img_file.name}")
combined_img_text_hf += f"## Image: {img_file.name}\n\n{hf_img_text}\n\n---\n\n"
images_processed_hf += 1
except UnidentifiedImageError: output_img_placeholder_hf.error(f"Invalid Image: {img_file.name}. Skipping.")
except Exception as e: output_img_placeholder_hf.error(f"Error processing {img_file.name}: {str(e)}")
if images_processed_hf > 0:
st.markdown("--- \n### Combined Processing Results")
st.text_area("Full Output", combined_img_text_hf, height=400, key="combined_img_hf_output")
output_filename_img_hf = generate_filename("hf_processed_images", "md")
try:
with open(output_filename_img_hf, "w", encoding="utf-8") as f: f.write(combined_img_text_hf)
st.success(f"Combined output saved to {output_filename_img_hf}")
st.markdown(get_download_link(output_filename_img_hf, "text/markdown", "Download Combined MD"), unsafe_allow_html=True)
st.session_state['asset_checkboxes'][output_filename_img_hf] = False; update_gallery()
except IOError as e: st.error(f"Failed to save combined output file: {e}")
# --- Tab 7: Text Process (HF) ---
with tabs[6]:
st.header("Text Process with HF Models π")
st.markdown("Process Markdown (.md) or Text (.txt) files using selected HF models (API or Local).")
text_use_api = st.radio(
"Choose Processing Method",
["Hugging Face API", "Loaded Local Model"],
key="text_process_source_hf",
horizontal=True
)
if text_use_api == "Hugging Face API":
st.info(f"Using API Model: {st.session_state.hf_custom_api_model.strip() or st.session_state.hf_selected_api_model}")
else:
if st.session_state.selected_local_model_path: st.info(f"Using Local Model: {os.path.basename(st.session_state.selected_local_model_path)}")
else: st.warning("No local model selected.")
text_files_hf = get_gallery_files(['md', 'txt'])
if not text_files_hf:
st.warning("No .md or .txt files in gallery to process.")
else:
selected_text_file_hf = st.selectbox(
"Select Text/MD File to Process",
options=[""] + text_files_hf,
format_func=lambda x: os.path.basename(x) if x else "Select a file...",
key="text_process_select_hf"
)
if selected_text_file_hf:
st.write(f"Selected: {os.path.basename(selected_text_file_hf)}")
try:
with open(selected_text_file_hf, "r", encoding="utf-8", errors='ignore') as f:
content_text_hf = f.read()
st.text_area("File Content Preview", content_text_hf[:1000] + ("..." if len(content_text_hf) > 1000 else ""), height=200, key="text_content_preview_hf")
prompt_text_hf = st.text_area(
"Enter Prompt for this File",
"Summarize the key points of this text.",
key="text_individual_prompt_hf"
)
if st.button(f"Process '{os.path.basename(selected_text_file_hf)}' with HF", key=f"process_text_hf_btn"):
if text_use_api == "Loaded Local Model" and not st.session_state.selected_local_model_path:
st.error("Cannot process locally: No local model selected.")
else:
with st.spinner("Processing text with HF model..."):
result_text_processed = process_text_hf(content_text_hf, prompt_text_hf, use_api=text_use_api)
st.markdown("### Processing Result")
st.markdown(result_text_processed) # Display result
output_filename_text_hf = generate_filename(f"hf_processed_{os.path.splitext(os.path.basename(selected_text_file_hf))[0]}", "md")
try:
with open(output_filename_text_hf, "w", encoding="utf-8") as f: f.write(result_text_processed)
st.success(f"Result saved to {output_filename_text_hf}")
st.markdown(get_download_link(output_filename_text_hf, "text/markdown", "Download Result MD"), unsafe_allow_html=True)
st.session_state['asset_checkboxes'][output_filename_text_hf] = False; update_gallery()
except IOError as e: st.error(f"Failed to save result file: {e}")
except FileNotFoundError: st.error("Selected file not found.")
except Exception as e: st.error(f"Error reading file: {e}")
# --- Tab 8: Test OCR (HF) ---
with tabs[7]:
st.header("Test OCR with HF Models π")
st.markdown("Select an image/PDF and run OCR using HF models (API or Local - requires suitable local model).")
ocr_use_api = st.radio(
"Choose OCR Method",
["Hugging Face API (Basic Captioning/OCR)", "Loaded Local OCR Model"],
key="ocr_source_hf",
horizontal=True,
help="API uses basic image-to-text. Local requires a dedicated OCR model (e.g., TrOCR) to be loaded."
)
if ocr_use_api == "Loaded Local OCR Model":
if st.session_state.selected_local_model_path:
model_type = st.session_state.local_models.get(st.session_state.selected_local_model_path,{}).get('type')
if model_type != 'ocr':
st.warning(f"Selected local model ({os.path.basename(st.session_state.selected_local_model_path)}) is type '{model_type}', not 'ocr'. Results may be poor.")
else:
st.info(f"Using Local OCR Model: {os.path.basename(st.session_state.selected_local_model_path)}")
else: st.warning("No local model selected.")
gallery_files_ocr_hf = get_gallery_files(['png', 'jpg', 'jpeg', 'pdf'])
if not gallery_files_ocr_hf:
st.warning("No images or PDFs in gallery.")
else:
selected_file_ocr_hf = st.selectbox(
"Select Image or PDF from Gallery for OCR",
options=[""] + gallery_files_ocr_hf,
format_func=lambda x: os.path.basename(x) if x else "Select a file...",
key="ocr_select_file_hf"
)
if selected_file_ocr_hf:
st.write(f"Selected: {os.path.basename(selected_file_ocr_hf)}")
file_ext_ocr_hf = os.path.splitext(selected_file_ocr_hf)[1].lower()
image_to_ocr_hf = None; page_info_hf = ""
try:
if file_ext_ocr_hf in ['.png', '.jpg', '.jpeg']: image_to_ocr_hf = Image.open(selected_file_ocr_hf)
elif file_ext_ocr_hf == '.pdf':
doc = fitz.open(selected_file_ocr_hf)
if len(doc) > 0: pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); image_to_ocr_hf = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); page_info_hf = " (Page 1)"
else: st.warning("Selected PDF is empty.")
doc.close()
if image_to_ocr_hf:
st.image(image_to_ocr_hf, caption=f"Image for OCR{page_info_hf}", use_container_width=True)
if st.button("Run HF OCR on this Image π", key="ocr_run_button_hf"):
if ocr_use_api == "Loaded Local OCR Model" and not st.session_state.selected_local_model_path:
st.error("Cannot run locally: No local model selected.")
else:
output_ocr_file_hf = generate_filename(f"hf_ocr_{os.path.splitext(os.path.basename(selected_file_ocr_hf))[0]}", "txt")
st.session_state['processing']['ocr'] = True
with st.spinner("Performing OCR with HF model..."):
ocr_result_hf = asyncio.run(process_hf_ocr(image_to_ocr_hf, output_ocr_file_hf, use_api=ocr_use_api))
st.session_state['processing']['ocr'] = False
st.text_area("OCR Result", ocr_result_hf, height=300, key="ocr_result_display_hf")
if ocr_result_hf and not ocr_result_hf.startswith("Error") and not ocr_result_hf.startswith("["):
entry = f"HF OCR: {selected_file_ocr_hf}{page_info_hf} -> {output_ocr_file_hf}"
st.session_state['history'].append(entry)
if len(ocr_result_hf) > 5: # Minimal check
st.success(f"OCR output saved to {output_ocr_file_hf}")
st.markdown(get_download_link(output_ocr_file_hf, "text/plain", "Download OCR Text"), unsafe_allow_html=True)
st.session_state['asset_checkboxes'][output_ocr_file_hf] = False; update_gallery()
else: st.warning("OCR output seems short/empty.")
else: st.error(f"OCR failed. {ocr_result_hf}")
except Exception as e: st.error(f"Error loading file for OCR: {e}")
# --- Tab 9: Test Image Gen (Diffusers) ---
with tabs[8]:
st.header("Test Image Generation (Diffusers) π¨")
st.markdown("Generate images using Stable Diffusion models loaded locally via the Diffusers library.")
if not _diffusers_available:
st.error("Diffusers library is required for image generation.")
else:
# Select from locally downloaded *diffusion* models
local_diffusion_paths = get_local_model_paths("diffusion")
if not local_diffusion_paths:
st.warning("No local diffusion models found. Download one using the 'Build Titan' tab.")
selected_diffusion_model_path = None
else:
selected_diffusion_model_path = st.selectbox(
"Select Local Diffusion Model",
options=[""] + local_diffusion_paths,
format_func=lambda x: os.path.basename(x) if x else "Select...",
key="imggen_diffusion_model_select"
)
prompt_imggen_diff = st.text_area("Image Generation Prompt", "A photorealistic cat wearing sunglasses, studio lighting", key="imggen_prompt_diff")
neg_prompt_imggen_diff = st.text_area("Negative Prompt (Optional)", "ugly, deformed, blurry, low quality", key="imggen_neg_prompt_diff")
steps_imggen_diff = st.slider("Inference Steps", 10, 100, 25, key="imggen_steps")
guidance_imggen_diff = st.slider("Guidance Scale", 1.0, 20.0, 7.5, step=0.5, key="imggen_guidance")
if st.button("Generate Image π", key="imggen_run_button_diff", disabled=not selected_diffusion_model_path):
if not prompt_imggen_diff: st.warning("Please enter a prompt.")
else:
status_imggen = st.empty()
try:
# Load pipeline from saved path on demand
status_imggen.info(f"Loading diffusion pipeline: {os.path.basename(selected_diffusion_model_path)}...")
# Determine device
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if torch.cuda.is_available() else torch.float32 # Use float16 on GPU if available
pipe = StableDiffusionPipeline.from_pretrained(selected_diffusion_model_path, torch_dtype=dtype).to(device)
pipe.safety_checker = None # Optional: Disable safety checker if needed
status_imggen.info(f"Generating image on {device} ({dtype})...")
start_gen_time = time.time()
# Generate using the pipeline
gen_output = pipe(
prompt=prompt_imggen_diff,
negative_prompt=neg_prompt_imggen_diff if neg_prompt_imggen_diff else None,
num_inference_steps=steps_imggen_diff,
guidance_scale=guidance_imggen_diff,
# Add seed if desired: generator=torch.Generator(device=device).manual_seed(your_seed)
)
gen_image = gen_output.images[0]
elapsed_gen = int(time.time() - start_gen_time)
status_imggen.success(f"Image generated in {elapsed_gen}s!")
# Save and display
output_imggen_file_diff = generate_filename("diffusion_gen", "png")
gen_image.save(output_imggen_file_diff)
st.image(gen_image, caption=f"Generated: {output_imggen_file_diff}", use_container_width=True)
st.markdown(get_download_link(output_imggen_file_diff, "image/png", "Download Generated Image"), unsafe_allow_html=True)
st.session_state['asset_checkboxes'][output_imggen_file_diff] = False; update_gallery()
st.session_state['history'].append(f"Diffusion Gen: '{prompt_imggen_diff[:30]}...' -> {output_imggen_file_diff}")
except ImportError: st.error("Diffusers or Torch library not found.")
except Exception as e:
st.error(f"Image generation failed: {e}")
logger.error(f"Diffusion generation failed for {selected_diffusion_model_path}: {e}")
finally:
# Clear pipeline from memory? (Optional, depends on memory usage)
if 'pipe' in locals(): del pipe; torch.cuda.empty_cache() if torch.cuda.is_available() else None
# --- Tab 10: Character Editor (Keep from previous merge) ---
with tabs[9]:
# ... (Code from previous merge for this tab) ...
st.header("Character Editor π§βπ¨")
st.subheader("Create Your Character")
load_characters(); existing_char_names = [c['name'] for c in st.session_state.get('characters', [])]
form_key = f"character_form_{st.session_state.get('char_form_reset_key', 0)}"
with st.form(key=form_key):
st.markdown("**Create New Character**")
if st.form_submit_button("Randomize Content π²"): st.session_state['char_form_reset_key'] = st.session_state.get('char_form_reset_key', 0) + 1; st.rerun()
rand_name, rand_gender, rand_intro, rand_greeting = randomize_character_content()
name_char = st.text_input("Name (3-25 chars...)", value=rand_name, max_chars=25, key="char_name_input")
gender_char = st.radio("Gender", ["Male", "Female"], index=["Male", "Female"].index(rand_gender), key="char_gender_radio")
intro_char = st.text_area("Intro (Public description)", value=rand_intro, max_chars=300, height=100, key="char_intro_area")
greeting_char = st.text_area("Greeting (First message)", value=rand_greeting, max_chars=300, height=100, key="char_greeting_area")
tags_char = st.text_input("Tags (comma-separated)", "OC, friendly", key="char_tags_input")
submitted = st.form_submit_button("Create Character β¨")
if submitted:
error = False
if not (3 <= len(name_char) <= 25): st.error("Name must be 3-25 characters."); error = True
if not re.match(r'^[a-zA-Z0-9 _-]+$', name_char): st.error("Name contains invalid characters."); error = True
if name_char in existing_char_names: st.error(f"Name '{name_char}' already exists!"); error = True
if not intro_char or not greeting_char: st.error("Intro/Greeting cannot be empty."); error = True
if not error:
tag_list = [tag.strip() for tag in tags_char.split(',') if tag.strip()]
character_data = {"name": name_char, "gender": gender_char, "intro": intro_char, "greeting": greeting_char, "created_at": datetime.now(pytz.timezone("US/Central")).strftime('%Y-%m-%d %H:%M:%S %Z'), "tags": tag_list}
if save_character(character_data):
st.success(f"Character '{name_char}' created!"); st.session_state['char_form_reset_key'] = st.session_state.get('char_form_reset_key', 0) + 1; st.rerun()
# --- Tab 11: Character Gallery (Keep from previous merge) ---
with tabs[10]:
# ... (Code from previous merge for this tab) ...
st.header("Character Gallery πΌοΈ")
load_characters(); characters_list = st.session_state.get('characters', [])
if not characters_list: st.warning("No characters created yet.")
else:
st.subheader(f"Your Characters ({len(characters_list)})")
search_term = st.text_input("Search Characters by Name", key="char_gallery_search")
if search_term: characters_list = [c for c in characters_list if search_term.lower() in c['name'].lower()]
cols_char_gallery = st.columns(3); chars_to_delete = []
for idx, char in enumerate(characters_list):
with cols_char_gallery[idx % 3], st.container(border=True):
st.markdown(f"**{char['name']}**"); st.caption(f"Gender: {char.get('gender', 'N/A')}")
st.markdown("**Intro:**"); st.markdown(f"> {char.get('intro', '')}")
st.markdown("**Greeting:**"); st.markdown(f"> {char.get('greeting', '')}")
st.caption(f"Tags: {', '.join(char.get('tags', ['N/A']))}"); st.caption(f"Created: {char.get('created_at', 'N/A')}")
delete_key_char = f"delete_char_{char['name']}_{idx}";
if st.button(f"Delete {char['name']}", key=delete_key_char, type="primary"): chars_to_delete.append(char['name'])
if chars_to_delete:
current_characters = st.session_state.get('characters', []); updated_characters = [c for c in current_characters if c['name'] not in chars_to_delete]
st.session_state['characters'] = updated_characters
try:
with open("characters.json", "w", encoding='utf-8') as f: json.dump(updated_characters, f, indent=2)
logger.info(f"Deleted characters: {', '.join(chars_to_delete)}"); st.success(f"Deleted characters: {', '.join(chars_to_delete)}"); st.rerun()
except IOError as e: logger.error(f"Failed to save characters.json after deletion: {e}"); st.error("Failed to update character file.")
# --- Footer and Persistent Sidebar Elements ------------
# Update Sidebar Gallery (Call this at the end to reflect all changes)
update_gallery()
# Action Logs in Sidebar
st.sidebar.subheader("Action Logs π")
log_expander = st.sidebar.expander("View Logs", expanded=False)
with log_expander:
log_text = "\n".join([f"{record.asctime} - {record.levelname} - {record.message}" for record in log_records[-20:]])
st.code(log_text, language='log')
# History in Sidebar
st.sidebar.subheader("Session History π")
history_expander = st.sidebar.expander("View History", expanded=False)
with history_expander:
for entry in reversed(st.session_state.get("history", [])):
if entry: history_expander.write(f"- {entry}")
st.sidebar.markdown("---")
st.sidebar.info("Using Hugging Face models for AI tasks.")
st.sidebar.caption("App Modified by AI Assistant") |