File size: 97,002 Bytes
15206a4
1d4b8d3
 
 
15206a4
 
 
 
 
 
 
 
 
 
 
1d4b8d3
 
68478d2
15206a4
68478d2
1d4b8d3
 
c83dd14
1d4b8d3
68478d2
1d4b8d3
 
68478d2
15206a4
 
68478d2
 
 
569d4fc
153c3cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15206a4
 
 
68478d2
 
 
15206a4
68478d2
 
15206a4
 
68478d2
 
15206a4
68478d2
 
 
 
15206a4
 
 
 
68478d2
15206a4
 
 
 
 
 
 
1d4b8d3
68478d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d4b8d3
68478d2
15206a4
 
 
 
 
 
 
 
68478d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15206a4
 
1d4b8d3
68478d2
15206a4
68478d2
 
 
 
 
15206a4
68478d2
 
 
 
 
 
 
 
 
 
1d4b8d3
68478d2
15206a4
68478d2
15206a4
 
 
 
 
 
 
 
 
 
68478d2
 
15206a4
 
 
 
 
 
 
 
 
 
 
68478d2
15206a4
68478d2
15206a4
 
 
 
 
 
 
 
 
 
 
 
 
68478d2
 
 
15206a4
68478d2
15206a4
68478d2
15206a4
 
 
68478d2
15206a4
 
 
 
 
 
 
68478d2
 
 
15206a4
68478d2
15206a4
 
 
 
8b57823
 
 
 
 
15206a4
 
 
deeb295
 
 
 
 
15206a4
 
68478d2
15206a4
 
 
 
 
 
 
 
 
68478d2
 
 
15206a4
 
 
 
 
 
 
68478d2
15206a4
 
 
68478d2
1d4b8d3
15206a4
 
 
 
 
 
 
 
 
 
1d4b8d3
15206a4
68478d2
 
 
 
 
 
15206a4
68478d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15206a4
68478d2
15206a4
68478d2
 
 
 
15206a4
68478d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15206a4
 
68478d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15206a4
68478d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15206a4
68478d2
 
15206a4
 
68478d2
 
 
 
15206a4
68478d2
 
 
 
15206a4
68478d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15206a4
68478d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15206a4
 
68478d2
 
15206a4
 
68478d2
 
 
15206a4
 
 
 
 
 
 
 
 
 
 
 
 
 
68478d2
15206a4
 
 
 
 
 
 
 
68478d2
15206a4
68478d2
 
 
15206a4
 
 
 
 
 
68478d2
 
15206a4
 
68478d2
1d4b8d3
15206a4
 
68478d2
1d4b8d3
15206a4
68478d2
c83dd14
68478d2
c83dd14
68478d2
15206a4
 
 
 
 
68478d2
 
 
 
 
 
 
 
15206a4
68478d2
 
15206a4
 
 
68478d2
 
 
15206a4
 
68478d2
 
 
 
 
15206a4
 
 
 
 
 
 
6679bb8
15206a4
6679bb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15206a4
6679bb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68478d2
6679bb8
68478d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15206a4
 
68478d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15206a4
68478d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6742513
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15206a4
 
68478d2
 
15206a4
 
 
68478d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15206a4
 
68478d2
 
 
 
 
 
15206a4
68478d2
15206a4
 
68478d2
 
 
 
 
15206a4
68478d2
15206a4
 
 
 
 
 
 
68478d2
15206a4
 
68478d2
15206a4
68478d2
15206a4
6679bb8
68478d2
15206a4
68478d2
 
15206a4
 
 
68478d2
 
15206a4
 
 
68478d2
 
 
 
 
15206a4
 
 
 
 
68478d2
 
 
 
 
15206a4
68478d2
15206a4
68478d2
 
 
15206a4
68478d2
15206a4
 
 
 
 
68478d2
15206a4
68478d2
15206a4
68478d2
 
 
15206a4
68478d2
15206a4
 
 
68478d2
 
15206a4
68478d2
 
15206a4
 
68478d2
15206a4
68478d2
15206a4
 
 
 
 
 
68478d2
e773bc1
 
 
 
 
15206a4
 
68478d2
6679bb8
4fecb47
 
15206a4
 
 
 
e773bc1
 
 
 
 
15206a4
 
68478d2
6679bb8
68478d2
 
 
 
15206a4
68478d2
15206a4
 
 
68478d2
15206a4
68478d2
15206a4
 
68478d2
15206a4
68478d2
15206a4
68478d2
 
15206a4
68478d2
 
15206a4
6679bb8
15206a4
 
68478d2
 
 
 
15206a4
68478d2
 
15206a4
68478d2
15206a4
68478d2
15206a4
 
68478d2
 
15206a4
68478d2
6679bb8
68478d2
15206a4
68478d2
15206a4
68478d2
 
15206a4
68478d2
 
1d4b8d3
68478d2
 
 
 
 
15206a4
68478d2
 
 
 
 
 
 
 
 
 
 
 
 
15206a4
68478d2
 
15206a4
68478d2
 
 
 
 
 
 
 
 
15206a4
68478d2
 
 
 
 
 
 
15206a4
68478d2
 
 
 
15206a4
68478d2
 
 
 
 
 
 
 
 
 
 
 
15206a4
68478d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15206a4
68478d2
 
 
 
 
 
 
 
 
 
 
 
15206a4
 
68478d2
15206a4
68478d2
 
 
 
 
 
 
 
 
 
 
15206a4
68478d2
 
15206a4
68478d2
 
 
 
15206a4
68478d2
15206a4
68478d2
 
 
 
15206a4
68478d2
 
 
 
 
 
 
15206a4
68478d2
 
 
 
15206a4
68478d2
 
 
15206a4
68478d2
 
15206a4
68478d2
 
 
 
 
 
15206a4
68478d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15206a4
68478d2
 
 
 
15206a4
68478d2
 
 
 
15206a4
68478d2
 
 
 
 
15206a4
 
68478d2
 
 
 
 
 
 
 
 
 
 
 
 
15206a4
68478d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15206a4
68478d2
 
15206a4
68478d2
 
15206a4
68478d2
 
 
 
 
 
 
 
 
 
15206a4
 
68478d2
15206a4
68478d2
 
 
 
 
 
 
 
 
 
 
15206a4
68478d2
 
15206a4
68478d2
 
 
 
 
 
 
 
 
 
15206a4
68478d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15206a4
68478d2
 
15206a4
 
68478d2
15206a4
68478d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15206a4
68478d2
 
 
 
 
 
15206a4
68478d2
 
 
 
15206a4
68478d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15206a4
68478d2
 
15206a4
68478d2
 
15206a4
68478d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15206a4
68478d2
 
 
 
15206a4
68478d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15206a4
68478d2
 
15206a4
68478d2
 
 
 
 
 
 
15206a4
68478d2
 
 
 
 
 
 
15206a4
 
68478d2
15206a4
68478d2
15206a4
68478d2
 
15206a4
 
 
68478d2
15206a4
68478d2
 
 
 
15206a4
 
 
 
68478d2
 
 
 
15206a4
 
68478d2
15206a4
68478d2
15206a4
68478d2
15206a4
68478d2
15206a4
68478d2
 
15206a4
 
 
68478d2
 
15206a4
68478d2
 
 
 
 
 
 
15206a4
68478d2
15206a4
 
68478d2
 
 
15206a4
 
 
 
 
 
 
 
 
 
68478d2
15206a4
 
 
 
 
 
 
 
 
1d4b8d3
68478d2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
# --- Combined Imports ------------------------------------
import io
import os
import re
import base64
import glob
import logging
import random
import shutil
import time
import zipfile
import json
import asyncio
import aiofiles

from datetime import datetime
from collections import Counter
from dataclasses import dataclass, field
from io import BytesIO
from typing import Optional, List, Dict, Any

import pandas as pd
import pytz
import streamlit as st
from PIL import Image, ImageDraw # Added ImageDraw
from reportlab.pdfgen import canvas
from reportlab.lib.utils import ImageReader
from reportlab.lib.pagesizes import letter # Default page size
import fitz # PyMuPDF

# --- Hugging Face Imports ---
from huggingface_hub import InferenceClient, HfApi, list_models
from huggingface_hub.utils import RepositoryNotFoundError, GatedRepoError # Import specific exceptions



# --- App Configuration -----------------------------------
st.set_page_config(
    page_title="Vision & Layout Titans (HF) πŸš€πŸ–ΌοΈ",
    page_icon="πŸ€–",
    layout="wide",
    initial_sidebar_state="expanded",
    menu_items={
        'Get Help': 'https://huggingface.co/docs',
        'Report a Bug': None, # Replace with your bug report link if desired
        'About': "Combined App: Image->PDF Layout + Hugging Face Powered AI Tools 🌌"
    }
)


# Conditional imports for optional/heavy libraries
try:
    import torch
    from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor, AutoModelForVision2Seq, AutoModelForImageToWaveform, pipeline
    # Add more AutoModel classes as needed for different tasks (Vision, OCR, etc.)
    _transformers_available = True
except ImportError:
    _transformers_available = False
    st.sidebar.warning("AI/ML libraries (torch, transformers) not found. Local model features disabled.")

try:
    from diffusers import StableDiffusionPipeline
    _diffusers_available = True
except ImportError:
    _diffusers_available = False
    # Don't show warning if transformers also missing, handled above
    if _transformers_available:
        st.sidebar.warning("Diffusers library not found. Diffusion model features disabled.")


import requests # Keep requests import

# --- Logging Setup ---------------------------------------
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
log_records = []
class LogCaptureHandler(logging.Handler):
    def emit(self, record):
        log_records.append(record)
logger.addHandler(LogCaptureHandler())

# --- Environment Variables & Constants -------------------
HF_TOKEN = os.getenv("HF_TOKEN")
DEFAULT_PROVIDER = "hf-inference"
# Model List (curated, similar to Gradio example) - can be updated
FEATURED_MODELS_LIST = [
    "meta-llama/Meta-Llama-3.1-8B-Instruct", # Updated Llama model
    "mistralai/Mistral-7B-Instruct-v0.3",
    "google/gemma-2-9b-it", # Added Gemma 2
    "Qwen/Qwen2-7B-Instruct", # Added Qwen2
    "microsoft/Phi-3-mini-4k-instruct",
    "HuggingFaceH4/zephyr-7b-beta",
    "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", # Larger Mixture of Experts
    # Add a smaller option
    "HuggingFaceTB/SmolLM-1.7B-Instruct"
]
# Add common vision models if planning local loading
VISION_MODELS_LIST = [
    "Salesforce/blip-image-captioning-large",
    "microsoft/trocr-large-handwritten", # OCR model
    "llava-hf/llava-1.5-7b-hf", # Vision Language Model
    "google/vit-base-patch16-224", # Basic Vision Transformer
]
DIFFUSION_MODELS_LIST = [
    "stabilityai/stable-diffusion-xl-base-1.0", # Common SDXL
    "runwayml/stable-diffusion-v1-5", # Classic SD 1.5
    "OFA-Sys/small-stable-diffusion-v0", # Tiny diffusion
]


# --- Session State Initialization (Combined & Updated) ---
# Layout PDF specific
st.session_state.setdefault('layout_snapshots', [])
st.session_state.setdefault('layout_new_uploads', [])

# General App State
st.session_state.setdefault('history', [])
st.session_state.setdefault('processing', {})
st.session_state.setdefault('asset_checkboxes', {})
st.session_state.setdefault('downloaded_pdfs', {})
st.session_state.setdefault('unique_counter', 0)
st.session_state.setdefault('cam0_file', None)
st.session_state.setdefault('cam1_file', None)
st.session_state.setdefault('characters', [])
st.session_state.setdefault('char_form_reset_key', 0) # For character form reset
st.session_state.setdefault('gallery_size', 10)

# --- Hugging Face & Local Model State ---
st.session_state.setdefault('hf_inference_client', None) # Store initialized client
st.session_state.setdefault('hf_provider', DEFAULT_PROVIDER)
st.session_state.setdefault('hf_custom_key', "")
st.session_state.setdefault('hf_selected_api_model', FEATURED_MODELS_LIST[0]) # Default API model
st.session_state.setdefault('hf_custom_api_model', "") # User override for API model

# Local Model Management
st.session_state.setdefault('local_models', {}) # Dict to store loaded models: {'path': {'model': obj, 'tokenizer': obj, 'type': 'causal/vision/etc'}}
st.session_state.setdefault('selected_local_model_path', None) # Path of the currently active local model

# Inference Parameters (shared for API and local where applicable)
st.session_state.setdefault('gen_max_tokens', 512)
st.session_state.setdefault('gen_temperature', 0.7)
st.session_state.setdefault('gen_top_p', 0.95)
st.session_state.setdefault('gen_frequency_penalty', 0.0)
st.session_state.setdefault('gen_seed', -1) # -1 for random

if 'asset_gallery_container' not in st.session_state:
    st.session_state['asset_gallery_container'] = st.sidebar.empty()

# --- Dataclasses (Refined for Local Models) -------------
@dataclass
class LocalModelConfig:
    name: str                   # User-defined local name
    hf_id: str                  # Hugging Face model ID used for download
    model_type: str             # 'causal', 'vision', 'diffusion', 'ocr', etc.
    size_category: str = "unknown" # e.g., 'small', 'medium', 'large'
    domain: Optional[str] = None
    local_path: str = field(init=False) # Path where it's saved

    def __post_init__(self):
        # Define local path based on type and name
        type_folder = f"{self.model_type}_models"
        safe_name = re.sub(r'[^\w\-]+', '_', self.name) # Sanitize name for path
        self.local_path = os.path.join(type_folder, safe_name)

    def get_full_path(self):
        return os.path.abspath(self.local_path)

# (Keep DiffusionConfig if still using diffusers library separately)
@dataclass
class DiffusionConfig: # Kept for clarity in diffusion tab if needed
    name: str
    base_model: str
    size: str
    domain: Optional[str] = None
    @property
    def model_path(self):
        return f"diffusion_models/{self.name}"


# --- Helper Functions (Combined and refined) -------------
# (Keep generate_filename, pdf_url_to_filename, get_download_link, zip_directory)
# ... (previous helper functions like generate_filename, pdf_url_to_filename etc. are assumed here) ...
def generate_filename(sequence, ext="png"):
    timestamp = time.strftime('%Y%m%d_%H%M%S')
    safe_sequence = re.sub(r'[^\w\-]+', '_', str(sequence))
    return f"{safe_sequence}_{timestamp}.{ext}"

def pdf_url_to_filename(url):
    name = re.sub(r'^https?://', '', url)
    name = re.sub(r'[<>:"/\\|?*]', '_', name)
    return name[:100] + ".pdf" # Limit length

def get_download_link(file_path, mime_type="application/octet-stream", label="Download"):
    if not os.path.exists(file_path): return f"{label} (File not found)"
    try:
        with open(file_path, "rb") as f: file_bytes = f.read()
        b64 = base64.b64encode(file_bytes).decode()
        return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label}</a>'
    except Exception as e:
        logger.error(f"Error creating download link for {file_path}: {e}")
        return f"{label} (Error)"

def zip_directory(directory_path, zip_path):
    with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
        for root, _, files in os.walk(directory_path):
            for file in files:
                file_path = os.path.join(root, file)
                zipf.write(file_path, os.path.relpath(file_path, os.path.dirname(directory_path)))

def get_local_model_paths(model_type="causal"):
    """Gets paths of locally saved models of a specific type."""
    pattern = f"{model_type}_models/*"
    dirs = [d for d in glob.glob(pattern) if os.path.isdir(d)]
    return dirs

def get_gallery_files(file_types=("png", "pdf", "jpg", "jpeg", "md", "txt")):
    all_files = set()
    for ext in file_types:
        all_files.update(glob.glob(f"*.{ext.lower()}"))
        all_files.update(glob.glob(f"*.{ext.upper()}"))
    return sorted(list(all_files))

def get_pdf_files():
    return sorted(glob.glob("*.pdf") + glob.glob("*.PDF"))

def download_pdf(url, output_path):
    try:
        headers = {'User-Agent': 'Mozilla/5.0'}
        response = requests.get(url, stream=True, timeout=20, headers=headers)
        response.raise_for_status()
        with open(output_path, "wb") as f:
            for chunk in response.iter_content(chunk_size=8192): f.write(chunk)
        logger.info(f"Successfully downloaded {url} to {output_path}")
        return True
    except requests.exceptions.RequestException as e:
        logger.error(f"Failed to download {url}: {e}")
        if os.path.exists(output_path): 
            try: 
                os.remove(output_path) 
            except: 
                pass
        return False
    except Exception as e:
        logger.error(f"An unexpected error occurred during download of {url}: {e}")
        if os.path.exists(output_path): 
            try: 
                os.remove(output_path) 
            except: 
                pass
        return False

# (Keep process_pdf_snapshot - it doesn't use AI)
async def process_pdf_snapshot(pdf_path, mode="single", resolution_factor=2.0):
    start_time = time.time()
    status_placeholder = st.empty()
    status_placeholder.text(f"Processing PDF Snapshot ({mode}, Res: {resolution_factor}x)... (0s)")
    output_files = []
    try:
        doc = fitz.open(pdf_path)
        matrix = fitz.Matrix(resolution_factor, resolution_factor)
        num_pages_to_process = 0
        if mode == "single": num_pages_to_process = min(1, len(doc))
        elif mode == "twopage": num_pages_to_process = min(2, len(doc))
        elif mode == "allpages": num_pages_to_process = len(doc)

        for i in range(num_pages_to_process):
            page_start_time = time.time()
            page = doc[i]
            pix = page.get_pixmap(matrix=matrix)
            base_name = os.path.splitext(os.path.basename(pdf_path))[0]
            output_file = generate_filename(f"{base_name}_pg{i+1}_{mode}", "png")
            await asyncio.to_thread(pix.save, output_file)
            output_files.append(output_file)
            elapsed_page = int(time.time() - page_start_time)
            status_placeholder.text(f"Processing PDF Snapshot ({mode}, Res: {resolution_factor}x)... Page {i+1}/{num_pages_to_process} done ({elapsed_page}s)")
            await asyncio.sleep(0.01)

        doc.close()
        elapsed = int(time.time() - start_time)
        status_placeholder.success(f"PDF Snapshot ({mode}, {len(output_files)} files) completed in {elapsed}s!")
        return output_files
    except Exception as e:
        logger.error(f"Failed to process PDF snapshot for {pdf_path}: {e}")
        status_placeholder.error(f"Failed to process PDF {os.path.basename(pdf_path)}: {e}")
        for f in output_files:
            if os.path.exists(f): os.remove(f)
        return []


# --- HF Inference Client Management ---
def get_hf_client() -> Optional[InferenceClient]:
    """Gets or initializes the Hugging Face Inference Client based on session state."""
    provider = st.session_state.hf_provider
    custom_key = st.session_state.hf_custom_key.strip()
    token_to_use = custom_key if custom_key else HF_TOKEN

    if not token_to_use and provider != "hf-inference":
        st.error(f"Provider '{provider}' requires a Hugging Face API token (either via HF_TOKEN env var or custom key).")
        return None
    if provider == "hf-inference" and not token_to_use:
         logger.warning("Using hf-inference provider without a token. Rate limits may apply.")
         token_to_use = None # Explicitly set to None for public inference API

    # Check if client needs re-initialization
    current_client = st.session_state.get('hf_inference_client')
    # Simple check: re-init if provider or token presence changes
    needs_reinit = True
    if current_client:
         # Basic check, more robust checks could compare client._token etc. if needed
         # This assumes provider and token status are the key determinants
         client_uses_custom = hasattr(current_client, '_token') and current_client._token == custom_key
         client_uses_default = hasattr(current_client, '_token') and current_client._token == HF_TOKEN
         client_uses_no_token = not hasattr(current_client, '_token') or current_client._token is None

         if current_client.provider == provider:
             if custom_key and client_uses_custom: needs_reinit = False
             elif not custom_key and HF_TOKEN and client_uses_default: needs_reinit = False
             elif not custom_key and not HF_TOKEN and client_uses_no_token: needs_reinit = False


    if needs_reinit:
        try:
            logger.info(f"Initializing InferenceClient for provider: {provider}. Token source: {'Custom Key' if custom_key else ('HF_TOKEN' if HF_TOKEN else 'None')}")
            st.session_state.hf_inference_client = InferenceClient(token=token_to_use, provider=provider)
            logger.info("InferenceClient initialized successfully.")
        except Exception as e:
            st.error(f"Failed to initialize Hugging Face client for provider {provider}: {e}")
            logger.error(f"InferenceClient initialization failed: {e}")
            st.session_state.hf_inference_client = None

    return st.session_state.hf_inference_client

# --- HF/Local Model Processing Functions (Replaced OpenAI ones) ---

def process_text_hf(text: str, prompt: str, use_api: bool) -> str:
    """Processes text using either HF Inference API or a loaded local model."""
    status_placeholder = st.empty()
    start_time = time.time()
    result_text = ""

    # --- Prepare Parameters ---
    params = {
        "max_new_tokens": st.session_state.gen_max_tokens, # Note: HF uses max_new_tokens typically
        "temperature": st.session_state.gen_temperature,
        "top_p": st.session_state.gen_top_p,
        "repetition_penalty": st.session_state.gen_frequency_penalty + 1.0, # Adjust HF param name if needed
    }
    seed = st.session_state.gen_seed
    if seed != -1: params["seed"] = seed

    # --- Prepare Messages ---
    # Simple system prompt + user prompt structure
    # More complex chat history could be added here if needed
    system_prompt = "You are a helpful assistant. Process the following text based on the user's request." # Default, consider making configurable
    full_prompt = f"{prompt}\n\n---\n\n{text}"
    # Basic message format for many models, adjust if needed per model type
    messages = [
        {"role": "system", "content": system_prompt},
        {"role": "user", "content": full_prompt}
    ]


    if use_api:
        # --- Use Hugging Face Inference API ---
        status_placeholder.info("Processing text using Hugging Face API...")
        client = get_hf_client()
        if not client:
            return "Error: Hugging Face client not available or configured correctly."

        model_id = st.session_state.hf_custom_api_model.strip() or st.session_state.hf_selected_api_model
        if not model_id:
            return "Error: No Hugging Face API model selected or specified."
        status_placeholder.info(f"Using API Model: {model_id}")

        try:
            # Non-streaming for simplicity in Streamlit integration first
            response = client.chat_completion(
                model=model_id,
                messages=messages,
                max_tokens=params['max_new_tokens'], # chat_completion uses max_tokens
                temperature=params['temperature'],
                top_p=params['top_p'],
                # Add other params if supported by client.chat_completion
            )
            result_text = response.choices[0].message.content or ""
            logger.info(f"HF API text processing successful for model {model_id}.")

        except Exception as e:
            logger.error(f"HF API text processing failed for model {model_id}: {e}")
            result_text = f"Error during Hugging Face API inference: {str(e)}"

    else:
        # --- Use Loaded Local Model ---
        status_placeholder.info("Processing text using local model...")
        if not _transformers_available:
            return "Error: Transformers library not available for local models."

        model_path = st.session_state.get('selected_local_model_path')
        if not model_path or model_path not in st.session_state.get('local_models', {}):
            return "Error: No suitable local model selected or loaded."

        local_model_data = st.session_state['local_models'][model_path]
        if local_model_data.get('type') != 'causal':
             return f"Error: Loaded model '{os.path.basename(model_path)}' is not a Causal LM."

        status_placeholder.info(f"Using Local Model: {os.path.basename(model_path)}")
        model = local_model_data.get('model')
        tokenizer = local_model_data.get('tokenizer')

        if not model or not tokenizer:
             return f"Error: Model or tokenizer not found for {os.path.basename(model_path)}."

        try:
            # Prepare input for local transformers model
            # Handle chat template if available, otherwise basic concatenation
            try:
                prompt_for_model = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
            except Exception: # Fallback if template fails or doesn't exist
                 logger.warning(f"Could not apply chat template for {model_path}. Using basic formatting.")
                 prompt_for_model = f"System: {system_prompt}\nUser: {full_prompt}\nAssistant:"

            inputs = tokenizer(prompt_for_model, return_tensors="pt", padding=True, truncation=True, max_length=params['max_new_tokens'] * 2) # Heuristic length limit
            # Move inputs to the same device as the model
            inputs = {k: v.to(model.device) for k, v in inputs.items()}

            # Generate
            # Ensure generate parameters match transformers' expected names
            generate_params = {
                "max_new_tokens": params['max_new_tokens'],
                "temperature": params['temperature'],
                "top_p": params['top_p'],
                "repetition_penalty": params.get('repetition_penalty', 1.0), # Use adjusted name
                "do_sample": True if params['temperature'] > 0.1 else False, # Required for temp/top_p
                "pad_token_id": tokenizer.eos_token_id # Avoid PAD warning
            }
            if 'seed' in params: pass # Seed handling can be complex with transformers, often set globally

            with torch.no_grad(): # Disable gradient calculation for inference
                 outputs = model.generate(**inputs, **generate_params)

            # Decode the output, skipping special tokens and the prompt
            # output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
            # More robust decoding: only decode the newly generated part
            input_length = inputs['input_ids'].shape[1]
            generated_ids = outputs[0][input_length:]
            result_text = tokenizer.decode(generated_ids, skip_special_tokens=True)

            logger.info(f"Local text processing successful for model {model_path}.")

        except Exception as e:
            logger.error(f"Local text processing failed for model {model_path}: {e}")
            result_text = f"Error during local model inference: {str(e)}"


    elapsed = int(time.time() - start_time)
    status_placeholder.success(f"Text processing completed in {elapsed}s.")
    return result_text


# --- Image Processing (Placeholder/Basic Implementation) ---
# This needs significant work depending on the chosen vision model type
def process_image_hf(image: Image.Image, prompt: str, use_api: bool) -> str:
    """Processes an image using either HF Inference API or a local model."""
    status_placeholder = st.empty()
    start_time = time.time()
    result_text = "[Image processing not fully implemented with HF models yet]"

    if use_api:
        # --- Use HF API (Basic Image-to-Text Example) ---
        status_placeholder.info("Processing image using Hugging Face API (Image-to-Text)...")
        client = get_hf_client()
        if not client: return "Error: HF client not configured."

        # Convert PIL image to bytes
        buffered = BytesIO()
        image.save(buffered, format="PNG" if image.format != 'JPEG' else 'JPEG')
        img_bytes = buffered.getvalue()

        try:
            # Example using a generic image-to-text model via API
            # NOTE: This does NOT use the 'prompt' effectively like VQA models.
            # Need to select an appropriate model ID known for image captioning.
            # Using a default BLIP model for demonstration.
            captioning_model_id = "Salesforce/blip-image-captioning-large"
            status_placeholder.info(f"Using API Image-to-Text Model: {captioning_model_id}")

            response_list = client.image_to_text(data=img_bytes, model=captioning_model_id)

            if response_list and isinstance(response_list, list) and 'generated_text' in response_list[0]:
                result_text = f"API Caption ({captioning_model_id}): {response_list[0]['generated_text']}\n\n(Note: API call did not use custom prompt: '{prompt}')"
                logger.info(f"HF API image captioning successful for model {captioning_model_id}.")
            else:
                 result_text = "Error: Unexpected response format from image-to-text API."
                 logger.warning(f"Unexpected API response for image-to-text: {response_list}")

        except Exception as e:
            logger.error(f"HF API image processing failed: {e}")
            result_text = f"Error during Hugging Face API image inference: {str(e)}"

    else:
        # --- Use Local Vision Model ---
        status_placeholder.info("Processing image using local model...")
        if not _transformers_available: return "Error: Transformers library needed."

        model_path = st.session_state.get('selected_local_model_path')
        if not model_path or model_path not in st.session_state.get('local_models', {}):
            return "Error: No suitable local model selected or loaded."

        local_model_data = st.session_state['local_models'][model_path]
        model_type = local_model_data.get('type')

        # --- Placeholder Logic - Requires Specific Model Implementation ---
        if model_type == 'vision': # General VQA or Captioning
             status_placeholder.warning(f"Local Vision Model ({os.path.basename(model_path)}): Processing logic depends heavily on the specific model architecture (e.g., LLaVA, BLIP). Placeholder implementation.")
             # Example: Needs processor + model.generate based on model type
             # processor = local_model_data.get('processor')
             # model = local_model_data.get('model')
             # if processor and model:
             #     try:
             #         # inputs = processor(images=image, text=prompt, return_tensors="pt").to(model.device)
             #         # generated_ids = model.generate(**inputs, max_new_tokens=...)
             #         # result_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
             #         result_text = f"[Local vision processing for {os.path.basename(model_path)} needs specific implementation based on its type.] Prompt was: {prompt}"
             #     except Exception as e:
             #         result_text = f"Error during local vision model inference: {e}"
             # else:
             #      result_text = "Error: Processor or model missing for local vision task."
             result_text = f"[Local vision processing for {os.path.basename(model_path)} needs specific implementation based on its type.] Prompt was: {prompt}" # Placeholder

        elif model_type == 'ocr': # OCR Specific Model
            status_placeholder.warning(f"Local OCR Model ({os.path.basename(model_path)}): Placeholder implementation.")
            # Example for TrOCR style models
            # processor = local_model_data.get('processor')
            # model = local_model_data.get('model')
            # if processor and model:
            #      try:
            #         # pixel_values = processor(images=image, return_tensors="pt").pixel_values.to(model.device)
            #         # generated_ids = model.generate(pixel_values, max_new_tokens=...)
            #         # result_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
            #         result_text = f"[Local OCR processing for {os.path.basename(model_path)} needs specific implementation.]"
            #      except Exception as e:
            #         result_text = f"Error during local OCR model inference: {e}"
            # else:
            #      result_text = "Error: Processor or model missing for local OCR task."
            result_text = f"[Local OCR processing for {os.path.basename(model_path)} needs specific implementation.]" # Placeholder
        else:
             result_text = f"Error: Loaded model '{os.path.basename(model_path)}' is not a recognized vision/OCR type for this function."


    elapsed = int(time.time() - start_time)
    status_placeholder.success(f"Image processing attempt completed in {elapsed}s.")
    return result_text

# Basic OCR function using the image processor above
async def process_hf_ocr(image: Image.Image, output_file: str, use_api: bool) -> str:
    """ Performs OCR using the process_image_hf function framework. """
    # Simple prompt for OCR task
    ocr_prompt = "Extract text content from this image."
    result = process_image_hf(image, ocr_prompt, use_api)

    # Save the result if it looks like text (basic check)
    if result and not result.startswith("Error") and not result.startswith("["):
        try:
            async with aiofiles.open(output_file, "w", encoding='utf-8') as f:
                await f.write(result)
            logger.info(f"HF OCR result saved to {output_file}")
        except IOError as e:
             logger.error(f"Failed to save HF OCR output to {output_file}: {e}")
             result += f"\n[Error saving file: {e}]" # Append error to result if save fails
    elif os.path.exists(output_file):
         # Remove file if processing failed or was just a placeholder message
         try: os.remove(output_file)
         except OSError: pass

    return result


# --- Character Functions (Keep from previous) -----------
# ... (randomize_character_content, save_character, load_characters are assumed here) ...
def randomize_character_content():
    intro_templates = [
        "{char} is a valiant knight...", "{char} is a mischievous thief...",
        "{char} is a wise scholar...", "{char} is a fiery warrior...", "{char} is a gentle healer..."
    ]
    greeting_templates = [
        "'I am from the knight's guild...'", "'I heard you needed helpβ€”name’s {char}...",
        "'Oh, hello! I’m {char}, didn’t see you there...'", "'I’m {char}, and I’m here to fight...'",
        "'I’m {char}, here to heal...'" ]
    name = f"Character_{random.randint(1000, 9999)}"
    gender = random.choice(["Male", "Female"])
    intro = random.choice(intro_templates).format(char=name)
    greeting = random.choice(greeting_templates).format(char=name)
    return name, gender, intro, greeting

def save_character(character_data):
    characters = st.session_state.get('characters', [])
    if any(c['name'] == character_data['name'] for c in characters):
         st.error(f"Character name '{character_data['name']}' already exists.")
         return False
    characters.append(character_data)
    st.session_state['characters'] = characters
    try:
        with open("characters.json", "w", encoding='utf-8') as f: json.dump(characters, f, indent=2)
        logger.info(f"Saved character: {character_data['name']}")
        return True
    except IOError as e:
        logger.error(f"Failed to save characters.json: {e}")
        st.error(f"Failed to save character file: {e}")
        return False

def load_characters():
    if not os.path.exists("characters.json"): st.session_state['characters'] = []; return
    try:
        with open("characters.json", "r", encoding='utf-8') as f: characters = json.load(f)
        if isinstance(characters, list): st.session_state['characters'] = characters; logger.info(f"Loaded {len(characters)} characters.")
        else: st.session_state['characters'] = []; logger.warning("characters.json is not a list, resetting."); os.remove("characters.json")
    except (json.JSONDecodeError, IOError) as e:
        logger.error(f"Failed to load or decode characters.json: {e}")
        st.error(f"Error loading character file: {e}. Starting fresh.")
        st.session_state['characters'] = []
        try:
            corrupt_filename = f"characters_corrupt_{int(time.time())}.json"
            shutil.copy("characters.json", corrupt_filename); logger.info(f"Backed up corrupted character file to {corrupt_filename}"); os.remove("characters.json")
        except Exception as backup_e: logger.error(f"Could not backup corrupted character file: {backup_e}")


# --- Utility: Clean stems (Keep from previous) ----------
def clean_stem(fn: str) -> str:
    name = os.path.splitext(os.path.basename(fn))[0]
    name = name.replace('-', ' ').replace('_', ' ')
    return name.strip().title()


# --- PDF Creation: Image Sized + Captions (Keep from previous) ---
def make_image_sized_pdf(sources):
    if not sources: st.warning("No image sources provided for PDF generation."); return None
    buf = io.BytesIO()
    c = canvas.Canvas(buf, pagesize=letter) # Default letter
    try:
        for idx, src in enumerate(sources, start=1):
            status_placeholder = st.empty()
            status_placeholder.info(f"Adding page {idx}/{len(sources)}: {os.path.basename(str(src))}...")
            try:
                filename = f'page_{idx}'
                if isinstance(src, str):
                    if not os.path.exists(src): logger.warning(f"Image file not found: {src}. Skipping."); status_placeholder.warning(f"Skipping missing file: {os.path.basename(src)}"); continue
                    img_obj = Image.open(src); filename = os.path.basename(src)
                else:
                    src.seek(0); img_obj = Image.open(src); filename = getattr(src, 'name', f'uploaded_image_{idx}'); src.seek(0)

                with img_obj:
                    iw, ih = img_obj.size
                    if iw <= 0 or ih <= 0: logger.warning(f"Invalid image dimensions ({iw}x{ih}) for {filename}. Skipping."); status_placeholder.warning(f"Skipping invalid image: {filename}"); continue
                    cap_h = 30; pw, ph = iw, ih + cap_h
                    c.setPageSize((pw, ph))
                    img_reader = ImageReader(img_obj)
                    c.drawImage(img_reader, 0, cap_h, width=iw, height=ih, preserveAspectRatio=True, anchor='c', mask='auto')
                    caption = clean_stem(filename); c.setFont('Helvetica', 12); c.setFillColorRGB(0, 0, 0); c.drawCentredString(pw / 2, cap_h / 2 + 3, caption)
                    c.setFont('Helvetica', 8); c.setFillColorRGB(0.5, 0.5, 0.5); c.drawRightString(pw - 10, 8, f"Page {idx}")
                    c.showPage()
                    status_placeholder.success(f"Added page {idx}/{len(sources)}: {filename}")

            except (IOError, OSError, UnidentifiedImageError) as img_err: logger.error(f"Error processing image {src}: {img_err}"); status_placeholder.error(f"Error adding page {idx}: {img_err}")
            except Exception as e: logger.error(f"Unexpected error adding page {idx} ({src}): {e}"); status_placeholder.error(f"Unexpected error on page {idx}: {e}")

        c.save(); buf.seek(0)
        if buf.getbuffer().nbytes < 100: st.error("PDF generation resulted in an empty file."); return None
        return buf.getvalue()
    except Exception as e:
        logger.error(f"Fatal error during PDF generation: {e}")
        st.error(f"PDF Generation Failed: {e}")
        return None


# --- Sidebar Gallery Update Function (MODIFIED) --------
def update_gallery():
    st.sidebar.markdown("### Asset Gallery πŸ“ΈπŸ“–")

    all_files = get_gallery_files() # Get currently available files

    if not all_files:
        st.sidebar.info("No assets (images, PDFs, text files) found yet.")
        return

    st.sidebar.caption(f"Found {len(all_files)} assets:")

    for idx, file in enumerate(all_files):
        st.session_state['unique_counter'] += 1
        unique_id = st.session_state['unique_counter']
        item_key_base = f"gallery_item_{os.path.basename(file)}_{unique_id}"
        basename = os.path.basename(file)
        st.sidebar.markdown(f"**{basename}**") # Display filename clearly

        try:
            file_ext = os.path.splitext(file)[1].lower()
            # Display previews
            if file_ext in ['.png', '.jpg', '.jpeg']:
                 # Add expander for large galleries
                 with st.sidebar.expander("Preview", expanded=False):
                      st.image(Image.open(file), use_container_width=True)
            elif file_ext == '.pdf':
                 with st.sidebar.expander("Preview (Page 1)", expanded=False):
                      doc = fitz.open(file)
                      if len(doc) > 0:
                          pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5)) # Smaller preview
                          img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
                          st.image(img, use_container_width=True)
                      else:
                          st.warning("Empty PDF")
                      doc.close()
            elif file_ext in ['.md', '.txt']:
                 with st.sidebar.expander("Preview (Start)", expanded=False):
                      with open(file, 'r', encoding='utf-8', errors='ignore') as f:
                          content_preview = f.read(200) # Show first 200 chars
                      st.code(content_preview + "...", language='markdown' if file_ext == '.md' else 'text')

            # --- Actions for the file (Select, Download, Delete) ---
            action_cols = st.sidebar.columns(3) # Use columns for buttons
            with action_cols[0]:
                 checkbox_key = f"cb_{item_key_base}"
                 st.session_state['asset_checkboxes'][file] = st.checkbox(
                     "Select",
                     value=st.session_state['asset_checkboxes'].get(file, False),
                     key=checkbox_key
                 )
            with action_cols[1]:
                mime_map = {'.png': 'image/png', '.jpg': 'image/jpeg', '.jpeg': 'image/jpeg', '.pdf': 'application/pdf', '.txt': 'text/plain', '.md': 'text/markdown'}
                mime_type = mime_map.get(file_ext, "application/octet-stream")
                # Use button for download to avoid complex HTML link generation issues sometimes
                dl_key = f"dl_{item_key_base}"
                try:
                    with open(file, "rb") as fp:
                        st.download_button(
                             label="πŸ“₯",
                             data=fp,
                             file_name=basename,
                             mime=mime_type,
                             key=dl_key,
                             help="Download this file"
                         )
                except Exception as dl_e:
                     st.error(f"DL Err: {dl_e}")

            with action_cols[2]:
                delete_key = f"del_{item_key_base}"
                if st.button("πŸ—‘οΈ", key=delete_key, help=f"Delete {basename}"):
                    try:
                        os.remove(file)
                        st.session_state['asset_checkboxes'].pop(file, None) # Remove from selection state
                        # Remove from layout_snapshots if present
                        if file in st.session_state.get('layout_snapshots', []):
                            st.session_state['layout_snapshots'].remove(file)
                        logger.info(f"Deleted asset: {file}")
                        st.toast(f"Deleted {basename}!", icon="βœ…") # Use toast for less intrusive feedback
                        # REMOVED st.rerun() - Rely on file watcher
                    except OSError as e:
                        logger.error(f"Error deleting file {file}: {e}")
                        st.error(f"Could not delete {basename}")
                    # Trigger a rerun MANUALLY after deletion completes if file watcher is unreliable
                    st.rerun()


        except (fitz.fitz.FileNotFoundError, FileNotFoundError):
             st.sidebar.error(f"File not found: {basename}")
             st.session_state['asset_checkboxes'].pop(file, None) # Clean up state
        except (fitz.fitz.FileDataError, fitz.fitz.RuntimeException) as pdf_err:
             st.sidebar.error(f"Corrupt PDF: {basename}")
             logger.warning(f"Error opening PDF {file}: {pdf_err}")
        except UnidentifiedImageError:
            st.sidebar.error(f"Invalid Image: {basename}")
            logger.warning(f"Cannot identify image file {file}")
        except Exception as e:
            st.sidebar.error(f"Error: {basename}")
            logger.error(f"Error displaying asset {file}: {e}")

        st.sidebar.markdown("---") # Separator between items

# --- UI Elements -----------------------------------------

# --- Sidebar: HF Inference Settings ---
st.sidebar.subheader("πŸ€– Hugging Face Settings")
st.sidebar.markdown("Configure API inference or select local models.")

# API Settings Expander
with st.sidebar.expander("API Inference Settings", expanded=False):
    st.session_state.hf_custom_key = st.text_input(
        "Custom HF Token (BYOK)",
        value=st.session_state.get('hf_custom_key', ""),
        type="password",
        key="hf_custom_key_input",
        help="Enter your Hugging Face API token. Overrides HF_TOKEN env var."
    )
    token_status = "Custom Key Set" if st.session_state.hf_custom_key else ("Default HF_TOKEN Set" if HF_TOKEN else "No Token Set")
    st.caption(f"Token Status: {token_status}")

    providers_list = ["hf-inference", "cerebras", "together", "sambanova", "novita", "cohere", "fireworks-ai", "hyperbolic", "nebius"]
    st.session_state.hf_provider = st.selectbox(
        "Inference Provider",
        options=providers_list,
        index=providers_list.index(st.session_state.get('hf_provider', DEFAULT_PROVIDER)),
        key="hf_provider_select",
        help="Select the backend provider. Some require specific API keys."
    )
    # Validate provider based on key (simple validation)
    if not st.session_state.hf_custom_key and not HF_TOKEN and st.session_state.hf_provider != "hf-inference":
        st.warning(f"Provider '{st.session_state.hf_provider}' may require a token. Using 'hf-inference' may work without a token but with rate limits.")

    # API Model Selection
    st.session_state.hf_custom_api_model = st.text_input(
        "Custom API Model ID",
        value=st.session_state.get('hf_custom_api_model', ""),
        key="hf_custom_model_input",
        placeholder="e.g., google/gemma-2-9b-it",
        help="Overrides the featured model selection below if provided."
    )
    # Use custom if provided, otherwise use the selected featured model
    effective_api_model = st.session_state.hf_custom_api_model.strip() or st.session_state.hf_selected_api_model

    st.session_state.hf_selected_api_model = st.selectbox(
        "Featured API Model",
        options=FEATURED_MODELS_LIST,
        index=FEATURED_MODELS_LIST.index(st.session_state.get('hf_selected_api_model', FEATURED_MODELS_LIST[0])),
        key="hf_featured_model_select",
        help="Select a common model. Ignored if Custom API Model ID is set."
    )
    st.caption(f"Effective API Model: {effective_api_model}")


# Local Model Selection Expander
with st.sidebar.expander("Local Model Selection", expanded=True):
    if not _transformers_available:
        st.warning("Transformers library not found. Cannot load or use local models.")
    else:
        local_model_options = ["None"] + list(st.session_state.get('local_models', {}).keys())
        current_selection = st.session_state.get('selected_local_model_path')
        # Ensure current selection is valid
        if current_selection not in local_model_options:
             current_selection = "None"

        selected_path = st.selectbox(
            "Active Local Model",
            options=local_model_options,
            index=local_model_options.index(current_selection),
            format_func=lambda x: os.path.basename(x) if x != "None" else "None",
            key="local_model_selector",
            help="Select a model loaded via the 'Build Titan' tab to use for processing."
        )
        st.session_state.selected_local_model_path = selected_path if selected_path != "None" else None

        if st.session_state.selected_local_model_path:
             model_info = st.session_state.local_models[st.session_state.selected_local_model_path]
             st.caption(f"Type: {model_info.get('type', 'Unknown')}")
             st.caption(f"Device: {model_info.get('model').device if model_info.get('model') else 'N/A'}")
        else:
             st.caption("No local model selected.")

# Generation Parameters Expander
with st.sidebar.expander("Generation Parameters", expanded=False):
    st.session_state.gen_max_tokens = st.slider("Max New Tokens", 1, 4096, st.session_state.get('gen_max_tokens', 512), step=1, key="param_max_tokens")
    st.session_state.gen_temperature = st.slider("Temperature", 0.01, 2.0, st.session_state.get('gen_temperature', 0.7), step=0.01, key="param_temp")
    st.session_state.gen_top_p = st.slider("Top-P", 0.01, 1.0, st.session_state.get('gen_top_p', 0.95), step=0.01, key="param_top_p")
    # Note: HF often uses repetition_penalty instead of frequency_penalty. We'll use it here.
    st.session_state.gen_frequency_penalty = st.slider("Repetition Penalty", 1.0, 2.0, st.session_state.get('gen_frequency_penalty', 0.0)+1.0, step=0.05, key="param_repetition", help="1.0 means no penalty.")
    st.session_state.gen_seed = st.slider("Seed", -1, 65535, st.session_state.get('gen_seed', -1), step=1, key="param_seed", help="-1 for random.")



st.sidebar.markdown("---") # Separator before gallery settings

# --- ADDED: Gallery Settings Section ---
st.sidebar.subheader("πŸ–ΌοΈ Gallery Settings")
st.slider(
    "Max Items Shown",
    min_value=2,
    max_value=50, # Adjust max if needed
    value=st.session_state.get('gallery_size', 10),
    key="gallery_size_slider", # Keep the key, define it ONCE here
    help="Controls the maximum number of assets displayed in the sidebar gallery."
)
st.session_state.gallery_size = st.session_state.gallery_size_slider # Ensure sync
st.sidebar.markdown("---") # Separator after gallery settings




# --- App Title -------------------------------------------
st.title("Vision & Layout Titans (HF) πŸš€πŸ–ΌοΈπŸ“„")
st.markdown("Combined App: Image-to-PDF Layout + Hugging Face Powered AI Tools")

# --- Main Application Tabs -------------------------------
tab_list = [
    "Image->PDF Layout πŸ–ΌοΈβž‘οΈπŸ“„", # From App 1
    "Camera Snap πŸ“·",
    "Download PDFs πŸ“₯",
    "Build Titan (Local Models) 🌱", # Renamed for clarity
    "Text Process (HF) πŸ“", # New tab for text
    "Image Process (HF) πŸ–ΌοΈ", # New tab for image
    "Test OCR (HF) πŸ”", # Renamed
    "Character Editor πŸ§‘β€πŸŽ¨",
    "Character Gallery πŸ–ΌοΈ",
    # Original Tabs (potentially redundant or integrated now):
    # "PDF Process πŸ“„", (Integrated into Text/Image process conceptually)
    # "MD Gallery & Process πŸ“š", (Use Text Process tab)
    # "Test Image Gen 🎨", (Separate Diffusion logic)
]
# Filter out redundant tabs if they are fully replaced
# Example: If MD Gallery is fully handled by Text Process, remove it. For now, keep most.
# Let's keep PDF Process and Image Process separate for clarity of input type, but use the new HF functions
tabs_to_create = [
    "Image->PDF Layout πŸ–ΌοΈβž‘οΈπŸ“„",
    "Camera Snap πŸ“·",
    "Download PDFs πŸ“₯",
    "Build Titan (Local Models) 🌱",
    "PDF Process (HF) πŸ“„", # Use HF functions for PDF pages
    "Image Process (HF) πŸ–ΌοΈ",# Use HF functions for images
    "Text Process (HF) πŸ“", # Use HF functions for MD/TXT files
    "Test OCR (HF) πŸ”",   # Use HF OCR logic
    "Test Image Gen (Diffusers) 🎨", # Keep diffusion separate
    "Character Editor πŸ§‘β€πŸŽ¨",
    "Character Gallery πŸ–ΌοΈ",
]

tabs = st.tabs(tabs_to_create)

# --- Tab Implementations ---

# --- Tab 1: Image -> PDF Layout (Keep from previous merge) ---
with tabs[0]:
    # ... (Code from previous merge for this tab remains largely the same) ...
    st.header("Image to PDF Layout Generator")
    st.markdown("Upload or scan images, reorder them, and generate a PDF where each page matches the image dimensions and includes a simple caption.")
    col1, col2 = st.columns(2)
    with col1:
        st.subheader("A. Scan or Upload Images")
        layout_cam = st.camera_input("πŸ“Έ Scan Document for Layout PDF", key="layout_cam")
        if layout_cam:
            now = datetime.now(pytz.timezone("US/Central"))
            scan_name = generate_filename(f"layout_scan_{now.strftime('%a').upper()}", "png")
            try:
                with open(scan_name, "wb") as f: f.write(layout_cam.getvalue())
                st.image(Image.open(scan_name), caption=f"Scanned: {scan_name}", use_container_width=True)
                if scan_name not in st.session_state['layout_snapshots']: st.session_state['layout_snapshots'].append(scan_name)
                st.success(f"Scan saved as {scan_name}")
                update_gallery();  # Add to gallery
            except Exception as e: st.error(f"Failed to save scan: {e}"); logger.error(f"Failed to save camera scan {scan_name}: {e}")

        layout_uploads = st.file_uploader("πŸ“‚ Upload PNG/JPG Images for Layout PDF", type=["png","jpg","jpeg"], accept_multiple_files=True, key="layout_uploader")
        if layout_uploads: st.session_state['layout_new_uploads'] = layout_uploads # Store for processing below
    with col2:
        st.subheader("B. Review and Reorder")
        layout_records = []
        processed_snapshots = set()
        # Process snapshots
        for idx, path in enumerate(st.session_state.get('layout_snapshots', [])):
             if path not in processed_snapshots and os.path.exists(path):
                try:
                    with Image.open(path) as im: w, h = im.size; ar = round(w / h, 2) if h > 0 else 0; orient = "Square" if 0.9 <= ar <= 1.1 else ("Landscape" if ar > 1.1 else "Portrait")
                    layout_records.append({"filename": os.path.basename(path), "source": path, "width": w, "height": h, "aspect_ratio": ar, "orientation": orient, "order": idx, "type": "Scan"})
                    processed_snapshots.add(path)
                except Exception as e: logger.warning(f"Could not process snapshot {path}: {e}"); st.warning(f"Skipping invalid snapshot: {os.path.basename(path)}")
        # Process current uploads
        current_uploads = st.session_state.get('layout_new_uploads', [])
        if current_uploads:
             start_idx = len(layout_records)
             for jdx, f_obj in enumerate(current_uploads, start=start_idx):
                 try:
                     f_obj.seek(0)
                     with Image.open(f_obj) as im: w, h = im.size; ar = round(w / h, 2) if h > 0 else 0; orient = "Square" if 0.9 <= ar <= 1.1 else ("Landscape" if ar > 1.1 else "Portrait")
                     layout_records.append({"filename": f_obj.name, "source": f_obj, "width": w, "height": h, "aspect_ratio": ar, "orientation": orient, "order": jdx, "type": "Upload"})
                     f_obj.seek(0)
                 except Exception as e: logger.warning(f"Could not process uploaded file {f_obj.name}: {e}"); st.warning(f"Skipping invalid upload: {f_obj.name}")

        if not layout_records: st.info("Scan or upload images using the controls on the left.")
        else:
            layout_df = pd.DataFrame(layout_records); dims = st.multiselect("Include orientations:", options=["Landscape","Portrait","Square"], default=["Landscape","Portrait","Square"], key="layout_dims_filter")
            filtered_df = layout_df[layout_df['orientation'].isin(dims)].copy() if dims else layout_df.copy()
            filtered_df['order'] = filtered_df['order'].astype(int); filtered_df = filtered_df.sort_values('order').reset_index(drop=True)
            st.markdown("Edit 'Order' column or drag rows to set PDF page sequence:")
            edited_df = st.data_editor(filtered_df, column_config={"filename": st.column_config.TextColumn("Filename", disabled=True), "source": None, "width": st.column_config.NumberColumn("Width", disabled=True), "height": st.column_config.NumberColumn("Height", disabled=True), "aspect_ratio": st.column_config.NumberColumn("Aspect Ratio", format="%.2f", disabled=True), "orientation": st.column_config.TextColumn("Orientation", disabled=True), "type": st.column_config.TextColumn("Source Type", disabled=True), "order": st.column_config.NumberColumn("Order", min_value=0, step=1, required=True)}, hide_index=True, use_container_width=True, num_rows="dynamic", key="layout_editor")
            ordered_layout_df = edited_df.sort_values('order').reset_index(drop=True)
            ordered_sources_for_pdf = ordered_layout_df['source'].tolist()

            st.subheader("C. Generate & Download PDF")
            if st.button("πŸ–‹οΈ Generate Image-Sized PDF", key="generate_layout_pdf"):
                if not ordered_sources_for_pdf: st.warning("No images selected or available after filtering.")
                else:
                    with st.spinner("Generating PDF..."): pdf_bytes = make_image_sized_pdf(ordered_sources_for_pdf)
                    if pdf_bytes:
                        now = datetime.now(pytz.timezone("US/Central")); prefix = now.strftime("%Y%m%d-%H%M%p")
                        stems = [clean_stem(s) if isinstance(s, str) else clean_stem(getattr(s, 'name', 'upload')) for s in ordered_sources_for_pdf[:4]]
                        basename = " - ".join(stems) or "Layout"; pdf_fname = f"{prefix}_{basename}.pdf"; pdf_fname = re.sub(r'[^\w\- \.]', '_', pdf_fname)
                        st.success(f"βœ… PDF ready: **{pdf_fname}**")
                        st.download_button("⬇️ Download PDF", data=pdf_bytes, file_name=pdf_fname, mime="application/pdf", key="download_layout_pdf")
                        st.markdown("#### Preview First Page")
                        try:
                            doc = fitz.open(stream=pdf_bytes, filetype='pdf')
                            if len(doc) > 0: pix = doc[0].get_pixmap(matrix=fitz.Matrix(1.0, 1.0)); preview_img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); st.image(preview_img, caption=f"Preview of {pdf_fname} (Page 1)", use_container_width=True)
                            else: st.warning("Generated PDF appears empty.")
                            doc.close()
                        except Exception as preview_err: st.warning(f"Could not generate PDF preview: {preview_err}"); logger.warning(f"PDF preview error for {pdf_fname}: {preview_err}")
                    else: st.error("PDF generation failed. Check logs or image files.")


# --- Tab 2: Camera Snap (Keep from previous merge) ---
with tabs[1]:
    # ... (Code from previous merge for this tab) ...
    st.header("Camera Snap πŸ“·")
    st.subheader("Single Capture (Adds to General Gallery)")
    cols = st.columns(2)
    with cols[0]:
        cam0_img = st.camera_input("Take a picture - Cam 0", key="main_cam0")
        if cam0_img:
            filename = generate_filename("cam0_snap");
            if st.session_state.get('cam0_file') and os.path.exists(st.session_state['cam0_file']): 
                try: 
                    os.remove(st.session_state['cam0_file']) 
                except OSError: 
                    pass
            try:
                with open(filename, "wb") as f: f.write(cam0_img.getvalue())
                st.session_state['cam0_file'] = filename; st.session_state['history'].append(f"Snapshot from Cam 0: {filename}"); st.image(Image.open(filename), caption="Camera 0 Snap", use_container_width=True); logger.info(f"Saved snapshot from Camera 0: {filename}"); st.success(f"Saved {filename}")
                update_gallery();
            except Exception as e: 
                st.error(f"Failed to save Cam 0 snap: {e}"); logger.error(f"Failed to save Cam 0 snap {filename}: {e}")
    with cols[1]:
        cam1_img = st.camera_input("Take a picture - Cam 1", key="main_cam1")
        if cam1_img:
            filename = generate_filename("cam1_snap")
            if st.session_state.get('cam1_file') and os.path.exists(st.session_state['cam1_file']): 
                try: 
                    os.remove(st.session_state['cam1_file']) 
                except OSError: 
                    pass
            try:
                with open(filename, "wb") as f: f.write(cam1_img.getvalue())
                st.session_state['cam1_file'] = filename; st.session_state['history'].append(f"Snapshot from Cam 1: {filename}"); st.image(Image.open(filename), caption="Camera 1 Snap", use_container_width=True); logger.info(f"Saved snapshot from Camera 1: {filename}"); st.success(f"Saved {filename}")
                update_gallery();
            except Exception as e: st.error(f"Failed to save Cam 1 snap: {e}"); logger.error(f"Failed to save Cam 1 snap {filename}: {e}")


# --- Tab 3: Download PDFs (Keep from previous merge) ---
with tabs[2]:
    # ... (Code from previous merge for this tab) ...
    st.header("Download PDFs πŸ“₯")
    st.markdown("Download PDFs from URLs and optionally create image snapshots.")
    if st.button("Load Example arXiv URLs πŸ“š", key="load_examples"):
        example_urls = ["https://arxiv.org/pdf/2308.03892", "https://arxiv.org/pdf/1706.03762", "https://arxiv.org/pdf/2402.17764", "https://www.clickdimensions.com/links/ACCERL/"]
        st.session_state['pdf_urls_input'] = "\n".join(example_urls)
    url_input = st.text_area("Enter PDF URLs (one per line)", value=st.session_state.get('pdf_urls_input', ""), height=150, key="pdf_urls_textarea")
    if st.button("Robo-Download PDFs πŸ€–", key="download_pdfs_button"):
        urls = [url.strip() for url in url_input.strip().split("\n") if url.strip()]
        if not urls: st.warning("Please enter at least one URL.")
        else:
            progress_bar = st.progress(0); status_text = st.empty(); total_urls = len(urls); download_count = 0; existing_pdfs = get_pdf_files()
            for idx, url in enumerate(urls):
                output_path = pdf_url_to_filename(url); status_text.text(f"Processing {idx + 1}/{total_urls}: {os.path.basename(output_path)}..."); progress_bar.progress((idx + 1) / total_urls)
                if output_path in existing_pdfs: st.info(f"Already exists: {os.path.basename(output_path)}"); st.session_state['downloaded_pdfs'][url] = output_path; st.session_state['asset_checkboxes'][output_path] = st.session_state['asset_checkboxes'].get(output_path, False)
                else:
                    if download_pdf(url, output_path): st.session_state['downloaded_pdfs'][url] = output_path; logger.info(f"Downloaded PDF from {url} to {output_path}"); st.session_state['history'].append(f"Downloaded PDF: {output_path}"); st.session_state['asset_checkboxes'][output_path] = False; download_count += 1; existing_pdfs.append(output_path)
                    else: st.error(f"Failed to download: {url}")
            status_text.success(f"Download process complete! Successfully downloaded {download_count} new PDFs.")
            if download_count > 0: update_gallery();

    st.subheader("Create Snapshots from Gallery PDFs")
    snapshot_mode = st.selectbox("Snapshot Mode", ["First Page (High-Res)", "First Two Pages (High-Res)", "All Pages (High-Res)", "First Page (Low-Res Preview)"], key="pdf_snapshot_mode")
    resolution_map = {"First Page (High-Res)": 2.0, "First Two Pages (High-Res)": 2.0, "All Pages (High-Res)": 2.0, "First Page (Low-Res Preview)": 1.0}
    mode_key_map = {"First Page (High-Res)": "single", "First Two Pages (High-Res)": "twopage", "All Pages (High-Res)": "allpages", "First Page (Low-Res Preview)": "single"}
    resolution = resolution_map[snapshot_mode]; mode_key = mode_key_map[snapshot_mode]
    if st.button("Snapshot Selected PDFs πŸ“Έ", key="snapshot_selected_pdfs"):
        selected_pdfs = [path for path in get_gallery_files(['pdf']) if st.session_state['asset_checkboxes'].get(path, False)]
        if not selected_pdfs: st.warning("No PDFs selected in the sidebar gallery!")
        else:
            st.info(f"Starting snapshot process for {len(selected_pdfs)} selected PDF(s)..."); snapshot_count = 0; total_snapshots_generated = 0
            for pdf_path in selected_pdfs:
                if not os.path.exists(pdf_path): st.warning(f"File not found: {pdf_path}. Skipping."); continue
                new_snapshots = asyncio.run(process_pdf_snapshot(pdf_path, mode_key, resolution))
                if new_snapshots:
                    snapshot_count += 1; total_snapshots_generated += len(new_snapshots)
                    st.write(f"Snapshots for {os.path.basename(pdf_path)}:"); cols = st.columns(3)
                    for i, snap_path in enumerate(new_snapshots):
                         with cols[i % 3]: st.image(Image.open(snap_path), caption=os.path.basename(snap_path), use_container_width=True); st.session_state['asset_checkboxes'][snap_path] = False # Add to gallery
            if total_snapshots_generated > 0: st.success(f"Generated {total_snapshots_generated} snapshots from {snapshot_count} PDFs."); update_gallery();
            else: st.warning("No snapshots were generated. Check logs or PDF files.")

# --- Tab 4: Build Titan (Local Models) ---
with tabs[3]:
    st.header("Build Titan (Local Models) 🌱")
    st.markdown("Download and save models from Hugging Face Hub for local use.")

    if not _transformers_available:
        st.error("Transformers library not available. Cannot download or load local models.")
    else:
        build_model_type = st.selectbox(
            "Select Model Type",
            ["Causal LM", "Vision/Multimodal", "OCR", "Diffusion"], # Added more types
            key="build_type_local"
        )

        st.subheader(f"Download {build_model_type} Model")
        # Model ID Input (allow searching/pasting)
        hf_model_id = st.text_input(
            "Hugging Face Model ID",
            placeholder=f"e.g., {'google/gemma-2-9b-it' if build_model_type == 'Causal LM' else 'llava-hf/llava-1.5-7b-hf' if build_model_type == 'Vision/Multimodal' else 'microsoft/trocr-base-handwritten' if build_model_type == 'OCR' else 'stabilityai/stable-diffusion-xl-base-1.0'}",
            key="build_hf_model_id"
        )
        local_model_name = st.text_input(
            "Local Name for this Model",
            value=f"{build_model_type.split('/')[0].lower()}_{os.path.basename(hf_model_id).replace('.','') if hf_model_id else 'model'}",
            key="build_local_name",
            help="A unique name to identify this model locally."
        )

        # Add a note about token requirements for gated models
        st.info("Private or gated models require a valid Hugging Face token (set via HF_TOKEN env var or the Custom Key in sidebar API settings).")

        if st.button(f"Download & Save '{hf_model_id}' Locally", key="build_download_button", disabled=not hf_model_id or not local_model_name):
            # Validate local name uniqueness
            if local_model_name in [os.path.basename(p) for p in st.session_state.get('local_models', {})]:
                 st.error(f"A local model named '{local_model_name}' already exists. Choose a different name.")
            else:
                model_type_map = {
                    "Causal LM": "causal", "Vision/Multimodal": "vision", "OCR": "ocr", "Diffusion": "diffusion"
                }
                model_type_short = model_type_map.get(build_model_type, "unknown")

                config = LocalModelConfig(
                    name=local_model_name,
                    hf_id=hf_model_id,
                    model_type=model_type_short
                )
                save_path = config.get_full_path()
                os.makedirs(os.path.dirname(save_path), exist_ok=True)

                st.info(f"Attempting to download '{hf_model_id}' to '{save_path}'...")
                progress_bar_build = st.progress(0)
                status_text_build = st.empty()
                token_build = st.session_state.hf_custom_key or HF_TOKEN or None

                try:
                    if build_model_type == "Diffusion":
                         # Use Diffusers library download
                         if not _diffusers_available: raise ImportError("Diffusers library required for diffusion models.")
                         # Diffusers downloads directly, no explicit save needed after load typically
                         status_text_build.text("Downloading diffusion model pipeline...")
                         pipeline_obj = StableDiffusionPipeline.from_pretrained(hf_model_id, token=token_build)
                         status_text_build.text("Saving diffusion model pipeline...")
                         pipeline_obj.save_pretrained(save_path)
                         # Store info, but maybe not the full pipeline object in session state due to size
                         st.session_state.local_models[save_path] = {'type': 'diffusion', 'hf_id': hf_model_id, 'model':None, 'tokenizer':None} # Mark as downloaded
                         st.success(f"Diffusion model '{hf_model_id}' downloaded and saved to {save_path}")

                    else:
                         # Use Transformers library download
                         status_text_build.text("Downloading model components...")
                         # Determine AutoModel class based on type (can be refined)
                         if model_type_short == 'causal':
                             model_class = AutoModelForCausalLM
                             tokenizer_class = AutoTokenizer
                             processor_class = None
                         elif model_type_short == 'vision':
                             model_class = AutoModelForVision2Seq # Common for VQA/Captioning
                             processor_class = AutoProcessor # Handles image+text
                             tokenizer_class = None # Usually part of processor
                         elif model_type_short == 'ocr':
                             model_class = AutoModelForVision2Seq # TrOCR uses this
                             processor_class = AutoProcessor
                             tokenizer_class = None
                         else:
                             raise ValueError(f"Unknown model type for downloading: {model_type_short}")

                         # Download and save model
                         model_obj = model_class.from_pretrained(hf_model_id, token=token_build)
                         model_obj.save_pretrained(save_path)
                         status_text_build.text(f"Model saved. Downloading processor/tokenizer...")

                         # Download and save tokenizer/processor
                         if processor_class:
                             processor_obj = processor_class.from_pretrained(hf_model_id, token=token_build)
                             processor_obj.save_pretrained(save_path)
                             tokenizer_obj = getattr(processor_obj, 'tokenizer', None) # Get tokenizer from processor if exists
                         elif tokenizer_class:
                             tokenizer_obj = tokenizer_class.from_pretrained(hf_model_id, token=token_build)
                             tokenizer_obj.save_pretrained(save_path)
                             processor_obj = None # No separate processor
                         else: # Should not happen with current logic
                              tokenizer_obj = None
                              processor_obj = None

                         # --- Load into memory and store in session state ---
                         # This might consume significant memory! Consider loading on demand instead.
                         status_text_build.text(f"Loading '{local_model_name}' into memory...")
                         device = "cuda" if torch.cuda.is_available() else "cpu"

                         reloaded_model = model_class.from_pretrained(save_path).to(device)
                         reloaded_processor = processor_class.from_pretrained(save_path) if processor_class else None
                         reloaded_tokenizer = tokenizer_class.from_pretrained(save_path) if tokenizer_class and not reloaded_processor else getattr(reloaded_processor, 'tokenizer', None)

                         st.session_state.local_models[save_path] = {
                             'type': model_type_short,
                             'hf_id': hf_model_id,
                             'model': reloaded_model,
                             'tokenizer': reloaded_tokenizer,
                             'processor': reloaded_processor, # Store processor if it exists
                         }
                         st.success(f"{build_model_type} model '{hf_model_id}' downloaded to {save_path} and loaded into memory ({device}).")
                         # Optionally select the newly loaded model
                         st.session_state.selected_local_model_path = save_path


                except (RepositoryNotFoundError, GatedRepoError) as e:
                     st.error(f"Download failed: Repository not found or requires specific access/token. Check Model ID and your HF token. Error: {e}")
                     logger.error(f"Download failed for {hf_model_id}: {e}")
                     if os.path.exists(save_path): shutil.rmtree(save_path) # Clean up partial download
                except ImportError as e:
                     st.error(f"Download failed: Required library missing. {e}")
                     logger.error(f"ImportError during download of {hf_model_id}: {e}")
                except Exception as e:
                     st.error(f"An unexpected error occurred during download: {e}")
                     logger.error(f"Download failed for {hf_model_id}: {e}")
                     if os.path.exists(save_path): shutil.rmtree(save_path) # Clean up

                finally:
                     progress_bar_build.progress(1.0)
                     status_text_build.empty()

        st.subheader("Manage Local Models")
        loaded_model_paths = list(st.session_state.get('local_models', {}).keys())
        if not loaded_model_paths:
            st.info("No models downloaded yet.")
        else:
            models_df_data = []
            for path, data in st.session_state.local_models.items():
                 models_df_data.append({
                      "Local Name": os.path.basename(path),
                      "Type": data.get('type', 'N/A'),
                      "HF ID": data.get('hf_id', 'N/A'),
                      "Loaded": "Yes" if data.get('model') else "No (Info only)",
                      "Path": path
                 })
            models_df = pd.DataFrame(models_df_data)
            st.dataframe(models_df, use_container_width=True, hide_index=True, column_order=["Local Name", "Type", "HF ID", "Loaded"])

            model_to_delete = st.selectbox("Select model to delete", [""] + [os.path.basename(p) for p in loaded_model_paths], key="delete_model_select")
            if model_to_delete and st.button(f"Delete Local Model '{model_to_delete}'", type="primary"):
                path_to_delete = next((p for p in loaded_model_paths if os.path.basename(p) == model_to_delete), None)
                if path_to_delete:
                    try:
                        # Remove from session state first
                        del st.session_state.local_models[path_to_delete]
                        if st.session_state.selected_local_model_path == path_to_delete:
                            st.session_state.selected_local_model_path = None
                        # Delete from disk
                        if os.path.exists(path_to_delete):
                            shutil.rmtree(path_to_delete)
                        st.success(f"Deleted model '{model_to_delete}' and its files.")
                        logger.info(f"Deleted local model: {path_to_delete}")
                    except Exception as e:
                        st.error(f"Failed to delete model '{model_to_delete}': {e}")
                        logger.error(f"Failed to delete model {path_to_delete}: {e}")


# --- Tab 5: PDF Process (HF) ---
with tabs[4]:
    st.header("PDF Process with HF Models πŸ“„")
    st.markdown("Upload PDFs, view pages, and extract text using selected HF models (API or Local).")

    # Inference Source Selection
    pdf_use_api = st.radio(
        "Choose Processing Method",
        ["Hugging Face API", "Loaded Local Model"],
        key="pdf_process_source",
        horizontal=True,
        help="API uses settings from sidebar. Local uses the selected local model (if suitable)."
    )

    if pdf_use_api == "Hugging Face API":
        st.info(f"Using API Model: {st.session_state.hf_custom_api_model.strip() or st.session_state.hf_selected_api_model}")
    else:
        if st.session_state.selected_local_model_path:
            st.info(f"Using Local Model: {os.path.basename(st.session_state.selected_local_model_path)}")
        else:
            st.warning("No local model selected. Please select one in the sidebar.")

    uploaded_pdfs_process_hf = st.file_uploader("Upload PDF files to process", type=["pdf"], accept_multiple_files=True, key="pdf_process_uploader_hf")

    if uploaded_pdfs_process_hf:
        # Simplified: Process only the first page for demonstration
        process_all_pages_pdf = st.checkbox("Process All Pages (can be slow/expensive)", value=False, key="pdf_process_all_hf")
        pdf_prompt = st.text_area("Prompt for PDF Page Processing", "Extract the text content from this page.", key="pdf_process_prompt_hf")

        if st.button("Process Uploaded PDFs with HF", key="process_uploaded_pdfs_hf"):
            if pdf_use_api == "Loaded Local Model" and not st.session_state.selected_local_model_path:
                 st.error("Cannot process locally: No local model selected.")
            else:
                combined_text_output_hf = f"# HF PDF Processing Results ({'API' if pdf_use_api else 'Local'})\n\n"
                total_pages_processed_hf = 0
                output_placeholder_hf = st.container()

                for pdf_file in uploaded_pdfs_process_hf:
                    output_placeholder_hf.markdown(f"--- \n### Processing: {pdf_file.name}")
                    # Read PDF bytes
                    pdf_bytes = pdf_file.read()
                    try:
                        doc = fitz.open("pdf", pdf_bytes) # Open from bytes
                        num_pages = len(doc)
                        pages_to_process = range(num_pages) if process_all_pages_pdf else range(min(1, num_pages)) # Limit to 1 unless checked

                        output_placeholder_hf.info(f"Processing {len(pages_to_process)} of {num_pages} pages...")
                        doc_text = f"## File: {pdf_file.name}\n\n"

                        for i in pages_to_process:
                            page_placeholder = output_placeholder_hf.empty()
                            page_placeholder.info(f"Processing Page {i + 1}/{num_pages}...")
                            page = doc[i]
                            pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
                            img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)

                            # Display image and process
                            cols_pdf = output_placeholder_hf.columns(2)
                            cols_pdf[0].image(img, caption=f"Page {i+1}", use_container_width=True)
                            with cols_pdf[1]:
                                 # Use the new image processing function
                                 # NOTE: This relies on the process_image_hf implementation
                                 # which is currently basic/placeholder for local models.
                                 with st.spinner("Processing page with HF model..."):
                                     hf_text = process_image_hf(img, pdf_prompt, use_api=pdf_use_api)
                                 st.text_area(f"Result (Page {i+1})", hf_text, height=250, key=f"pdf_hf_out_{pdf_file.name}_{i}")

                            doc_text += f"### Page {i + 1}\n\n{hf_text}\n\n---\n\n"
                            total_pages_processed_hf += 1
                            page_placeholder.empty() # Clear status message

                        combined_text_output_hf += doc_text
                        doc.close()

                    except (fitz.fitz.FileDataError, fitz.fitz.RuntimeException) as pdf_err:
                        output_placeholder_hf.error(f"Error opening PDF {pdf_file.name}: {pdf_err}. Skipping.")
                    except Exception as e:
                        output_placeholder_hf.error(f"Error processing {pdf_file.name}: {str(e)}")

                if total_pages_processed_hf > 0:
                    st.markdown("--- \n### Combined Processing Results")
                    st.text_area("Full Output", combined_text_output_hf, height=400, key="combined_pdf_hf_output")
                    output_filename_pdf_hf = generate_filename("hf_processed_pdfs", "md")
                    try:
                        with open(output_filename_pdf_hf, "w", encoding="utf-8") as f: f.write(combined_text_output_hf)
                        st.success(f"Combined output saved to {output_filename_pdf_hf}")
                        st.markdown(get_download_link(output_filename_pdf_hf, "text/markdown", "Download Combined MD"), unsafe_allow_html=True)
                        st.session_state['asset_checkboxes'][output_filename_pdf_hf] = False; update_gallery()
                    except IOError as e: st.error(f"Failed to save combined output file: {e}")


# --- Tab 6: Image Process (HF) ---
with tabs[5]:
    st.header("Image Process with HF Models πŸ–ΌοΈ")
    st.markdown("Upload images and process them using selected HF models (API or Local).")

    img_use_api = st.radio(
        "Choose Processing Method",
        ["Hugging Face API", "Loaded Local Model"],
        key="img_process_source_hf",
        horizontal=True
    )
    if img_use_api == "Hugging Face API":
        st.info(f"Using API Model: {st.session_state.hf_custom_api_model.strip() or st.session_state.hf_selected_api_model}")
    else:
        if st.session_state.selected_local_model_path: st.info(f"Using Local Model: {os.path.basename(st.session_state.selected_local_model_path)}")
        else: st.warning("No local model selected.")

    img_prompt_hf = st.text_area("Prompt for Image Processing", "Describe this image in detail.", key="img_process_prompt_hf")
    uploaded_images_process_hf = st.file_uploader("Upload image files", type=["png", "jpg", "jpeg"], accept_multiple_files=True, key="image_process_uploader_hf")

    if uploaded_images_process_hf:
        if st.button("Process Uploaded Images with HF", key="process_images_hf"):
             if img_use_api == "Loaded Local Model" and not st.session_state.selected_local_model_path:
                 st.error("Cannot process locally: No local model selected.")
             else:
                combined_img_text_hf = f"# HF Image Processing Results ({'API' if img_use_api else 'Local'})\n\n**Prompt:** {img_prompt_hf}\n\n---\n\n"
                images_processed_hf = 0
                output_img_placeholder_hf = st.container()

                for img_file in uploaded_images_process_hf:
                    output_img_placeholder_hf.markdown(f"### Processing: {img_file.name}")
                    try:
                        img = Image.open(img_file)
                        cols_img_hf = output_img_placeholder_hf.columns(2)
                        cols_img_hf[0].image(img, caption=f"Input: {img_file.name}", use_container_width=True)
                        with cols_img_hf[1], st.spinner("Processing image with HF model..."):
                             # Use the new image processing function
                             hf_img_text = process_image_hf(img, img_prompt_hf, use_api=img_use_api)
                             st.text_area(f"Result", hf_img_text, height=300, key=f"img_hf_out_{img_file.name}")

                        combined_img_text_hf += f"## Image: {img_file.name}\n\n{hf_img_text}\n\n---\n\n"
                        images_processed_hf += 1

                    except UnidentifiedImageError: output_img_placeholder_hf.error(f"Invalid Image: {img_file.name}. Skipping.")
                    except Exception as e: output_img_placeholder_hf.error(f"Error processing {img_file.name}: {str(e)}")

                if images_processed_hf > 0:
                    st.markdown("--- \n### Combined Processing Results")
                    st.text_area("Full Output", combined_img_text_hf, height=400, key="combined_img_hf_output")
                    output_filename_img_hf = generate_filename("hf_processed_images", "md")
                    try:
                        with open(output_filename_img_hf, "w", encoding="utf-8") as f: f.write(combined_img_text_hf)
                        st.success(f"Combined output saved to {output_filename_img_hf}")
                        st.markdown(get_download_link(output_filename_img_hf, "text/markdown", "Download Combined MD"), unsafe_allow_html=True)
                        st.session_state['asset_checkboxes'][output_filename_img_hf] = False; update_gallery()
                    except IOError as e: st.error(f"Failed to save combined output file: {e}")


# --- Tab 7: Text Process (HF) ---
with tabs[6]:
    st.header("Text Process with HF Models πŸ“")
    st.markdown("Process Markdown (.md) or Text (.txt) files using selected HF models (API or Local).")

    text_use_api = st.radio(
        "Choose Processing Method",
        ["Hugging Face API", "Loaded Local Model"],
        key="text_process_source_hf",
        horizontal=True
    )
    if text_use_api == "Hugging Face API":
        st.info(f"Using API Model: {st.session_state.hf_custom_api_model.strip() or st.session_state.hf_selected_api_model}")
    else:
        if st.session_state.selected_local_model_path: st.info(f"Using Local Model: {os.path.basename(st.session_state.selected_local_model_path)}")
        else: st.warning("No local model selected.")

    text_files_hf = get_gallery_files(['md', 'txt'])
    if not text_files_hf:
         st.warning("No .md or .txt files in gallery to process.")
    else:
        selected_text_file_hf = st.selectbox(
             "Select Text/MD File to Process",
             options=[""] + text_files_hf,
             format_func=lambda x: os.path.basename(x) if x else "Select a file...",
             key="text_process_select_hf"
        )

        if selected_text_file_hf:
             st.write(f"Selected: {os.path.basename(selected_text_file_hf)}")
             try:
                 with open(selected_text_file_hf, "r", encoding="utf-8", errors='ignore') as f:
                     content_text_hf = f.read()
                 st.text_area("File Content Preview", content_text_hf[:1000] + ("..." if len(content_text_hf) > 1000 else ""), height=200, key="text_content_preview_hf")

                 prompt_text_hf = st.text_area(
                     "Enter Prompt for this File",
                     "Summarize the key points of this text.",
                     key="text_individual_prompt_hf"
                 )

                 if st.button(f"Process '{os.path.basename(selected_text_file_hf)}' with HF", key=f"process_text_hf_btn"):
                     if text_use_api == "Loaded Local Model" and not st.session_state.selected_local_model_path:
                         st.error("Cannot process locally: No local model selected.")
                     else:
                        with st.spinner("Processing text with HF model..."):
                            result_text_processed = process_text_hf(content_text_hf, prompt_text_hf, use_api=text_use_api)

                        st.markdown("### Processing Result")
                        st.markdown(result_text_processed) # Display result

                        output_filename_text_hf = generate_filename(f"hf_processed_{os.path.splitext(os.path.basename(selected_text_file_hf))[0]}", "md")
                        try:
                            with open(output_filename_text_hf, "w", encoding="utf-8") as f: f.write(result_text_processed)
                            st.success(f"Result saved to {output_filename_text_hf}")
                            st.markdown(get_download_link(output_filename_text_hf, "text/markdown", "Download Result MD"), unsafe_allow_html=True)
                            st.session_state['asset_checkboxes'][output_filename_text_hf] = False; update_gallery()
                        except IOError as e: st.error(f"Failed to save result file: {e}")

             except FileNotFoundError: st.error("Selected file not found.")
             except Exception as e: st.error(f"Error reading file: {e}")


# --- Tab 8: Test OCR (HF) ---
with tabs[7]:
    st.header("Test OCR with HF Models πŸ”")
    st.markdown("Select an image/PDF and run OCR using HF models (API or Local - requires suitable local model).")

    ocr_use_api = st.radio(
        "Choose OCR Method",
        ["Hugging Face API (Basic Captioning/OCR)", "Loaded Local OCR Model"],
        key="ocr_source_hf",
        horizontal=True,
        help="API uses basic image-to-text. Local requires a dedicated OCR model (e.g., TrOCR) to be loaded."
    )
    if ocr_use_api == "Loaded Local OCR Model":
         if st.session_state.selected_local_model_path:
              model_type = st.session_state.local_models.get(st.session_state.selected_local_model_path,{}).get('type')
              if model_type != 'ocr':
                   st.warning(f"Selected local model ({os.path.basename(st.session_state.selected_local_model_path)}) is type '{model_type}', not 'ocr'. Results may be poor.")
              else:
                   st.info(f"Using Local OCR Model: {os.path.basename(st.session_state.selected_local_model_path)}")
         else: st.warning("No local model selected.")

    gallery_files_ocr_hf = get_gallery_files(['png', 'jpg', 'jpeg', 'pdf'])
    if not gallery_files_ocr_hf:
        st.warning("No images or PDFs in gallery.")
    else:
        selected_file_ocr_hf = st.selectbox(
            "Select Image or PDF from Gallery for OCR",
            options=[""] + gallery_files_ocr_hf,
            format_func=lambda x: os.path.basename(x) if x else "Select a file...",
            key="ocr_select_file_hf"
        )

        if selected_file_ocr_hf:
            st.write(f"Selected: {os.path.basename(selected_file_ocr_hf)}")
            file_ext_ocr_hf = os.path.splitext(selected_file_ocr_hf)[1].lower()
            image_to_ocr_hf = None; page_info_hf = ""

            try:
                if file_ext_ocr_hf in ['.png', '.jpg', '.jpeg']: image_to_ocr_hf = Image.open(selected_file_ocr_hf)
                elif file_ext_ocr_hf == '.pdf':
                    doc = fitz.open(selected_file_ocr_hf)
                    if len(doc) > 0: pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); image_to_ocr_hf = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); page_info_hf = " (Page 1)"
                    else: st.warning("Selected PDF is empty.")
                    doc.close()

                if image_to_ocr_hf:
                    st.image(image_to_ocr_hf, caption=f"Image for OCR{page_info_hf}", use_container_width=True)
                    if st.button("Run HF OCR on this Image πŸš€", key="ocr_run_button_hf"):
                        if ocr_use_api == "Loaded Local OCR Model" and not st.session_state.selected_local_model_path:
                             st.error("Cannot run locally: No local model selected.")
                        else:
                            output_ocr_file_hf = generate_filename(f"hf_ocr_{os.path.splitext(os.path.basename(selected_file_ocr_hf))[0]}", "txt")
                            st.session_state['processing']['ocr'] = True
                            with st.spinner("Performing OCR with HF model..."):
                                 ocr_result_hf = asyncio.run(process_hf_ocr(image_to_ocr_hf, output_ocr_file_hf, use_api=ocr_use_api))
                            st.session_state['processing']['ocr'] = False

                            st.text_area("OCR Result", ocr_result_hf, height=300, key="ocr_result_display_hf")
                            if ocr_result_hf and not ocr_result_hf.startswith("Error") and not ocr_result_hf.startswith("["):
                                entry = f"HF OCR: {selected_file_ocr_hf}{page_info_hf} -> {output_ocr_file_hf}"
                                st.session_state['history'].append(entry)
                                if len(ocr_result_hf) > 5: # Minimal check
                                    st.success(f"OCR output saved to {output_ocr_file_hf}")
                                    st.markdown(get_download_link(output_ocr_file_hf, "text/plain", "Download OCR Text"), unsafe_allow_html=True)
                                    st.session_state['asset_checkboxes'][output_ocr_file_hf] = False; update_gallery()
                                else: st.warning("OCR output seems short/empty.")
                            else: st.error(f"OCR failed. {ocr_result_hf}")

            except Exception as e: st.error(f"Error loading file for OCR: {e}")

# --- Tab 9: Test Image Gen (Diffusers) ---
with tabs[8]:
    st.header("Test Image Generation (Diffusers) 🎨")
    st.markdown("Generate images using Stable Diffusion models loaded locally via the Diffusers library.")

    if not _diffusers_available:
         st.error("Diffusers library is required for image generation.")
    else:
        # Select from locally downloaded *diffusion* models
        local_diffusion_paths = get_local_model_paths("diffusion")
        if not local_diffusion_paths:
             st.warning("No local diffusion models found. Download one using the 'Build Titan' tab.")
             selected_diffusion_model_path = None
        else:
            selected_diffusion_model_path = st.selectbox(
                 "Select Local Diffusion Model",
                 options=[""] + local_diffusion_paths,
                 format_func=lambda x: os.path.basename(x) if x else "Select...",
                 key="imggen_diffusion_model_select"
            )

        prompt_imggen_diff = st.text_area("Image Generation Prompt", "A photorealistic cat wearing sunglasses, studio lighting", key="imggen_prompt_diff")
        neg_prompt_imggen_diff = st.text_area("Negative Prompt (Optional)", "ugly, deformed, blurry, low quality", key="imggen_neg_prompt_diff")
        steps_imggen_diff = st.slider("Inference Steps", 10, 100, 25, key="imggen_steps")
        guidance_imggen_diff = st.slider("Guidance Scale", 1.0, 20.0, 7.5, step=0.5, key="imggen_guidance")

        if st.button("Generate Image πŸš€", key="imggen_run_button_diff", disabled=not selected_diffusion_model_path):
            if not prompt_imggen_diff: st.warning("Please enter a prompt.")
            else:
                 status_imggen = st.empty()
                 try:
                     # Load pipeline from saved path on demand
                     status_imggen.info(f"Loading diffusion pipeline: {os.path.basename(selected_diffusion_model_path)}...")
                     # Determine device
                     device = "cuda" if torch.cuda.is_available() else "cpu"
                     dtype = torch.float16 if torch.cuda.is_available() else torch.float32 # Use float16 on GPU if available
                     pipe = StableDiffusionPipeline.from_pretrained(selected_diffusion_model_path, torch_dtype=dtype).to(device)
                     pipe.safety_checker = None # Optional: Disable safety checker if needed

                     status_imggen.info(f"Generating image on {device} ({dtype})...")
                     start_gen_time = time.time()

                     # Generate using the pipeline
                     gen_output = pipe(
                          prompt=prompt_imggen_diff,
                          negative_prompt=neg_prompt_imggen_diff if neg_prompt_imggen_diff else None,
                          num_inference_steps=steps_imggen_diff,
                          guidance_scale=guidance_imggen_diff,
                          # Add seed if desired: generator=torch.Generator(device=device).manual_seed(your_seed)
                     )
                     gen_image = gen_output.images[0]

                     elapsed_gen = int(time.time() - start_gen_time)
                     status_imggen.success(f"Image generated in {elapsed_gen}s!")

                     # Save and display
                     output_imggen_file_diff = generate_filename("diffusion_gen", "png")
                     gen_image.save(output_imggen_file_diff)
                     st.image(gen_image, caption=f"Generated: {output_imggen_file_diff}", use_container_width=True)
                     st.markdown(get_download_link(output_imggen_file_diff, "image/png", "Download Generated Image"), unsafe_allow_html=True)
                     st.session_state['asset_checkboxes'][output_imggen_file_diff] = False; update_gallery()
                     st.session_state['history'].append(f"Diffusion Gen: '{prompt_imggen_diff[:30]}...' -> {output_imggen_file_diff}")

                 except ImportError: st.error("Diffusers or Torch library not found.")
                 except Exception as e:
                     st.error(f"Image generation failed: {e}")
                     logger.error(f"Diffusion generation failed for {selected_diffusion_model_path}: {e}")
                 finally:
                     # Clear pipeline from memory? (Optional, depends on memory usage)
                     if 'pipe' in locals(): del pipe; torch.cuda.empty_cache() if torch.cuda.is_available() else None


# --- Tab 10: Character Editor (Keep from previous merge) ---
with tabs[9]:
    # ... (Code from previous merge for this tab) ...
    st.header("Character Editor πŸ§‘β€πŸŽ¨")
    st.subheader("Create Your Character")
    load_characters(); existing_char_names = [c['name'] for c in st.session_state.get('characters', [])]
    form_key = f"character_form_{st.session_state.get('char_form_reset_key', 0)}"
    with st.form(key=form_key):
        st.markdown("**Create New Character**")
        if st.form_submit_button("Randomize Content 🎲"): st.session_state['char_form_reset_key'] = st.session_state.get('char_form_reset_key', 0) + 1; st.rerun()
        rand_name, rand_gender, rand_intro, rand_greeting = randomize_character_content()
        name_char = st.text_input("Name (3-25 chars...)", value=rand_name, max_chars=25, key="char_name_input")
        gender_char = st.radio("Gender", ["Male", "Female"], index=["Male", "Female"].index(rand_gender), key="char_gender_radio")
        intro_char = st.text_area("Intro (Public description)", value=rand_intro, max_chars=300, height=100, key="char_intro_area")
        greeting_char = st.text_area("Greeting (First message)", value=rand_greeting, max_chars=300, height=100, key="char_greeting_area")
        tags_char = st.text_input("Tags (comma-separated)", "OC, friendly", key="char_tags_input")
        submitted = st.form_submit_button("Create Character ✨")
        if submitted:
            error = False
            if not (3 <= len(name_char) <= 25): st.error("Name must be 3-25 characters."); error = True
            if not re.match(r'^[a-zA-Z0-9 _-]+$', name_char): st.error("Name contains invalid characters."); error = True
            if name_char in existing_char_names: st.error(f"Name '{name_char}' already exists!"); error = True
            if not intro_char or not greeting_char: st.error("Intro/Greeting cannot be empty."); error = True
            if not error:
                tag_list = [tag.strip() for tag in tags_char.split(',') if tag.strip()]
                character_data = {"name": name_char, "gender": gender_char, "intro": intro_char, "greeting": greeting_char, "created_at": datetime.now(pytz.timezone("US/Central")).strftime('%Y-%m-%d %H:%M:%S %Z'), "tags": tag_list}
                if save_character(character_data):
                    st.success(f"Character '{name_char}' created!"); st.session_state['char_form_reset_key'] = st.session_state.get('char_form_reset_key', 0) + 1; st.rerun()

# --- Tab 11: Character Gallery (Keep from previous merge) ---
with tabs[10]:
    # ... (Code from previous merge for this tab) ...
    st.header("Character Gallery πŸ–ΌοΈ")
    load_characters(); characters_list = st.session_state.get('characters', [])
    if not characters_list: st.warning("No characters created yet.")
    else:
        st.subheader(f"Your Characters ({len(characters_list)})")
        search_term = st.text_input("Search Characters by Name", key="char_gallery_search")
        if search_term: characters_list = [c for c in characters_list if search_term.lower() in c['name'].lower()]
        cols_char_gallery = st.columns(3); chars_to_delete = []
        for idx, char in enumerate(characters_list):
            with cols_char_gallery[idx % 3], st.container(border=True):
                st.markdown(f"**{char['name']}**"); st.caption(f"Gender: {char.get('gender', 'N/A')}")
                st.markdown("**Intro:**"); st.markdown(f"> {char.get('intro', '')}")
                st.markdown("**Greeting:**"); st.markdown(f"> {char.get('greeting', '')}")
                st.caption(f"Tags: {', '.join(char.get('tags', ['N/A']))}"); st.caption(f"Created: {char.get('created_at', 'N/A')}")
                delete_key_char = f"delete_char_{char['name']}_{idx}";
                if st.button(f"Delete {char['name']}", key=delete_key_char, type="primary"): chars_to_delete.append(char['name'])
        if chars_to_delete:
             current_characters = st.session_state.get('characters', []); updated_characters = [c for c in current_characters if c['name'] not in chars_to_delete]
             st.session_state['characters'] = updated_characters
             try:
                 with open("characters.json", "w", encoding='utf-8') as f: json.dump(updated_characters, f, indent=2)
                 logger.info(f"Deleted characters: {', '.join(chars_to_delete)}"); st.success(f"Deleted characters: {', '.join(chars_to_delete)}"); st.rerun()
             except IOError as e: logger.error(f"Failed to save characters.json after deletion: {e}"); st.error("Failed to update character file.")

# --- Footer and Persistent Sidebar Elements ------------

# Update Sidebar Gallery (Call this at the end to reflect all changes)
update_gallery()

# Action Logs in Sidebar
st.sidebar.subheader("Action Logs πŸ“œ")
log_expander = st.sidebar.expander("View Logs", expanded=False)
with log_expander:
    log_text = "\n".join([f"{record.asctime} - {record.levelname} - {record.message}" for record in log_records[-20:]])
    st.code(log_text, language='log')

# History in Sidebar
st.sidebar.subheader("Session History πŸ“œ")
history_expander = st.sidebar.expander("View History", expanded=False)
with history_expander:
     for entry in reversed(st.session_state.get("history", [])):
         if entry: history_expander.write(f"- {entry}")

st.sidebar.markdown("---")
st.sidebar.info("Using Hugging Face models for AI tasks.")
st.sidebar.caption("App Modified by AI Assistant")