|
|
|
import io |
|
import os |
|
import re |
|
import base64 |
|
import glob |
|
import logging |
|
import random |
|
import shutil |
|
import time |
|
import zipfile |
|
import json |
|
import asyncio |
|
import aiofiles |
|
|
|
from datetime import datetime |
|
from collections import Counter |
|
from dataclasses import dataclass, field |
|
from io import BytesIO |
|
from typing import Optional, List, Dict, Any |
|
|
|
import pandas as pd |
|
import pytz |
|
import streamlit as st |
|
from PIL import Image, ImageDraw, UnidentifiedImageError |
|
from reportlab.pdfgen import canvas |
|
from reportlab.lib.utils import ImageReader |
|
from reportlab.lib.pagesizes import letter |
|
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Image as PlatypusImage, PageBreak, Preformatted |
|
from reportlab.lib.styles import getSampleStyleSheet |
|
from reportlab.lib.units import inch |
|
from reportlab.lib.enums import TA_CENTER, TA_LEFT |
|
import fitz |
|
|
|
|
|
from huggingface_hub import InferenceClient, HfApi, list_models |
|
from huggingface_hub.utils import RepositoryNotFoundError, GatedRepoError |
|
|
|
|
|
st.set_page_config( |
|
page_title="Vision & Layout Titans (HF) ππΌοΈ", |
|
page_icon="π€", |
|
layout="wide", |
|
initial_sidebar_state="expanded", |
|
menu_items={ |
|
'Get Help': 'https://huggingface.co/docs', |
|
'Report a Bug': None, |
|
'About': "Combined App: PDF Layout Generator + Hugging Face Powered AI Tools π" |
|
} |
|
) |
|
|
|
|
|
|
|
try: |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor, AutoModelForVision2Seq, AutoModelForImageToWaveform, pipeline |
|
|
|
_transformers_available = True |
|
except ImportError: |
|
_transformers_available = False |
|
|
|
|
|
|
|
try: |
|
from diffusers import StableDiffusionPipeline |
|
_diffusers_available = True |
|
except ImportError: |
|
_diffusers_available = False |
|
|
|
|
|
|
|
|
|
|
|
import requests |
|
|
|
|
|
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") |
|
logger = logging.getLogger(__name__) |
|
log_records = [] |
|
class LogCaptureHandler(logging.Handler): |
|
def emit(self, record): |
|
|
|
if len(log_records) > 200: |
|
log_records.pop(0) |
|
log_records.append(record) |
|
logger.addHandler(LogCaptureHandler()) |
|
|
|
|
|
HF_TOKEN = os.getenv("HF_TOKEN") |
|
DEFAULT_PROVIDER = "hf-inference" |
|
|
|
FEATURED_MODELS_LIST = [ |
|
"meta-llama/Meta-Llama-3.1-8B-Instruct", |
|
"mistralai/Mistral-7B-Instruct-v0.3", |
|
"google/gemma-2-9b-it", |
|
"Qwen/Qwen2-7B-Instruct", |
|
"microsoft/Phi-3-mini-4k-instruct", |
|
"HuggingFaceH4/zephyr-7b-beta", |
|
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", |
|
|
|
"HuggingFaceTB/SmolLM-1.7B-Instruct" |
|
] |
|
|
|
VISION_MODELS_LIST = [ |
|
"Salesforce/blip-image-captioning-large", |
|
"microsoft/trocr-large-handwritten", |
|
"llava-hf/llava-1.5-7b-hf", |
|
"google/vit-base-patch16-224", |
|
] |
|
DIFFUSION_MODELS_LIST = [ |
|
"stabilityai/stable-diffusion-xl-base-1.0", |
|
"runwayml/stable-diffusion-v1-5", |
|
"OFA-Sys/small-stable-diffusion-v0", |
|
] |
|
|
|
|
|
|
|
|
|
st.session_state.setdefault('combined_pdf_sources', []) |
|
|
|
|
|
st.session_state.setdefault('history', []) |
|
st.session_state.setdefault('processing', {}) |
|
st.session_state.setdefault('asset_checkboxes', {}) |
|
st.session_state.setdefault('downloaded_pdfs', {}) |
|
st.session_state.setdefault('unique_counter', 0) |
|
st.session_state.setdefault('cam0_file', None) |
|
st.session_state.setdefault('cam1_file', None) |
|
st.session_state.setdefault('characters', []) |
|
st.session_state.setdefault('char_form_reset_key', 0) |
|
|
|
|
|
|
|
|
|
st.session_state.setdefault('hf_inference_client', None) |
|
st.session_state.setdefault('hf_provider', DEFAULT_PROVIDER) |
|
st.session_state.setdefault('hf_custom_key', "") |
|
st.session_state.setdefault('hf_selected_api_model', FEATURED_MODELS_LIST[0]) |
|
st.session_state.setdefault('hf_custom_api_model', "") |
|
|
|
|
|
st.session_state.setdefault('local_models', {}) |
|
st.session_state.setdefault('selected_local_model_path', None) |
|
|
|
|
|
st.session_state.setdefault('gen_max_tokens', 512) |
|
st.session_state.setdefault('gen_temperature', 0.7) |
|
st.session_state.setdefault('gen_top_p', 0.95) |
|
st.session_state.setdefault('gen_frequency_penalty', 0.0) |
|
st.session_state.setdefault('gen_seed', -1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass |
|
class LocalModelConfig: |
|
name: str |
|
hf_id: str |
|
model_type: str |
|
size_category: str = "unknown" |
|
domain: Optional[str] = None |
|
local_path: str = field(init=False) |
|
|
|
def __post_init__(self): |
|
|
|
type_folder = f"{self.model_type}_models" |
|
safe_name = re.sub(r'[^\w\-]+', '_', self.name) |
|
self.local_path = os.path.join(type_folder, safe_name) |
|
|
|
def get_full_path(self): |
|
return os.path.abspath(self.local_path) |
|
|
|
|
|
@dataclass |
|
class DiffusionConfig: |
|
name: str |
|
base_model: str |
|
size: str |
|
domain: Optional[str] = None |
|
@property |
|
def model_path(self): |
|
|
|
return f"diffusion_models/{re.sub(r'[^w-]+', '_', self.name)}" |
|
|
|
|
|
|
|
def generate_filename(sequence, ext="png"): |
|
timestamp = time.strftime('%Y%m%d_%H%M%S') |
|
safe_sequence = re.sub(r'[^\w\-]+', '_', str(sequence)) |
|
return f"{safe_sequence}_{timestamp}.{ext}" |
|
|
|
def pdf_url_to_filename(url): |
|
name = re.sub(r'^https?://', '', url) |
|
name = re.sub(r'[<>:"/\\|?*]', '_', name) |
|
return name[:100] + ".pdf" |
|
|
|
def get_download_link(file_path, mime_type="application/octet-stream", label="Download"): |
|
if not os.path.exists(file_path): return f"{label} (File not found)" |
|
try: |
|
with open(file_path, "rb") as f: file_bytes = f.read() |
|
b64 = base64.b64encode(file_bytes).decode() |
|
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label}</a>' |
|
except Exception as e: |
|
logger.error(f"Error creating download link for {file_path}: {e}") |
|
return f"{label} (Error)" |
|
|
|
def zip_directory(directory_path, zip_path): |
|
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf: |
|
for root, _, files in os.walk(directory_path): |
|
for file in files: |
|
file_path = os.path.join(root, file) |
|
zipf.write(file_path, os.path.relpath(file_path, os.path.dirname(directory_path))) |
|
|
|
def get_local_model_paths(model_type="causal"): |
|
"""Gets paths of locally saved models of a specific type.""" |
|
pattern = f"{model_type}_models/*" |
|
dirs = [d for d in glob.glob(pattern) if os.path.isdir(d)] |
|
return dirs |
|
|
|
def get_gallery_files(file_types=("png", "pdf", "jpg", "jpeg", "md", "txt")): |
|
"""Gets all files with specified extensions in the current directory.""" |
|
all_files = set() |
|
for ext in file_types: |
|
|
|
all_files.update(glob.glob(f"./*.{ext.lower()}")) |
|
all_files.update(glob.glob(f"./*.{ext.upper()}")) |
|
|
|
return sorted([os.path.normpath(f) for f in all_files]) |
|
|
|
def get_pdf_files(): |
|
|
|
return get_gallery_files(['pdf']) |
|
|
|
def download_pdf(url, output_path): |
|
try: |
|
headers = {'User-Agent': 'Mozilla/5.0'} |
|
response = requests.get(url, stream=True, timeout=20, headers=headers) |
|
response.raise_for_status() |
|
with open(output_path, "wb") as f: |
|
for chunk in response.iter_content(chunk_size=8192): f.write(chunk) |
|
logger.info(f"Successfully downloaded {url} to {output_path}") |
|
return True |
|
except requests.exceptions.RequestException as e: |
|
logger.error(f"Failed to download {url}: {e}") |
|
if os.path.exists(output_path): |
|
try: |
|
os.remove(output_path) |
|
logger.info(f"Removed partially downloaded file: {output_path}") |
|
except OSError as remove_error: |
|
logger.error(f"Error removing partial file {output_path}: {remove_error}") |
|
except Exception as general_remove_error: |
|
logger.error(f"General error removing partial file {output_path}: {general_remove_error}") |
|
return False |
|
except Exception as e: |
|
logger.error(f"An unexpected error occurred during download of {url}: {e}") |
|
if os.path.exists(output_path): |
|
try: |
|
os.remove(output_path) |
|
logger.info(f"Removed file after unexpected error: {output_path}") |
|
except OSError as remove_error: |
|
logger.error(f"Error removing file after unexpected error {output_path}: {remove_error}") |
|
except Exception as general_remove_error: |
|
logger.error(f"General error removing file after unexpected error {output_path}: {general_remove_error}") |
|
return False |
|
|
|
async def process_pdf_snapshot(pdf_path, mode="single", resolution_factor=2.0): |
|
start_time = time.time() |
|
|
|
status_placeholder = st.empty() |
|
status_placeholder.text(f"Processing PDF Snapshot ({mode}, Res: {resolution_factor}x)... (0s)") |
|
output_files = [] |
|
try: |
|
doc = fitz.open(pdf_path) |
|
matrix = fitz.Matrix(resolution_factor, resolution_factor) |
|
num_pages_to_process = 0 |
|
if mode == "single": num_pages_to_process = min(1, len(doc)) |
|
elif mode == "twopage": num_pages_to_process = min(2, len(doc)) |
|
elif mode == "allpages": num_pages_to_process = len(doc) |
|
|
|
for i in range(num_pages_to_process): |
|
page_start_time = time.time() |
|
page = doc.load_page(i) |
|
pix = page.get_pixmap(matrix=matrix) |
|
base_name = os.path.splitext(os.path.basename(pdf_path))[0] |
|
output_file = generate_filename(f"{base_name}_pg{i+1}_{mode}", "png") |
|
|
|
|
|
output_dir = os.path.dirname(output_file) or "." |
|
if not os.path.exists(output_dir): os.makedirs(output_dir) |
|
|
|
await asyncio.to_thread(pix.save, output_file) |
|
output_files.append(output_file) |
|
elapsed_page = int(time.time() - page_start_time) |
|
status_placeholder.text(f"Processing PDF Snapshot ({mode}, Res: {resolution_factor}x)... Page {i+1}/{num_pages_to_process} done ({elapsed_page}s)") |
|
await asyncio.sleep(0.01) |
|
|
|
doc.close() |
|
elapsed = int(time.time() - start_time) |
|
status_placeholder.success(f"PDF Snapshot ({mode}, {len(output_files)} files) completed in {elapsed}s!") |
|
return output_files |
|
except Exception as e: |
|
logger.error(f"Failed to process PDF snapshot for {pdf_path}: {e}", exc_info=True) |
|
status_placeholder.error(f"Failed to process PDF {os.path.basename(pdf_path)}: {e}") |
|
|
|
for f in output_files: |
|
if os.path.exists(f): |
|
try: os.remove(f) |
|
except: pass |
|
return [] |
|
|
|
|
|
|
|
def get_hf_client() -> Optional[InferenceClient]: |
|
"""Gets or initializes the Hugging Face Inference Client based on session state.""" |
|
provider = st.session_state.hf_provider |
|
custom_key = st.session_state.hf_custom_key.strip() |
|
token_to_use = custom_key if custom_key else HF_TOKEN |
|
|
|
if not token_to_use and provider != "hf-inference": |
|
|
|
|
|
return None |
|
if provider == "hf-inference" and not token_to_use: |
|
logger.warning("Using hf-inference provider without a token. Rate limits may apply.") |
|
token_to_use = None |
|
|
|
|
|
current_client = st.session_state.get('hf_inference_client') |
|
needs_reinit = True |
|
if current_client: |
|
|
|
current_token = getattr(current_client, '_token', None) |
|
current_provider = getattr(current_client, 'provider', None) |
|
|
|
token_matches = (token_to_use == current_token) |
|
provider_matches = (provider == current_provider) |
|
|
|
if token_matches and provider_matches: |
|
needs_reinit = False |
|
|
|
if needs_reinit: |
|
try: |
|
logger.info(f"Initializing InferenceClient for provider: {provider}. Token source: {'Custom Key' if custom_key else ('HF_TOKEN' if HF_TOKEN else 'None')}") |
|
st.session_state.hf_inference_client = InferenceClient(model=None, token=token_to_use, provider=provider) |
|
|
|
setattr(st.session_state.hf_inference_client, 'provider', provider) |
|
setattr(st.session_state.hf_inference_client, '_token', token_to_use) |
|
logger.info("InferenceClient initialized successfully.") |
|
except Exception as e: |
|
st.error(f"Failed to initialize Hugging Face client for provider {provider}: {e}") |
|
logger.error(f"InferenceClient initialization failed: {e}") |
|
st.session_state.hf_inference_client = None |
|
|
|
return st.session_state.hf_inference_client |
|
|
|
|
|
def process_text_hf(text: str, prompt: str, use_api: bool) -> str: |
|
"""Processes text using either HF Inference API or a loaded local model.""" |
|
status_placeholder = st.empty() |
|
start_time = time.time() |
|
result_text = "" |
|
|
|
params = { |
|
"max_new_tokens": st.session_state.gen_max_tokens, |
|
"temperature": st.session_state.gen_temperature, |
|
"top_p": st.session_state.gen_top_p, |
|
"repetition_penalty": st.session_state.gen_frequency_penalty, |
|
} |
|
seed = st.session_state.gen_seed |
|
if seed != -1: params["seed"] = seed |
|
|
|
system_prompt = "You are a helpful assistant. Process the following text based on the user's request." |
|
full_prompt = f"{prompt}\n\n---\n\n{text}" |
|
messages = [{"role": "system", "content": system_prompt}, {"role": "user", "content": full_prompt}] |
|
|
|
if use_api: |
|
status_placeholder.info("Processing text using Hugging Face API...") |
|
client = get_hf_client() |
|
if not client: return "Error: Hugging Face client not configured/available." |
|
model_id = st.session_state.hf_custom_api_model.strip() or st.session_state.hf_selected_api_model |
|
if not model_id: return "Error: No Hugging Face API model specified." |
|
status_placeholder.info(f"Using API Model: {model_id}") |
|
try: |
|
|
|
api_params = { |
|
"max_tokens": params['max_new_tokens'], |
|
"temperature": params['temperature'], |
|
"top_p": params['top_p'], |
|
"repetition_penalty": params.get('repetition_penalty') |
|
} |
|
if 'seed' in params: api_params['seed'] = params['seed'] |
|
|
|
response = client.chat_completion(model=model_id, messages=messages, **api_params) |
|
result_text = response.choices[0].message.content or "" |
|
logger.info(f"HF API text processing successful for model {model_id}.") |
|
except Exception as e: |
|
logger.error(f"HF API text processing failed for model {model_id}: {e}", exc_info=True) |
|
result_text = f"Error during Hugging Face API inference: {str(e)}" |
|
else: |
|
status_placeholder.info("Processing text using local model...") |
|
if not _transformers_available: return "Error: Transformers library not available." |
|
model_path = st.session_state.get('selected_local_model_path') |
|
if not model_path or model_path not in st.session_state.get('local_models', {}): return "Error: No suitable local model selected/loaded." |
|
local_model_data = st.session_state['local_models'][model_path] |
|
if local_model_data.get('type') != 'causal': return f"Error: Loaded model '{os.path.basename(model_path)}' is not a Causal LM." |
|
status_placeholder.info(f"Using Local Model: {os.path.basename(model_path)}") |
|
model = local_model_data.get('model') |
|
tokenizer = local_model_data.get('tokenizer') |
|
if not model or not tokenizer: return f"Error: Model/tokenizer not found for {os.path.basename(model_path)}." |
|
try: |
|
try: prompt_for_model = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
except: logger.warning(f"Chat template failed for {model_path}. Using basic format."); prompt_for_model = f"System: {system_prompt}\nUser: {full_prompt}\nAssistant:" |
|
inputs = tokenizer(prompt_for_model, return_tensors="pt", padding=True, truncation=True, max_length=2048).to(model.device) |
|
generate_params = { |
|
"max_new_tokens": params['max_new_tokens'], |
|
"temperature": params['temperature'], |
|
"top_p": params['top_p'], |
|
"repetition_penalty": params.get('repetition_penalty', 1.0), |
|
"do_sample": True if params['temperature'] > 0.01 else False, |
|
"pad_token_id": tokenizer.eos_token_id |
|
} |
|
with torch.no_grad(): outputs = model.generate(**inputs, **generate_params) |
|
input_length = inputs['input_ids'].shape[1]; generated_ids = outputs[0][input_length:] |
|
result_text = tokenizer.decode(generated_ids, skip_special_tokens=True) |
|
logger.info(f"Local text processing successful for model {model_path}.") |
|
except Exception as e: |
|
logger.error(f"Local text processing failed for model {model_path}: {e}", exc_info=True) |
|
result_text = f"Error during local model inference: {str(e)}" |
|
|
|
elapsed = int(time.time() - start_time) |
|
status_placeholder.success(f"Text processing completed in {elapsed}s.") |
|
return result_text |
|
|
|
def process_image_hf(image: Image.Image, prompt: str, use_api: bool) -> str: |
|
"""Processes an image using either HF Inference API or a local model.""" |
|
status_placeholder = st.empty() |
|
start_time = time.time() |
|
result_text = "[Image processing requires specific Vision model implementation]" |
|
|
|
if use_api: |
|
status_placeholder.info("Processing image using Hugging Face API (Image-to-Text)...") |
|
client = get_hf_client() |
|
if not client: return "Error: HF client not configured." |
|
buffered = BytesIO(); image.save(buffered, format="PNG"); img_bytes = buffered.getvalue() |
|
try: |
|
captioning_model_id = "Salesforce/blip-image-captioning-large" |
|
vqa_model_id = "llava-hf/llava-1.5-7b-hf" |
|
|
|
status_placeholder.info(f"Using API Image-to-Text Model: {captioning_model_id}") |
|
response_list = client.image_to_text(data=img_bytes, model=captioning_model_id) |
|
if response_list and 'generated_text' in response_list[0]: |
|
result_text = f"API Caption: {response_list[0]['generated_text']}\n(Prompt '{prompt}' likely ignored by this API endpoint)" |
|
logger.info(f"HF API image captioning successful for model {captioning_model_id}.") |
|
else: result_text = "Error: Unexpected response format from image-to-text API."; logger.warning(f"Unexpected API response: {response_list}") |
|
except Exception as e: logger.error(f"HF API image processing failed: {e}"); result_text = f"Error during HF API image inference: {str(e)}" |
|
else: |
|
status_placeholder.info("Processing image using local model...") |
|
if not _transformers_available: return "Error: Transformers library needed." |
|
model_path = st.session_state.get('selected_local_model_path') |
|
if not model_path or model_path not in st.session_state.get('local_models', {}): return "Error: No suitable local model selected/loaded." |
|
local_model_data = st.session_state['local_models'][model_path] |
|
model_type = local_model_data.get('type') |
|
if model_type not in ['vision', 'ocr']: return f"Error: Loaded model '{os.path.basename(model_path)}' is not a Vision/OCR type." |
|
status_placeholder.warning(f"Local {model_type} Model ({os.path.basename(model_path)}): Processing logic depends on specific model. Placeholder active.") |
|
|
|
|
|
|
|
processor = local_model_data.get('processor') |
|
model = local_model_data.get('model') |
|
if processor and model: |
|
result_text = f"[Local {model_type} model processing needs implementation for {os.path.basename(model_path)}. Prompt: '{prompt}']" |
|
else: |
|
result_text = f"Error: Missing model or processor for local {model_type} model {os.path.basename(model_path)}." |
|
|
|
|
|
elapsed = int(time.time() - start_time) |
|
status_placeholder.success(f"Image processing attempt completed in {elapsed}s.") |
|
return result_text |
|
|
|
async def process_hf_ocr(image: Image.Image, output_file: str, use_api: bool) -> str: |
|
""" Performs OCR using the process_image_hf function framework. """ |
|
|
|
ocr_prompt = "Extract text content from this image." |
|
result = process_image_hf(image, ocr_prompt, use_api=use_api) |
|
|
|
|
|
if result and not result.startswith("Error") and not result.startswith("["): |
|
try: |
|
async with aiofiles.open(output_file, "w", encoding='utf-8') as f: |
|
await f.write(result) |
|
logger.info(f"HF OCR result saved to {output_file}") |
|
except IOError as e: |
|
logger.error(f"Failed to save HF OCR output to {output_file}: {e}") |
|
result += f"\n[Error saving file: {e}]" |
|
|
|
|
|
elif os.path.exists(output_file): |
|
|
|
try: |
|
os.remove(output_file) |
|
except OSError: |
|
|
|
logger.warning(f"Could not remove potentially empty/failed OCR file: {output_file}") |
|
pass |
|
except Exception as e_rem: |
|
logger.warning(f"Error removing OCR file {output_file}: {e_rem}") |
|
pass |
|
|
|
|
|
return result |
|
|
|
|
|
def randomize_character_content(): |
|
intro_templates = ["{char} is a valiant knight...", "{char} is a mischievous thief...", "{char} is a wise scholar...", "{char} is a fiery warrior...", "{char} is a gentle healer..."] |
|
greeting_templates = ["'I am from the knight's guild...'", "'I heard you needed helpβnameβs {char}...", "'Oh, hello! Iβm {char}, didnβt see you there...'", "'Iβm {char}, and Iβm here to fight...'", "'Iβm {char}, here to heal...'"] |
|
name = f"Character_{random.randint(1000, 9999)}"; gender = random.choice(["Male", "Female"]); intro = random.choice(intro_templates).format(char=name); greeting = random.choice(greeting_templates).format(char=name) |
|
return name, gender, intro, greeting |
|
|
|
def save_character(character_data): |
|
characters = st.session_state.get('characters', []); |
|
if any(c['name'] == character_data['name'] for c in characters): st.error(f"Character name '{character_data['name']}' already exists."); return False |
|
characters.append(character_data); st.session_state['characters'] = characters |
|
try: |
|
with open("characters.json", "w", encoding='utf-8') as f: json.dump(characters, f, indent=2); logger.info(f"Saved character: {character_data['name']}"); return True |
|
except IOError as e: logger.error(f"Failed to save characters.json: {e}"); st.error(f"Failed to save character file: {e}"); return False |
|
|
|
def load_characters(): |
|
if not os.path.exists("characters.json"): st.session_state['characters'] = []; return |
|
try: |
|
with open("characters.json", "r", encoding='utf-8') as f: characters = json.load(f) |
|
if isinstance(characters, list): st.session_state['characters'] = characters; logger.info(f"Loaded {len(characters)} characters.") |
|
else: st.session_state['characters'] = []; logger.warning("characters.json is not a list, resetting."); os.remove("characters.json") |
|
except (json.JSONDecodeError, IOError) as e: |
|
logger.error(f"Failed to load or decode characters.json: {e}"); st.error(f"Error loading character file: {e}. Starting fresh."); st.session_state['characters'] = [] |
|
try: corrupt_filename = f"characters_corrupt_{int(time.time())}.json"; shutil.copy("characters.json", corrupt_filename); logger.info(f"Backed up corrupted character file to {corrupt_filename}"); os.remove("characters.json") |
|
except Exception as backup_e: logger.error(f"Could not backup corrupted character file: {backup_e}") |
|
|
|
|
|
def clean_stem(fn: str) -> str: |
|
name = os.path.splitext(os.path.basename(fn))[0]; name = name.replace('-', ' ').replace('_', ' ') |
|
return name.strip().title() |
|
|
|
|
|
|
|
def make_image_sized_pdf(sources): |
|
|
|
if not sources: st.warning("No image sources provided for PDF generation."); return None |
|
buf = io.BytesIO(); c = canvas.Canvas(buf, pagesize=letter) |
|
try: |
|
for idx, src in enumerate(sources, start=1): |
|
status_placeholder = st.empty(); status_placeholder.info(f"Adding page {idx}/{len(sources)}: {os.path.basename(str(src))}...") |
|
try: |
|
filename = f'page_{idx}' |
|
if isinstance(src, str): |
|
if not os.path.exists(src): logger.warning(f"Image file not found: {src}. Skipping."); status_placeholder.warning(f"Skipping missing file: {os.path.basename(src)}"); continue |
|
img_obj = Image.open(src); filename = os.path.basename(src) |
|
elif hasattr(src, 'name'): |
|
src.seek(0); img_obj = Image.open(src); filename = getattr(src, 'name', f'uploaded_image_{idx}'); src.seek(0) |
|
else: continue |
|
with img_obj: |
|
iw, ih = img_obj.size |
|
if iw <= 0 or ih <= 0: logger.warning(f"Invalid image dimensions ({iw}x{ih}) for {filename}. Skipping."); status_placeholder.warning(f"Skipping invalid image: {filename}"); continue |
|
cap_h = 30; pw, ph = iw, ih + cap_h; c.setPageSize((pw, ph)); img_reader = ImageReader(img_obj) |
|
c.drawImage(img_reader, 0, cap_h, width=iw, height=ih, preserveAspectRatio=True, anchor='c', mask='auto') |
|
caption = clean_stem(filename); c.setFont('Helvetica', 12); c.setFillColorRGB(0, 0, 0); c.drawCentredString(pw / 2, cap_h / 2 + 3, caption) |
|
c.setFont('Helvetica', 8); c.setFillColorRGB(0.5, 0.5, 0.5); c.drawRightString(pw - 10, 8, f"Page {idx}") |
|
c.showPage(); status_placeholder.success(f"Added page {idx}/{len(sources)}: {filename}") |
|
except (IOError, OSError, UnidentifiedImageError) as img_err: logger.error(f"Error processing image {src}: {img_err}"); status_placeholder.error(f"Error adding page {idx}: {img_err}") |
|
except Exception as e: logger.error(f"Unexpected error adding page {idx} ({src}): {e}"); status_placeholder.error(f"Unexpected error on page {idx}: {e}") |
|
c.save(); buf.seek(0) |
|
if buf.getbuffer().nbytes < 100: st.error("PDF generation resulted in an empty file."); return None |
|
return buf.getvalue() |
|
except Exception as e: logger.error(f"Fatal error during PDF generation: {e}"); st.error(f"PDF Generation Failed: {e}"); return None |
|
|
|
|
|
def make_combined_pdf(ordered_sources_info: List[Dict]) -> Optional[bytes]: |
|
if not ordered_sources_info: |
|
st.warning("No items selected for combined PDF generation.") |
|
return None |
|
|
|
buf = io.BytesIO() |
|
c = canvas.Canvas(buf, pagesize=letter) |
|
styles = getSampleStyleSheet() |
|
total_pages_generated = 0 |
|
|
|
|
|
def draw_page_number(canvas, page_num, page_width, page_height): |
|
canvas.saveState() |
|
canvas.setFont('Helvetica', 8) |
|
canvas.setFillColorRGB(0.5, 0.5, 0.5) |
|
canvas.drawRightString(page_width - inch/2, inch/2, f"Page {page_num}") |
|
canvas.restoreState() |
|
|
|
for idx, item_info in enumerate(ordered_sources_info): |
|
filepath = item_info.get('filepath') |
|
file_type = item_info.get('type') |
|
filename = item_info.get('filename', f"item_{idx+1}") |
|
item_caption = clean_stem(filename) |
|
|
|
if not filepath: logger.warning(f"Skipping item {idx+1} due to missing filepath."); continue |
|
is_file_object = not isinstance(filepath, str) |
|
status_placeholder = st.empty() |
|
status_placeholder.info(f"Processing item {idx+1}/{len(ordered_sources_info)}: {filename} ({file_type})...") |
|
|
|
try: |
|
|
|
if file_type == 'Image': |
|
if is_file_object: filepath.seek(0) |
|
try: |
|
img_obj = Image.open(filepath) |
|
with img_obj: |
|
iw, ih = img_obj.size |
|
if iw <= 0 or ih <= 0: raise ValueError("Invalid image dimensions") |
|
cap_h = 30; pw, ph = iw, ih + cap_h |
|
c.setPageSize((pw, ph)); img_reader = ImageReader(img_obj) |
|
c.drawImage(img_reader, 0, cap_h, width=iw, height=ih, preserveAspectRatio=True, anchor='c', mask='auto') |
|
c.setFont('Helvetica', 12); c.setFillColorRGB(0, 0, 0); c.drawCentredString(pw / 2, cap_h / 2 + 3, item_caption) |
|
total_pages_generated += 1; draw_page_number(c, total_pages_generated, pw, ph) |
|
c.showPage() |
|
finally: |
|
if is_file_object: filepath.seek(0) |
|
|
|
|
|
elif file_type == 'PDF': |
|
src_doc = None |
|
try: |
|
if is_file_object: filepath.seek(0); pdf_bytes = filepath.read(); src_doc = fitz.open("pdf", pdf_bytes) |
|
else: src_doc = fitz.open(filepath) |
|
if len(src_doc) == 0: st.warning(f"Skipping empty PDF: {filename}"); continue |
|
for i, page in enumerate(src_doc): |
|
page_rect = page.rect; pw, ph = page_rect.width, page_rect.height |
|
if pw <= 0 or ph <= 0: continue |
|
c.setPageSize((pw, ph)) |
|
pix = page.get_pixmap(dpi=150) |
|
if pix.width > 0 and pix.height > 0: |
|
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); img_reader = ImageReader(img) |
|
c.drawImage(img_reader, 0, 0, width=pw, height=ph) |
|
else: c.setFont('Helvetica', 10); c.setFillColorRGB(1,0,0); c.drawCentredString(pw/2, ph/2, f"Failed to render page {i+1} preview") |
|
overlay_text = f"{item_caption} (p{i+1})"; c.setFont('Helvetica', 8); c.setFillColorRGB(0, 0, 0, alpha=0.6); c.drawString(10, 10, overlay_text) |
|
total_pages_generated += 1; draw_page_number(c, total_pages_generated, pw, ph) |
|
c.showPage() |
|
finally: |
|
if src_doc: src_doc.close() |
|
if is_file_object: filepath.seek(0) |
|
|
|
|
|
elif file_type == 'Text': |
|
if is_file_object: |
|
filepath.seek(0) |
|
try: text_content = filepath.read().decode('utf-8') |
|
except: text_content = filepath.read().decode('latin-1', errors='replace') |
|
else: |
|
with open(filepath, 'r', encoding='utf-8', errors='ignore') as f: text_content = f.read() |
|
|
|
temp_buf = io.BytesIO() |
|
temp_doc = SimpleDocTemplate(temp_buf, pagesize=letter, leftMargin=inch, rightMargin=inch, topMargin=inch, bottomMargin=inch) |
|
story = [Paragraph(f"Content from: {item_caption}", styles['h2']), Spacer(1, 0.2*inch)] |
|
|
|
story.append(Preformatted(text_content, styles['Code'])) |
|
temp_doc.build(story) |
|
temp_buf.seek(0) |
|
|
|
text_pdf = fitz.open("pdf", temp_buf.read()) |
|
for i, page in enumerate(text_pdf): |
|
page_rect = page.rect; pw, ph = page_rect.width, page_rect.height |
|
c.setPageSize((pw, ph)); pix = page.get_pixmap(dpi=150) |
|
if pix.width > 0 and pix.height > 0: |
|
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); img_reader = ImageReader(img) |
|
c.drawImage(img_reader, 0, 0, width=pw, height=ph) |
|
else: c.setFont('Helvetica', 10); c.setFillColorRGB(1,0,0); c.drawCentredString(pw/2, ph/2, f"Failed to render text page {i+1}") |
|
total_pages_generated += 1; draw_page_number(c, total_pages_generated, pw, ph) |
|
c.showPage() |
|
text_pdf.close() |
|
|
|
else: |
|
logger.warning(f"Unsupported file type for PDF combination: {filename} ({file_type})") |
|
c.setPageSize(letter); c.setFont('Helvetica-Bold', 14); c.setFillColorRGB(0.7, 0.7, 0); c.drawCentredString(letter[0] / 2, letter[1] / 2 + 20, f"Unsupported File: {filename}") |
|
c.setFont('Helvetica', 10); c.drawCentredString(letter[0] / 2, letter[1] / 2 - 20, f"Type: {file_type}. Cannot include.") |
|
total_pages_generated += 1; draw_page_number(c, total_pages_generated, letter[0], letter[1]) |
|
c.showPage() |
|
|
|
except Exception as item_err: |
|
logger.error(f"Error processing item {filename} for PDF: {item_err}", exc_info=True) |
|
try: |
|
c.setPageSize(letter); c.setFont('Helvetica-Bold', 14); c.setFillColorRGB(1, 0, 0); c.drawCentredString(letter[0] / 2, letter[1] / 2 + 20, f"Error processing: {filename}") |
|
c.setFont('Helvetica', 10); c.drawCentredString(letter[0] / 2, letter[1] / 2 - 20, f"{str(item_err)[:100]}"); total_pages_generated += 1; draw_page_number(c, total_pages_generated, letter[0], letter[1]); c.showPage() |
|
except: logger.error(f"Failed to add error page for {filename}") |
|
finally: |
|
status_placeholder.empty() |
|
|
|
if total_pages_generated == 0: st.error("No pages were successfully added."); return None |
|
try: |
|
c.save(); buf.seek(0) |
|
if buf.getbuffer().nbytes < 100: st.error("Combined PDF generation resulted empty."); return None |
|
return buf.getvalue() |
|
except Exception as e: logger.error(f"Fatal error during final PDF save: {e}"); st.error(f"PDF Save Failed: {e}"); return None |
|
|
|
|
|
|
|
def get_sort_key(filename): |
|
ext = os.path.splitext(filename)[1].lower() |
|
if ext in ['.png', '.jpg', '.jpeg', '.gif', '.bmp', '.tiff']: priority = 1 |
|
elif ext in ['.md', '.txt']: priority = 2 |
|
elif ext == '.pdf': priority = 3 |
|
else: priority = 4 |
|
return (priority, filename.lower()) |
|
|
|
def update_gallery(): |
|
st.sidebar.markdown("### Asset Gallery πΈπ") |
|
all_files_unsorted = get_gallery_files() |
|
all_files = sorted(all_files_unsorted, key=get_sort_key) |
|
|
|
if not all_files: st.sidebar.info("No assets found."); return |
|
st.sidebar.caption(f"Found {len(all_files)} assets:") |
|
|
|
for idx, file in enumerate(all_files): |
|
st.session_state['unique_counter'] += 1 |
|
unique_id = st.session_state['unique_counter'] |
|
item_key_base = f"gallery_item_{os.path.basename(file)}_{unique_id}" |
|
basename = os.path.basename(file) |
|
st.sidebar.markdown(f"**{basename}**") |
|
|
|
try: |
|
file_ext = os.path.splitext(file)[1].lower() |
|
preview_failed = False |
|
|
|
if file_ext in ['.png', '.jpg', '.jpeg', '.gif', '.bmp', '.tiff']: |
|
try: |
|
with st.sidebar.expander("Preview", expanded=False): st.image(Image.open(file), use_container_width=True) |
|
except Exception as img_err: st.sidebar.warning(f"Img preview failed: {img_err}"); preview_failed = True |
|
elif file_ext == '.pdf': |
|
try: |
|
with st.sidebar.expander("Preview (Page 1)", expanded=False): |
|
doc = fitz.open(file) |
|
if len(doc) > 0: |
|
pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5)) |
|
if pix.width > 0 and pix.height > 0: img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); st.image(img, use_container_width=True) |
|
else: st.warning("Failed to render PDF page."); preview_failed = True |
|
else: st.warning("Empty PDF") |
|
doc.close() |
|
except Exception as pdf_err: st.sidebar.warning(f"PDF preview failed: {pdf_err}"); logger.warning(f"PDF preview error {file}: {pdf_err}"); preview_failed = True |
|
elif file_ext in ['.md', '.txt']: |
|
try: |
|
with st.sidebar.expander("Preview (Start)", expanded=False): |
|
with open(file, 'r', encoding='utf-8', errors='ignore') as f: content_preview = f.read(200) |
|
st.code(content_preview + "...", language='markdown' if file_ext == '.md' else 'text') |
|
except Exception as txt_err: st.sidebar.warning(f"Text preview failed: {txt_err}"); preview_failed = True |
|
|
|
|
|
action_cols = st.sidebar.columns(3) |
|
with action_cols[0]: |
|
checkbox_key = f"cb_{item_key_base}" |
|
st.session_state.setdefault('asset_checkboxes', {}) |
|
st.session_state['asset_checkboxes'][file] = st.checkbox("Select", value=st.session_state['asset_checkboxes'].get(file, False), key=checkbox_key) |
|
with action_cols[1]: |
|
mime_map = {'.png': 'image/png', '.jpg': 'image/jpeg', '.jpeg': 'image/jpeg', '.pdf': 'application/pdf', '.txt': 'text/plain', '.md': 'text/markdown'} |
|
mime_type = mime_map.get(file_ext, "application/octet-stream"); dl_key = f"dl_{item_key_base}" |
|
try: |
|
with open(file, "rb") as fp: st.download_button(label="π₯", data=fp, file_name=basename, mime=mime_type, key=dl_key, help="Download") |
|
except Exception as dl_e: st.error(f"DL Err: {dl_e}") |
|
with action_cols[2]: |
|
delete_key = f"del_{item_key_base}" |
|
if st.button("ποΈ", key=delete_key, help=f"Delete {basename}"): |
|
delete_success = False |
|
try: |
|
os.remove(file) |
|
st.session_state['asset_checkboxes'].pop(file, None) |
|
if file in st.session_state.get('layout_snapshots', []): st.session_state['layout_snapshots'].remove(file) |
|
logger.info(f"Deleted asset: {file}") |
|
st.toast(f"Deleted {basename}!", icon="β
") |
|
delete_success = True |
|
except OSError as e: logger.error(f"Error deleting file {file}: {e}"); st.error(f"Could not delete {basename}: {e}") |
|
except Exception as e: logger.error(f"Unexpected error deleting file {file}: {e}"); st.error(f"Could not delete {basename}: {e}") |
|
|
|
st.rerun() |
|
|
|
except FileNotFoundError: st.sidebar.error(f"File vanished: {basename}"); st.session_state['asset_checkboxes'].pop(file, None) |
|
except Exception as e: st.sidebar.error(f"Display Error: {basename}"); logger.error(f"Error displaying asset {file}: {e}") |
|
st.sidebar.markdown("---") |
|
|
|
|
|
|
|
st.sidebar.subheader("π€ Hugging Face Settings") |
|
|
|
with st.sidebar.expander("API Inference Settings", expanded=False): |
|
st.session_state.hf_custom_key = st.text_input("Custom HF Token (BYOK)", value=st.session_state.get('hf_custom_key', ""), type="password", key="hf_custom_key_input", help="Enter your Hugging Face API token. Overrides HF_TOKEN env var.") |
|
token_status = "Custom Key Set" if st.session_state.hf_custom_key else ("Default HF_TOKEN Set" if HF_TOKEN else "No Token Set"); st.caption(f"Token Status: {token_status}") |
|
providers_list = ["hf-inference", "cerebras", "together", "sambanova", "novita", "cohere", "fireworks-ai", "hyperbolic", "nebius"] |
|
st.session_state.hf_provider = st.selectbox("Inference Provider", options=providers_list, index=providers_list.index(st.session_state.get('hf_provider', DEFAULT_PROVIDER)), key="hf_provider_select", help="Select the backend provider. Some require specific API keys.") |
|
if not st.session_state.hf_custom_key and not HF_TOKEN and st.session_state.hf_provider != "hf-inference": st.warning(f"Provider '{st.session_state.hf_provider}' may require a token.") |
|
st.session_state.hf_custom_api_model = st.text_input("Custom API Model ID", value=st.session_state.get('hf_custom_api_model', ""), key="hf_custom_model_input", placeholder="e.g., google/gemma-2-9b-it", help="Overrides the featured model selection below if provided.") |
|
effective_api_model = st.session_state.hf_custom_api_model.strip() or st.session_state.hf_selected_api_model |
|
st.session_state.hf_selected_api_model = st.selectbox("Featured API Model", options=FEATURED_MODELS_LIST, index=FEATURED_MODELS_LIST.index(st.session_state.get('hf_selected_api_model', FEATURED_MODELS_LIST[0])), key="hf_featured_model_select", help="Select a common model. Ignored if Custom API Model ID is set.") |
|
st.caption(f"Effective API Model: {effective_api_model}") |
|
with st.sidebar.expander("Local Model Selection", expanded=True): |
|
if not _transformers_available: st.warning("Transformers library not found.") |
|
else: |
|
local_model_options = ["None"] + list(st.session_state.get('local_models', {}).keys()) |
|
current_selection = st.session_state.get('selected_local_model_path'); current_selection = current_selection if current_selection in local_model_options else "None" |
|
selected_path = st.selectbox("Active Local Model", options=local_model_options, index=local_model_options.index(current_selection), format_func=lambda x: os.path.basename(x) if x != "None" else "None", key="local_model_selector", help="Select a loaded local model.") |
|
st.session_state.selected_local_model_path = selected_path if selected_path != "None" else None |
|
if st.session_state.selected_local_model_path: |
|
model_info = st.session_state.local_models[st.session_state.selected_local_model_path] |
|
st.caption(f"Type: {model_info.get('type', '?')} | Device: {model_info.get('model').device if model_info.get('model') else 'N/A'}") |
|
else: st.caption("No local model selected.") |
|
with st.sidebar.expander("Generation Parameters", expanded=False): |
|
st.session_state.gen_max_tokens = st.slider("Max New Tokens", 1, 4096, st.session_state.get('gen_max_tokens', 512), step=1, key="param_max_tokens") |
|
st.session_state.gen_temperature = st.slider("Temperature", 0.01, 2.0, st.session_state.get('gen_temperature', 0.7), step=0.01, key="param_temp") |
|
st.session_state.gen_top_p = st.slider("Top-P", 0.01, 1.0, st.session_state.get('gen_top_p', 0.95), step=0.01, key="param_top_p") |
|
st.session_state.gen_frequency_penalty = st.slider("Repetition Penalty", 1.0, 2.0, st.session_state.get('gen_frequency_penalty', 0.0)+1.0, step=0.05, key="param_repetition", help="1.0 means no penalty.") |
|
st.session_state.gen_seed = st.slider("Seed", -1, 65535, st.session_state.get('gen_seed', -1), step=1, key="param_seed", help="-1 for random.") |
|
|
|
st.sidebar.markdown("---") |
|
|
|
|
|
|
|
st.title("Vision & Layout Titans (HF) ππΌοΈπ") |
|
st.markdown("Combined App: PDF Layout Generator + Hugging Face Powered AI Tools") |
|
|
|
|
|
if not _transformers_available: |
|
st.warning("AI/ML libraries (torch, transformers) not found. Local model features disabled.") |
|
elif not _diffusers_available: |
|
st.warning("Diffusers library not found. Diffusion model features disabled.") |
|
|
|
|
|
|
|
tabs_to_create = [ |
|
"Combined PDF Generator π", |
|
"Camera Snap π·", |
|
"Download PDFs π₯", |
|
"Build Titan (Local Models) π±", |
|
"PDF Page Process (HF) π", |
|
"Image Process (HF) πΌοΈ", |
|
"Text Process (HF) π", |
|
"Test OCR (HF) π", |
|
"Test Image Gen (Diffusers) π¨", |
|
"Character Editor π§βπ¨", |
|
"Character Gallery πΌοΈ", |
|
] |
|
tabs = st.tabs(tabs_to_create) |
|
|
|
|
|
|
|
|
|
with tabs[0]: |
|
st.header("Combined PDF Generator πβπΌοΈβ...") |
|
st.markdown("Select assets (Images, PDFs, Text/MD) from the sidebar gallery, reorder them, and generate a combined PDF.") |
|
|
|
|
|
selected_files_paths = [ |
|
f for f, selected in st.session_state.get('asset_checkboxes', {}).items() |
|
if selected and os.path.exists(f) |
|
] |
|
|
|
if not selected_files_paths: |
|
st.info("π Select one or more assets from the sidebar gallery using the checkboxes.") |
|
else: |
|
st.info(f"{len(selected_files_paths)} assets selected from gallery.") |
|
|
|
|
|
combined_records = [] |
|
for idx, filepath in enumerate(selected_files_paths): |
|
filename = os.path.basename(filepath) |
|
ext = os.path.splitext(filename)[1].lower() |
|
file_type = "Unknown" |
|
if ext in ['.png', '.jpg', '.jpeg', '.gif', '.bmp', '.tiff']: file_type = "Image" |
|
elif ext == '.pdf': file_type = "PDF" |
|
elif ext in ['.md', '.txt']: file_type = "Text" |
|
|
|
combined_records.append({ |
|
"filename": filename, |
|
"filepath": filepath, |
|
"type": file_type, |
|
"order": idx, |
|
}) |
|
|
|
combined_df_initial = pd.DataFrame(combined_records) |
|
|
|
st.markdown("#### Reorder Selected Assets for PDF") |
|
st.caption("Edit the 'Order' column or drag rows to set the sequence for the combined PDF.") |
|
|
|
edited_combined_df = st.data_editor( |
|
combined_df_initial, |
|
column_config={ |
|
"filename": st.column_config.TextColumn("Filename", disabled=True), |
|
"filepath": None, |
|
"type": st.column_config.TextColumn("Type", disabled=True), |
|
"order": st.column_config.NumberColumn( |
|
"Order", |
|
min_value=0, |
|
|
|
step=1, |
|
required=True, |
|
), |
|
}, |
|
hide_index=True, |
|
use_container_width=True, |
|
num_rows="dynamic", |
|
key="combined_pdf_editor" |
|
) |
|
|
|
|
|
ordered_combined_df = edited_combined_df.sort_values('order').reset_index(drop=True) |
|
|
|
|
|
ordered_sources_info_for_pdf = ordered_combined_df[['filepath', 'type', 'filename']].to_dict('records') |
|
|
|
|
|
st.subheader("Generate Combined PDF") |
|
if st.button("ποΈ Generate Combined PDF", key="generate_combined_pdf_btn"): |
|
if not ordered_sources_info_for_pdf: |
|
st.warning("No items available after reordering.") |
|
else: |
|
with st.spinner("Generating combined PDF... This might take a while."): |
|
combined_pdf_bytes = make_combined_pdf(ordered_sources_info_for_pdf) |
|
|
|
if combined_pdf_bytes: |
|
|
|
now = datetime.now(pytz.timezone("US/Central")) |
|
prefix = now.strftime("%Y%m%d-%H%M%p") |
|
first_item_name = clean_stem(ordered_sources_info_for_pdf[0].get('filename','combined')) |
|
combined_pdf_fname = f"{prefix}_Combined_{first_item_name}.pdf" |
|
combined_pdf_fname = re.sub(r'[^\w\-\.\_]', '_', combined_pdf_fname) |
|
|
|
st.success(f"β
Combined PDF ready: **{combined_pdf_fname}**") |
|
st.download_button( |
|
"β¬οΈ Download Combined PDF", |
|
data=combined_pdf_bytes, |
|
file_name=combined_pdf_fname, |
|
mime="application/pdf", |
|
key="download_combined_pdf_btn" |
|
) |
|
|
|
|
|
else: |
|
st.error("Combined PDF generation failed. Check logs or input files.") |
|
|
|
|
|
|
|
with tabs[1]: |
|
st.header("Camera Snap π·") |
|
st.subheader("Single Capture (Adds to General Gallery)") |
|
cols = st.columns(2) |
|
with cols[0]: |
|
cam0_img = st.camera_input("Take a picture - Cam 0", key="main_cam0") |
|
if cam0_img: |
|
filename = generate_filename("cam0_snap"); |
|
if st.session_state.get('cam0_file') and os.path.exists(st.session_state['cam0_file']): |
|
try: |
|
os.remove(st.session_state['cam0_file']) |
|
except OSError: |
|
pass |
|
try: |
|
with open(filename, "wb") as f: f.write(cam0_img.getvalue()) |
|
st.session_state['cam0_file'] = filename; st.session_state['history'].append(f"Snapshot from Cam 0: {filename}"); st.image(Image.open(filename), caption="Camera 0 Snap", use_container_width=True); logger.info(f"Saved snapshot from Camera 0: {filename}"); st.success(f"Saved {filename}") |
|
update_gallery(); |
|
except Exception as e: st.error(f"Failed to save Cam 0 snap: {e}"); logger.error(f"Failed to save Cam 0 snap {filename}: {e}") |
|
with cols[1]: |
|
cam1_img = st.camera_input("Take a picture - Cam 1", key="main_cam1") |
|
if cam1_img: |
|
filename = generate_filename("cam1_snap") |
|
if st.session_state.get('cam1_file') and os.path.exists(st.session_state['cam1_file']): |
|
try: |
|
os.remove(st.session_state['cam1_file']) |
|
except OSError: |
|
pass |
|
try: |
|
with open(filename, "wb") as f: f.write(cam1_img.getvalue()) |
|
st.session_state['cam1_file'] = filename; st.session_state['history'].append(f"Snapshot from Cam 1: {filename}"); st.image(Image.open(filename), caption="Camera 1 Snap", use_container_width=True); logger.info(f"Saved snapshot from Camera 1: {filename}"); st.success(f"Saved {filename}") |
|
update_gallery(); |
|
except Exception as e: st.error(f"Failed to save Cam 1 snap: {e}"); logger.error(f"Failed to save Cam 1 snap {filename}: {e}") |
|
|
|
|
|
|
|
with tabs[2]: |
|
st.header("Download PDFs π₯") |
|
st.markdown("Download PDFs from URLs and optionally create image snapshots.") |
|
if st.button("Load Example arXiv URLs π", key="load_examples"): |
|
example_urls = ["https://arxiv.org/pdf/2308.03892", "https://arxiv.org/pdf/1706.03762", "https://arxiv.org/pdf/2402.17764", "https://www.clickdimensions.com/links/ACCERL/"] |
|
st.session_state['pdf_urls_input'] = "\n".join(example_urls) |
|
url_input = st.text_area("Enter PDF URLs (one per line)", value=st.session_state.get('pdf_urls_input', ""), height=150, key="pdf_urls_textarea") |
|
if st.button("Robo-Download PDFs π€", key="download_pdfs_button"): |
|
urls = [url.strip() for url in url_input.strip().split("\n") if url.strip()] |
|
if not urls: st.warning("Please enter at least one URL.") |
|
else: |
|
progress_bar = st.progress(0); status_text = st.empty(); total_urls = len(urls); download_count = 0; existing_pdfs = get_pdf_files() |
|
for idx, url in enumerate(urls): |
|
output_path = pdf_url_to_filename(url); status_text.text(f"Processing {idx + 1}/{total_urls}: {os.path.basename(output_path)}..."); progress_bar.progress((idx + 1) / total_urls) |
|
if os.path.exists(output_path): |
|
st.info(f"Already exists: {os.path.basename(output_path)}") |
|
st.session_state['downloaded_pdfs'][url] = output_path |
|
|
|
st.session_state['asset_checkboxes'][output_path] = st.session_state['asset_checkboxes'].get(output_path, False) |
|
else: |
|
if download_pdf(url, output_path): |
|
st.session_state['downloaded_pdfs'][url] = output_path; logger.info(f"Downloaded PDF from {url} to {output_path}"); st.session_state['history'].append(f"Downloaded PDF: {output_path}"); st.session_state['asset_checkboxes'][output_path] = False; download_count += 1; existing_pdfs.append(output_path) |
|
else: st.error(f"Failed to download: {url}") |
|
status_text.success(f"Download process complete! Successfully downloaded {download_count} new PDFs.") |
|
if download_count > 0: update_gallery(); |
|
|
|
st.subheader("Create Snapshots from Gallery PDFs") |
|
snapshot_mode = st.selectbox("Snapshot Mode", ["First Page (High-Res)", "First Two Pages (High-Res)", "All Pages (High-Res)", "First Page (Low-Res Preview)"], key="pdf_snapshot_mode") |
|
resolution_map = {"First Page (High-Res)": 2.0, "First Two Pages (High-Res)": 2.0, "All Pages (High-Res)": 2.0, "First Page (Low-Res Preview)": 1.0} |
|
mode_key_map = {"First Page (High-Res)": "single", "First Two Pages (High-Res)": "twopage", "All Pages (High-Res)": "allpages", "First Page (Low-Res Preview)": "single"} |
|
resolution = resolution_map[snapshot_mode]; mode_key = mode_key_map[snapshot_mode] |
|
if st.button("Snapshot Selected PDFs πΈ", key="snapshot_selected_pdfs"): |
|
selected_pdfs = [path for path in get_gallery_files(['pdf']) if st.session_state['asset_checkboxes'].get(path, False)] |
|
if not selected_pdfs: st.warning("No PDFs selected in the sidebar gallery!") |
|
else: |
|
st.info(f"Starting snapshot process for {len(selected_pdfs)} selected PDF(s)..."); snapshot_count = 0; total_snapshots_generated = 0 |
|
for pdf_path in selected_pdfs: |
|
if not os.path.exists(pdf_path): st.warning(f"File not found: {pdf_path}. Skipping."); continue |
|
new_snapshots = asyncio.run(process_pdf_snapshot(pdf_path, mode_key, resolution)) |
|
if new_snapshots: |
|
snapshot_count += 1; total_snapshots_generated += len(new_snapshots) |
|
st.write(f"Snapshots for {os.path.basename(pdf_path)}:"); cols = st.columns(3) |
|
for i, snap_path in enumerate(new_snapshots): |
|
with cols[i % 3]: |
|
try: st.image(Image.open(snap_path), caption=os.path.basename(snap_path), use_container_width=True) |
|
except Exception as snap_img_err: st.warning(f"Cannot display snap {os.path.basename(snap_path)}: {snap_img_err}") |
|
st.session_state['asset_checkboxes'][snap_path] = False |
|
if total_snapshots_generated > 0: st.success(f"Generated {total_snapshots_generated} snapshots from {snapshot_count} PDFs."); update_gallery(); |
|
else: st.warning("No snapshots were generated. Check logs or PDF files.") |
|
|
|
|
|
|
|
with tabs[3]: |
|
st.header("Build Titan (Local Models) π±") |
|
st.markdown("Download and save models from Hugging Face Hub for local use.") |
|
if not _transformers_available: |
|
st.error("Transformers library not available. Cannot download or load local models.") |
|
else: |
|
build_model_type = st.selectbox("Select Model Type", ["Causal LM", "Vision/Multimodal", "OCR", "Diffusion"], key="build_type_local") |
|
st.subheader(f"Download {build_model_type} Model") |
|
hf_model_id = st.text_input("Hugging Face Model ID", placeholder=f"e.g., {'google/gemma-2-9b-it' if build_model_type == 'Causal LM' else 'llava-hf/llava-1.5-7b-hf' if build_model_type == 'Vision/Multimodal' else 'microsoft/trocr-base-handwritten' if build_model_type == 'OCR' else 'stabilityai/stable-diffusion-xl-base-1.0'}", key="build_hf_model_id") |
|
local_model_name = st.text_input("Local Name for this Model", value=f"{build_model_type.split('/')[0].lower()}_{os.path.basename(hf_model_id).replace('.','') if hf_model_id else 'model'}", key="build_local_name", help="A unique name to identify this model locally.") |
|
st.info("Private or gated models require a valid Hugging Face token (set via HF_TOKEN env var or the Custom Key in sidebar API settings).") |
|
|
|
if st.button(f"Download & Save '{hf_model_id}' Locally", key="build_download_button", disabled=not hf_model_id or not local_model_name): |
|
local_name_check = re.sub(r'[^\w\-]+', '_', local_model_name) |
|
potential_path_base = os.path.join(f"{build_model_type.split('/')[0].lower()}_models", local_name_check) |
|
|
|
if any(os.path.basename(p) == local_name_check for p in get_local_model_paths(build_model_type.split('/')[0].lower())): |
|
st.error(f"A local model folder named '{local_name_check}' already exists. Choose a different local name.") |
|
else: |
|
model_type_map = {"Causal LM": "causal", "Vision/Multimodal": "vision", "OCR": "ocr", "Diffusion": "diffusion"} |
|
model_type_short = model_type_map.get(build_model_type, "unknown") |
|
config = LocalModelConfig(name=local_model_name, hf_id=hf_model_id, model_type=model_type_short) |
|
save_path = config.get_full_path() |
|
os.makedirs(os.path.dirname(save_path), exist_ok=True) |
|
st.info(f"Attempting to download '{hf_model_id}' to '{save_path}'..."); progress_bar_build = st.progress(0); status_text_build = st.empty() |
|
token_build = st.session_state.hf_custom_key or HF_TOKEN or None |
|
try: |
|
if build_model_type == "Diffusion": |
|
if not _diffusers_available: raise ImportError("Diffusers library required.") |
|
status_text_build.text("Downloading diffusion pipeline..."); pipeline_obj = StableDiffusionPipeline.from_pretrained(hf_model_id, token=token_build); status_text_build.text("Saving diffusion model pipeline..."); pipeline_obj.save_pretrained(save_path) |
|
st.session_state.local_models[save_path] = {'type': 'diffusion', 'hf_id': hf_model_id, 'model':None, 'processor':None} |
|
st.success(f"Diffusion model '{hf_model_id}' downloaded and saved to {save_path}") |
|
del pipeline_obj |
|
else: |
|
status_text_build.text("Downloading model components...") |
|
if model_type_short == 'causal': model_class, proc_tok_class = AutoModelForCausalLM, AutoTokenizer; proc_name="tokenizer" |
|
elif model_type_short == 'vision': model_class, proc_tok_class = AutoModelForVision2Seq, AutoProcessor; proc_name="processor" |
|
elif model_type_short == 'ocr': model_class, proc_tok_class = AutoModelForVision2Seq, AutoProcessor; proc_name="processor" |
|
else: raise ValueError(f"Unknown model type: {model_type_short}") |
|
|
|
model_obj = model_class.from_pretrained(hf_model_id, token=token_build); model_obj.save_pretrained(save_path) |
|
status_text_build.text(f"Model saved. Downloading {proc_name}..."); proc_tok_obj = proc_tok_class.from_pretrained(hf_model_id, token=token_build); proc_tok_obj.save_pretrained(save_path) |
|
status_text_build.text(f"Components saved. Loading '{local_model_name}' into memory...") |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
reloaded_model = model_class.from_pretrained(save_path).to(device) |
|
reloaded_proc_tok = proc_tok_class.from_pretrained(save_path) |
|
st.session_state.local_models[save_path] = {'type': model_type_short, 'hf_id': hf_model_id, 'model': reloaded_model, proc_name: reloaded_proc_tok} |
|
|
|
if proc_name == "processor" and hasattr(reloaded_proc_tok, 'tokenizer'): |
|
st.session_state.local_models[save_path]['tokenizer'] = reloaded_proc_tok.tokenizer |
|
st.success(f"{build_model_type} model '{hf_model_id}' downloaded to {save_path} and loaded ({device})."); st.session_state.selected_local_model_path = save_path |
|
del model_obj, proc_tok_obj |
|
except (RepositoryNotFoundError, GatedRepoError) as e: st.error(f"Download failed: Repo not found or requires access/token. Error: {e}"); logger.error(f"Download failed for {hf_model_id}: {e}"); |
|
except ImportError as e: st.error(f"Download failed: Library missing. {e}"); logger.error(f"ImportError for {hf_model_id}: {e}") |
|
except Exception as e: st.error(f"Download error: {e}"); logger.error(f"Download failed for {hf_model_id}: {e}", exc_info=True); |
|
finally: progress_bar_build.progress(1.0); status_text_build.empty(); |
|
|
|
st.subheader("Manage Local Models") |
|
|
|
loaded_model_paths = list(st.session_state.get('local_models', {}).keys()) |
|
if not loaded_model_paths: st.info("No models downloaded yet.") |
|
else: |
|
models_df_data = [] |
|
for path in loaded_model_paths: |
|
data = st.session_state.local_models.get(path, {}) |
|
models_df_data.append({ |
|
"Local Name": os.path.basename(path), "Type": data.get('type', '?'), |
|
"HF ID": data.get('hf_id', '?'), "Loaded": "Yes" if data.get('model') else "No", "Path": path }) |
|
models_df = pd.DataFrame(models_df_data); st.dataframe(models_df, use_container_width=True, hide_index=True, column_order=["Local Name", "Type", "HF ID", "Loaded"]) |
|
model_to_delete = st.selectbox("Select model to delete", [""] + [os.path.basename(p) for p in loaded_model_paths], key="delete_model_select") |
|
if model_to_delete and st.button(f"Delete Local Model '{model_to_delete}'", type="primary"): |
|
path_to_delete = next((p for p in loaded_model_paths if os.path.basename(p) == model_to_delete), None) |
|
if path_to_delete: |
|
try: |
|
|
|
if path_to_delete in st.session_state.local_models: |
|
model_data_to_del = st.session_state.local_models[path_to_delete] |
|
if model_data_to_del.get('model'): del model_data_to_del['model'] |
|
if model_data_to_del.get('tokenizer'): del model_data_to_del['tokenizer'] |
|
if model_data_to_del.get('processor'): del model_data_to_del['processor'] |
|
if _transformers_available and torch.cuda.is_available(): torch.cuda.empty_cache() |
|
|
|
|
|
st.session_state.local_models.pop(path_to_delete, None) |
|
if st.session_state.selected_local_model_path == path_to_delete: st.session_state.selected_local_model_path = None |
|
|
|
if os.path.exists(path_to_delete): shutil.rmtree(path_to_delete) |
|
st.success(f"Deleted model '{model_to_delete}'."); logger.info(f"Deleted local model: {path_to_delete}"); st.rerun() |
|
except Exception as e: st.error(f"Failed to delete model '{model_to_delete}': {e}"); logger.error(f"Failed to delete model {path_to_delete}: {e}") |
|
|
|
|
|
|
|
with tabs[4]: |
|
st.header("PDF Page Process with HF Models π") |
|
st.markdown("Upload PDFs, view pages, and extract text/info using selected HF models (API or Local Vision/OCR).") |
|
pdf_use_api = st.radio("Choose Processing Method", ["Hugging Face API", "Loaded Local Model"], key="pdf_process_source", horizontal=True, help="API uses settings from sidebar. Local uses the selected local model (if suitable for vision/OCR).") |
|
if pdf_use_api == "Hugging Face API": st.info(f"Using API Model: {st.session_state.hf_custom_api_model.strip() or st.session_state.hf_selected_api_model} (likely image-to-text)") |
|
else: |
|
if st.session_state.selected_local_model_path: st.info(f"Using Local Model: {os.path.basename(st.session_state.selected_local_model_path)}") |
|
else: st.warning("No local model selected.") |
|
|
|
uploaded_pdfs_process_hf = st.file_uploader("Upload PDF files to process", type=["pdf"], accept_multiple_files=True, key="pdf_process_uploader_hf") |
|
if uploaded_pdfs_process_hf: |
|
process_all_pages_pdf = st.checkbox("Process All Pages (can be slow/expensive)", value=False, key="pdf_process_all_hf") |
|
pdf_prompt = st.text_area("Prompt for PDF Page Processing", "Extract the text content from this page.", key="pdf_process_prompt_hf") |
|
if st.button("Process Uploaded PDFs with HF", key="process_uploaded_pdfs_hf"): |
|
if pdf_use_api == "Loaded Local Model" and not st.session_state.selected_local_model_path: st.error("Cannot process locally: No local model selected.") |
|
else: |
|
combined_text_output_hf = f"# HF PDF Processing Results ({'API' if pdf_use_api else 'Local'})\n\n"; total_pages_processed_hf = 0; output_placeholder_hf = st.container() |
|
for pdf_file in uploaded_pdfs_process_hf: |
|
output_placeholder_hf.markdown(f"--- \n### Processing: {pdf_file.name}") |
|
try: |
|
pdf_bytes = pdf_file.read(); doc = fitz.open("pdf", pdf_bytes); num_pages = len(doc) |
|
pages_to_process = range(num_pages) if process_all_pages_pdf else range(min(1, num_pages)) |
|
output_placeholder_hf.info(f"Processing {len(pages_to_process)} of {num_pages} pages..."); doc_text = f"## File: {pdf_file.name}\n\n" |
|
for i in pages_to_process: |
|
page_placeholder = output_placeholder_hf.empty(); page_placeholder.info(f"Processing Page {i + 1}/{num_pages}...") |
|
page = doc.load_page(i); pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) |
|
cols_pdf = output_placeholder_hf.columns(2); cols_pdf[0].image(img, caption=f"Page {i+1}", use_container_width=True) |
|
with cols_pdf[1], st.spinner("Processing page with HF model..."): hf_text = process_image_hf(img, pdf_prompt, use_api=pdf_use_api) |
|
st.text_area(f"Result (Page {i+1})", hf_text, height=250, key=f"pdf_hf_out_{pdf_file.name}_{i}") |
|
doc_text += f"### Page {i + 1}\n\n{hf_text}\n\n---\n\n"; total_pages_processed_hf += 1; page_placeholder.empty() |
|
combined_text_output_hf += doc_text; doc.close() |
|
except Exception as e: output_placeholder_hf.error(f"Error processing {pdf_file.name}: {str(e)}") |
|
if total_pages_processed_hf > 0: |
|
st.markdown("--- \n### Combined Processing Results"); st.text_area("Full Output", combined_text_output_hf, height=400, key="combined_pdf_hf_output") |
|
output_filename_pdf_hf = generate_filename("hf_processed_pdfs", "md") |
|
try: |
|
with open(output_filename_pdf_hf, "w", encoding="utf-8") as f: f.write(combined_text_output_hf) |
|
st.success(f"Combined output saved to {output_filename_pdf_hf}") |
|
st.markdown(get_download_link(output_filename_pdf_hf, "text/markdown", "Download Combined MD"), unsafe_allow_html=True) |
|
st.session_state['asset_checkboxes'][output_filename_pdf_hf] = False; update_gallery() |
|
except IOError as e: st.error(f"Failed to save combined output file: {e}") |
|
|
|
|
|
with tabs[5]: |
|
st.header("Image Process with HF Models πΌοΈ") |
|
st.markdown("Upload images and process them using selected HF models (API or Local).") |
|
img_use_api = st.radio("Choose Processing Method", ["Hugging Face API", "Loaded Local Model"], key="img_process_source_hf", horizontal=True) |
|
if img_use_api == "Hugging Face API": st.info(f"Using API Model: {st.session_state.hf_custom_api_model.strip() or st.session_state.hf_selected_api_model} (likely image-to-text)") |
|
else: |
|
if st.session_state.selected_local_model_path: st.info(f"Using Local Model: {os.path.basename(st.session_state.selected_local_model_path)}") |
|
else: st.warning("No local model selected.") |
|
img_prompt_hf = st.text_area("Prompt for Image Processing", "Describe this image in detail.", key="img_process_prompt_hf") |
|
uploaded_images_process_hf = st.file_uploader("Upload image files", type=["png", "jpg", "jpeg"], accept_multiple_files=True, key="image_process_uploader_hf") |
|
if uploaded_images_process_hf: |
|
if st.button("Process Uploaded Images with HF", key="process_images_hf"): |
|
if img_use_api == "Loaded Local Model" and not st.session_state.selected_local_model_path: st.error("Cannot process locally: No local model selected.") |
|
else: |
|
combined_img_text_hf = f"# HF Image Processing Results ({'API' if img_use_api else 'Local'})\n\n**Prompt:** {img_prompt_hf}\n\n---\n\n"; images_processed_hf = 0; output_img_placeholder_hf = st.container() |
|
for img_file in uploaded_images_process_hf: |
|
output_img_placeholder_hf.markdown(f"### Processing: {img_file.name}") |
|
try: |
|
img = Image.open(img_file); cols_img_hf = output_img_placeholder_hf.columns(2); cols_img_hf[0].image(img, caption=f"Input: {img_file.name}", use_container_width=True) |
|
with cols_img_hf[1], st.spinner("Processing image with HF model..."): hf_img_text = process_image_hf(img, img_prompt_hf, use_api=img_use_api) |
|
st.text_area(f"Result", hf_img_text, height=300, key=f"img_hf_out_{img_file.name}") |
|
combined_img_text_hf += f"## Image: {img_file.name}\n\n{hf_img_text}\n\n---\n\n"; images_processed_hf += 1 |
|
except UnidentifiedImageError: output_img_placeholder_hf.error(f"Invalid Image: {img_file.name}. Skipping.") |
|
except Exception as e: output_img_placeholder_hf.error(f"Error processing {img_file.name}: {str(e)}") |
|
if images_processed_hf > 0: |
|
st.markdown("--- \n### Combined Processing Results"); st.text_area("Full Output", combined_img_text_hf, height=400, key="combined_img_hf_output") |
|
output_filename_img_hf = generate_filename("hf_processed_images", "md") |
|
try: |
|
with open(output_filename_img_hf, "w", encoding="utf-8") as f: f.write(combined_img_text_hf) |
|
st.success(f"Combined output saved to {output_filename_img_hf}"); st.markdown(get_download_link(output_filename_img_hf, "text/markdown", "Download Combined MD"), unsafe_allow_html=True) |
|
st.session_state['asset_checkboxes'][output_filename_img_hf] = False; update_gallery() |
|
except IOError as e: st.error(f"Failed to save combined output file: {e}") |
|
|
|
|
|
with tabs[6]: |
|
st.header("Text Process with HF Models π") |
|
st.markdown("Process Markdown (.md) or Text (.txt) files using selected HF models (API or Local).") |
|
text_use_api = st.radio("Choose Processing Method", ["Hugging Face API", "Loaded Local Model"], key="text_process_source_hf", horizontal=True) |
|
if text_use_api == "Hugging Face API": st.info(f"Using API Model: {st.session_state.hf_custom_api_model.strip() or st.session_state.hf_selected_api_model}") |
|
else: |
|
if st.session_state.selected_local_model_path: st.info(f"Using Local Model: {os.path.basename(st.session_state.selected_local_model_path)}") |
|
else: st.warning("No local model selected.") |
|
text_files_hf = get_gallery_files(['md', 'txt']) |
|
if not text_files_hf: st.warning("No .md or .txt files in gallery to process.") |
|
else: |
|
selected_text_file_hf = st.selectbox("Select Text/MD File to Process", options=[""] + text_files_hf, format_func=lambda x: os.path.basename(x) if x else "Select a file...", key="text_process_select_hf") |
|
if selected_text_file_hf: |
|
st.write(f"Selected: {os.path.basename(selected_text_file_hf)}") |
|
try: |
|
with open(selected_text_file_hf, "r", encoding="utf-8", errors='ignore') as f: content_text_hf = f.read() |
|
st.text_area("File Content Preview", content_text_hf[:1000] + ("..." if len(content_text_hf) > 1000 else ""), height=200, key="text_content_preview_hf") |
|
prompt_text_hf = st.text_area("Enter Prompt for this File", "Summarize the key points of this text.", key="text_individual_prompt_hf") |
|
if st.button(f"Process '{os.path.basename(selected_text_file_hf)}' with HF", key=f"process_text_hf_btn"): |
|
if text_use_api == "Loaded Local Model" and not st.session_state.selected_local_model_path: st.error("Cannot process locally: No local model selected.") |
|
else: |
|
with st.spinner("Processing text with HF model..."): result_text_processed = process_text_hf(content_text_hf, prompt_text_hf, use_api=text_use_api) |
|
st.markdown("### Processing Result"); st.markdown(result_text_processed) |
|
output_filename_text_hf = generate_filename(f"hf_processed_{os.path.splitext(os.path.basename(selected_text_file_hf))[0]}", "md") |
|
try: |
|
with open(output_filename_text_hf, "w", encoding="utf-8") as f: f.write(result_text_processed) |
|
st.success(f"Result saved to {output_filename_text_hf}"); st.markdown(get_download_link(output_filename_text_hf, "text/markdown", "Download Result MD"), unsafe_allow_html=True) |
|
st.session_state['asset_checkboxes'][output_filename_text_hf] = False; update_gallery() |
|
except IOError as e: st.error(f"Failed to save result file: {e}") |
|
except FileNotFoundError: st.error("Selected file not found.") |
|
except Exception as e: st.error(f"Error reading file: {e}") |
|
|
|
|
|
with tabs[7]: |
|
st.header("Test OCR with HF Models π") |
|
st.markdown("Select an image/PDF and run OCR using HF models (API or Local - requires suitable local model).") |
|
ocr_use_api = st.radio("Choose OCR Method", ["Hugging Face API (Basic Captioning/OCR)", "Loaded Local OCR Model"], key="ocr_source_hf", horizontal=True, help="API uses basic image-to-text. Local requires a dedicated OCR model (e.g., TrOCR) to be loaded.") |
|
if ocr_use_api == "Loaded Local OCR Model": |
|
if st.session_state.selected_local_model_path: |
|
model_info = st.session_state.local_models.get(st.session_state.selected_local_model_path,{}) |
|
model_type = model_info.get('type'); model_name = os.path.basename(st.session_state.selected_local_model_path) |
|
if model_type != 'ocr': st.warning(f"Selected model ({model_name}) is type '{model_type}', not 'ocr'. Results may be poor.") |
|
else: st.info(f"Using Local OCR Model: {model_name}") |
|
else: st.warning("No local model selected.") |
|
|
|
gallery_files_ocr_hf = get_gallery_files(['png', 'jpg', 'jpeg', 'pdf']) |
|
if not gallery_files_ocr_hf: st.warning("No images or PDFs in gallery.") |
|
else: |
|
selected_file_ocr_hf = st.selectbox("Select Image or PDF from Gallery for OCR", options=[""] + gallery_files_ocr_hf, format_func=lambda x: os.path.basename(x) if x else "Select a file...", key="ocr_select_file_hf") |
|
if selected_file_ocr_hf: |
|
st.write(f"Selected: {os.path.basename(selected_file_ocr_hf)}"); file_ext_ocr_hf = os.path.splitext(selected_file_ocr_hf)[1].lower(); image_to_ocr_hf = None; page_info_hf = "" |
|
try: |
|
if file_ext_ocr_hf in ['.png', '.jpg', '.jpeg']: image_to_ocr_hf = Image.open(selected_file_ocr_hf) |
|
elif file_ext_ocr_hf == '.pdf': |
|
doc = fitz.open(selected_file_ocr_hf) |
|
if len(doc) > 0: pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); image_to_ocr_hf = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); page_info_hf = " (Page 1)" |
|
else: st.warning("Selected PDF is empty.") |
|
doc.close() |
|
if image_to_ocr_hf: |
|
st.image(image_to_ocr_hf, caption=f"Image for OCR{page_info_hf}", use_container_width=True) |
|
if st.button("Run HF OCR on this Image π", key="ocr_run_button_hf"): |
|
if ocr_use_api == "Loaded Local OCR Model" and not st.session_state.selected_local_model_path: st.error("Cannot run locally: No local model selected.") |
|
else: |
|
output_ocr_file_hf = generate_filename(f"hf_ocr_{os.path.splitext(os.path.basename(selected_file_ocr_hf))[0]}", "txt"); st.session_state['processing']['ocr'] = True |
|
with st.spinner("Performing OCR with HF model..."): ocr_result_hf = asyncio.run(process_hf_ocr(image_to_ocr_hf, output_ocr_file_hf, use_api=ocr_use_api)) |
|
st.session_state['processing']['ocr'] = False; st.text_area("OCR Result", ocr_result_hf, height=300, key="ocr_result_display_hf") |
|
if ocr_result_hf and not ocr_result_hf.startswith("Error") and not ocr_result_hf.startswith("["): |
|
entry = f"HF OCR: {selected_file_ocr_hf}{page_info_hf} -> {output_ocr_file_hf}" |
|
st.session_state['history'].append(entry) |
|
if len(ocr_result_hf) > 5: st.success(f"OCR output saved to {output_ocr_file_hf}"); st.markdown(get_download_link(output_ocr_file_hf, "text/plain", "Download OCR Text"), unsafe_allow_html=True); st.session_state['asset_checkboxes'][output_ocr_file_hf] = False; update_gallery() |
|
else: st.warning("OCR output seems short/empty.") |
|
else: st.error(f"OCR failed. {ocr_result_hf}") |
|
except Exception as e: st.error(f"Error loading file for OCR: {e}") |
|
|
|
|
|
with tabs[8]: |
|
st.header("Test Image Generation (Diffusers) π¨") |
|
st.markdown("Generate images using Stable Diffusion models loaded locally via the Diffusers library.") |
|
if not _diffusers_available: st.error("Diffusers library is required.") |
|
else: |
|
local_diffusion_paths = get_local_model_paths("diffusion") |
|
if not local_diffusion_paths: st.warning("No local diffusion models found. Download one using the 'Build Titan' tab."); selected_diffusion_model_path = None |
|
else: selected_diffusion_model_path = st.selectbox("Select Local Diffusion Model", options=[""] + local_diffusion_paths, format_func=lambda x: os.path.basename(x) if x else "Select...", key="imggen_diffusion_model_select") |
|
prompt_imggen_diff = st.text_area("Image Generation Prompt", "A photorealistic cat wearing sunglasses, studio lighting", key="imggen_prompt_diff") |
|
neg_prompt_imggen_diff = st.text_area("Negative Prompt (Optional)", "ugly, deformed, blurry, low quality", key="imggen_neg_prompt_diff") |
|
steps_imggen_diff = st.slider("Inference Steps", 10, 100, 25, key="imggen_steps"); guidance_imggen_diff = st.slider("Guidance Scale", 1.0, 20.0, 7.5, step=0.5, key="imggen_guidance") |
|
if st.button("Generate Image π", key="imggen_run_button_diff", disabled=not selected_diffusion_model_path): |
|
if not prompt_imggen_diff: st.warning("Please enter a prompt.") |
|
else: |
|
status_imggen = st.empty() |
|
try: |
|
status_imggen.info(f"Loading diffusion pipeline: {os.path.basename(selected_diffusion_model_path)}..."); device = "cuda" if _transformers_available and torch.cuda.is_available() else "cpu"; dtype = torch.float16 if device == "cuda" else torch.float32 |
|
pipe = StableDiffusionPipeline.from_pretrained(selected_diffusion_model_path, torch_dtype=dtype).to(device); pipe.safety_checker = None |
|
status_imggen.info(f"Generating image on {device} ({dtype})..."); start_gen_time = time.time() |
|
gen_output = pipe(prompt=prompt_imggen_diff, negative_prompt=neg_prompt_imggen_diff or None, num_inference_steps=steps_imggen_diff, guidance_scale=guidance_imggen_diff) |
|
gen_image = gen_output.images[0]; elapsed_gen = int(time.time() - start_gen_time); status_imggen.success(f"Image generated in {elapsed_gen}s!") |
|
output_imggen_file_diff = generate_filename("diffusion_gen", "png"); gen_image.save(output_imggen_file_diff) |
|
st.image(gen_image, caption=f"Generated: {output_imggen_file_diff}", use_container_width=True) |
|
st.markdown(get_download_link(output_imggen_file_diff, "image/png", "Download Generated Image"), unsafe_allow_html=True) |
|
st.session_state['asset_checkboxes'][output_imggen_file_diff] = False; update_gallery() |
|
st.session_state['history'].append(f"Diffusion Gen: '{prompt_imggen_diff[:30]}...' -> {output_imggen_file_diff}") |
|
except ImportError: st.error("Diffusers or Torch library not found.") |
|
except Exception as e: st.error(f"Image generation failed: {e}"); logger.error(f"Diffusion generation failed for {selected_diffusion_model_path}: {e}", exc_info=True) |
|
finally: if 'pipe' in locals(): del pipe; torch.cuda.empty_cache() if device == "cuda" else None |
|
|
|
|
|
with tabs[9]: |
|
st.header("Character Editor π§βπ¨"); st.subheader("Create Your Character") |
|
load_characters(); existing_char_names = [c['name'] for c in st.session_state.get('characters', [])] |
|
form_key = f"character_form_{st.session_state.get('char_form_reset_key', 0)}" |
|
with st.form(key=form_key): |
|
st.markdown("**Create New Character**") |
|
if st.form_submit_button("Randomize Content π²"): st.session_state['char_form_reset_key'] += 1; st.rerun() |
|
rand_name, rand_gender, rand_intro, rand_greeting = randomize_character_content() |
|
name_char = st.text_input("Name (3-25 chars...)", value=rand_name, max_chars=25, key="char_name_input") |
|
gender_char = st.radio("Gender", ["Male", "Female"], index=["Male", "Female"].index(rand_gender), key="char_gender_radio") |
|
intro_char = st.text_area("Intro (Public description)", value=rand_intro, max_chars=300, height=100, key="char_intro_area") |
|
greeting_char = st.text_area("Greeting (First message)", value=rand_greeting, max_chars=300, height=100, key="char_greeting_area") |
|
tags_char = st.text_input("Tags (comma-separated)", "OC, friendly", key="char_tags_input") |
|
submitted = st.form_submit_button("Create Character β¨") |
|
if submitted: |
|
error = False; |
|
if not (3 <= len(name_char) <= 25): st.error("Name must be 3-25 characters."); error = True |
|
if not re.match(r'^[a-zA-Z0-9 _-]+$', name_char): st.error("Name contains invalid characters."); error = True |
|
if name_char in existing_char_names: st.error(f"Name '{name_char}' already exists!"); error = True |
|
if not intro_char or not greeting_char: st.error("Intro/Greeting cannot be empty."); error = True |
|
if not error: |
|
tag_list = [tag.strip() for tag in tags_char.split(',') if tag.strip()] |
|
character_data = {"name": name_char, "gender": gender_char, "intro": intro_char, "greeting": greeting_char, "created_at": datetime.now(pytz.timezone("US/Central")).strftime('%Y-%m-%d %H:%M:%S %Z'), "tags": tag_list} |
|
if save_character(character_data): st.success(f"Character '{name_char}' created!"); st.session_state['char_form_reset_key'] += 1; st.rerun() |
|
|
|
|
|
with tabs[10]: |
|
st.header("Character Gallery πΌοΈ"); load_characters(); characters_list = st.session_state.get('characters', []) |
|
if not characters_list: st.warning("No characters created yet.") |
|
else: |
|
st.subheader(f"Your Characters ({len(characters_list)})"); search_term = st.text_input("Search Characters by Name", key="char_gallery_search") |
|
if search_term: characters_list = [c for c in characters_list if search_term.lower() in c['name'].lower()] |
|
cols_char_gallery = st.columns(3); chars_to_delete = [] |
|
for idx, char in enumerate(characters_list): |
|
with cols_char_gallery[idx % 3], st.container(border=True): |
|
st.markdown(f"**{char['name']}**"); st.caption(f"Gender: {char.get('gender', 'N/A')}") |
|
st.markdown("**Intro:**"); st.markdown(f"> {char.get('intro', '')}") |
|
st.markdown("**Greeting:**"); st.markdown(f"> {char.get('greeting', '')}") |
|
st.caption(f"Tags: {', '.join(char.get('tags', ['N/A']))}"); st.caption(f"Created: {char.get('created_at', 'N/A')}") |
|
delete_key_char = f"delete_char_{char['name']}_{idx}"; |
|
if st.button(f"Delete", key=delete_key_char, type="primary", help=f"Delete {char['name']}"): chars_to_delete.append(char['name']) |
|
if chars_to_delete: |
|
current_characters = st.session_state.get('characters', []); updated_characters = [c for c in current_characters if c['name'] not in chars_to_delete] |
|
st.session_state['characters'] = updated_characters |
|
try: |
|
with open("characters.json", "w", encoding='utf-8') as f: json.dump(updated_characters, f, indent=2) |
|
logger.info(f"Deleted characters: {', '.join(chars_to_delete)}"); st.success(f"Deleted: {', '.join(chars_to_delete)}"); st.rerun() |
|
except IOError as e: logger.error(f"Failed to save characters.json after deletion: {e}"); st.error("Failed to update character file.") |
|
|
|
|
|
st.sidebar.markdown("---") |
|
|
|
update_gallery() |
|
|
|
|
|
st.sidebar.subheader("Action Logs π") |
|
log_expander = st.sidebar.expander("View Logs", expanded=False) |
|
with log_expander: |
|
|
|
log_text = "\n".join([f"{record.levelname}: {record.message}" for record in reversed(log_records)]) |
|
st.code(log_text, language='log') |
|
|
|
|
|
st.sidebar.subheader("Session History π") |
|
history_expander = st.sidebar.expander("View History", expanded=False) |
|
with history_expander: |
|
for entry in reversed(st.session_state.get("history", [])): |
|
if entry: history_expander.write(f"- {entry}") |
|
|
|
st.sidebar.markdown("---") |
|
st.sidebar.info("Using Hugging Face models for AI tasks.") |
|
st.sidebar.caption("App Modified by AI Assistant") |