diff --git "a/app.py" "b/app.py"
--- "a/app.py"
+++ "b/app.py"
@@ -1,4 +1,6 @@
-# --- Combined Imports ------------------------------------
+#!/usr/bin/env python
+# app.py
+
import io
import os
import re
@@ -11,1683 +13,276 @@ import time
import zipfile
import json
import asyncio
-import aiofiles
+from pathlib import Path
from datetime import datetime
-from collections import Counter
-from dataclasses import dataclass, field
-from io import BytesIO
-from typing import Optional, List, Dict, Any
+from typing import Any, List, Dict, Optional
import pandas as pd
import pytz
import streamlit as st
-from PIL import Image, ImageDraw # Added ImageDraw
+import aiofiles
+import requests
+
+from PIL import Image, ImageDraw, UnidentifiedImageError
from reportlab.pdfgen import canvas
from reportlab.lib.utils import ImageReader
-from reportlab.lib.pagesizes import letter # Default page size
-import fitz # PyMuPDF
-
-# --- Hugging Face Imports ---
-from huggingface_hub import InferenceClient, HfApi, list_models
-from huggingface_hub.utils import RepositoryNotFoundError, GatedRepoError # Import specific exceptions
-
-
-
-# --- App Configuration -----------------------------------
-st.set_page_config(
- page_title="Vision & Layout Titans (HF) ππΌοΈ",
- page_icon="π€",
- layout="wide",
- initial_sidebar_state="expanded",
- menu_items={
- 'Get Help': 'https://huggingface.co/docs',
- 'Report a Bug': None, # Replace with your bug report link if desired
- 'About': "Combined App: Image->PDF Layout + Hugging Face Powered AI Tools π"
- }
-)
+from reportlab.lib.pagesizes import letter
+import fitz # PyMuPDF
+from huggingface_hub import InferenceClient
+from huggingface_hub.utils import RepositoryNotFoundError, GatedRepoError
-# Conditional imports for optional/heavy libraries
+# Optional AI/ML imports
try:
import torch
- from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor, AutoModelForVision2Seq, AutoModelForImageToWaveform, pipeline
- # Add more AutoModel classes as needed for different tasks (Vision, OCR, etc.)
+ from transformers import (
+ AutoModelForCausalLM,
+ AutoTokenizer,
+ AutoProcessor,
+ AutoModelForVision2Seq,
+ pipeline
+ )
_transformers_available = True
except ImportError:
_transformers_available = False
- st.sidebar.warning("AI/ML libraries (torch, transformers) not found. Local model features disabled.")
try:
from diffusers import StableDiffusionPipeline
_diffusers_available = True
except ImportError:
_diffusers_available = False
- # Don't show warning if transformers also missing, handled above
- if _transformers_available:
- st.sidebar.warning("Diffusers library not found. Diffusion model features disabled.")
+# --- Page Configuration ---
+st.set_page_config(
+ page_title="Vision & Layout Titans (HF) ππΌοΈ",
+ page_icon="π€",
+ layout="wide",
+ initial_sidebar_state="expanded",
+ menu_items={
+ 'Get Help': 'https://huggingface.co/docs',
+ 'About': "Combined App: ImageβPDF Layout + HF AI Tools π"
+ }
+)
-import requests # Keep requests import
-
-# --- Logging Setup ---------------------------------------
+# --- Logging Setup ---
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
-log_records = []
+log_records: List[logging.LogRecord] = []
class LogCaptureHandler(logging.Handler):
def emit(self, record):
log_records.append(record)
logger.addHandler(LogCaptureHandler())
-# --- Environment Variables & Constants -------------------
+# --- Constants & Defaults ---
HF_TOKEN = os.getenv("HF_TOKEN")
DEFAULT_PROVIDER = "hf-inference"
-# Model List (curated, similar to Gradio example) - can be updated
FEATURED_MODELS_LIST = [
- "meta-llama/Meta-Llama-3.1-8B-Instruct", # Updated Llama model
+ "meta-llama/Meta-Llama-3.1-8B-Instruct",
"mistralai/Mistral-7B-Instruct-v0.3",
- "google/gemma-2-9b-it", # Added Gemma 2
- "Qwen/Qwen2-7B-Instruct", # Added Qwen2
+ "google/gemma-2-9b-it",
+ "Qwen/Qwen2-7B-Instruct",
"microsoft/Phi-3-mini-4k-instruct",
"HuggingFaceH4/zephyr-7b-beta",
- "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", # Larger Mixture of Experts
- # Add a smaller option
+ "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
"HuggingFaceTB/SmolLM-1.7B-Instruct"
]
-# Add common vision models if planning local loading
-VISION_MODELS_LIST = [
- "Salesforce/blip-image-captioning-large",
- "microsoft/trocr-large-handwritten", # OCR model
- "llava-hf/llava-1.5-7b-hf", # Vision Language Model
- "google/vit-base-patch16-224", # Basic Vision Transformer
-]
-DIFFUSION_MODELS_LIST = [
- "stabilityai/stable-diffusion-xl-base-1.0", # Common SDXL
- "runwayml/stable-diffusion-v1-5", # Classic SD 1.5
- "OFA-Sys/small-stable-diffusion-v0", # Tiny diffusion
-]
-
-
-# --- Session State Initialization (Combined & Updated) ---
-# Layout PDF specific
-st.session_state.setdefault('layout_snapshots', [])
-st.session_state.setdefault('layout_new_uploads', [])
-
-# General App State
-st.session_state.setdefault('history', [])
-st.session_state.setdefault('processing', {})
-st.session_state.setdefault('asset_checkboxes', {})
-st.session_state.setdefault('downloaded_pdfs', {})
-st.session_state.setdefault('unique_counter', 0)
-st.session_state.setdefault('cam0_file', None)
-st.session_state.setdefault('cam1_file', None)
-st.session_state.setdefault('characters', [])
-st.session_state.setdefault('char_form_reset_key', 0) # For character form reset
-st.session_state.setdefault('gallery_size', 10)
-
-# --- Hugging Face & Local Model State ---
-st.session_state.setdefault('hf_inference_client', None) # Store initialized client
-st.session_state.setdefault('hf_provider', DEFAULT_PROVIDER)
-st.session_state.setdefault('hf_custom_key', "")
-st.session_state.setdefault('hf_selected_api_model', FEATURED_MODELS_LIST[0]) # Default API model
-st.session_state.setdefault('hf_custom_api_model', "") # User override for API model
-
-# Local Model Management
-st.session_state.setdefault('local_models', {}) # Dict to store loaded models: {'path': {'model': obj, 'tokenizer': obj, 'type': 'causal/vision/etc'}}
-st.session_state.setdefault('selected_local_model_path', None) # Path of the currently active local model
-
-# Inference Parameters (shared for API and local where applicable)
-st.session_state.setdefault('gen_max_tokens', 512)
-st.session_state.setdefault('gen_temperature', 0.7)
-st.session_state.setdefault('gen_top_p', 0.95)
-st.session_state.setdefault('gen_frequency_penalty', 0.0)
-st.session_state.setdefault('gen_seed', -1) # -1 for random
-if 'asset_gallery_container' not in st.session_state:
- st.session_state['asset_gallery_container'] = st.sidebar.empty()
+# --- Session State Initialization ---
+def _init_state(key: str, default: Any):
+ if key not in st.session_state:
+ st.session_state[key] = default
+
+for k, v in {
+ 'layout_snapshots': [],
+ 'layout_new_uploads': [],
+ 'layout_last_capture': None,
+ 'history': [],
+ 'processing': {},
+ 'asset_checkboxes': {},
+ 'downloaded_pdfs': {},
+ 'unique_counter': 0,
+ 'cam0_file': None,
+ 'cam1_file': None,
+ 'characters': [],
+ 'char_form_reset_key': 0,
+ 'gallery_size': 10,
+ 'hf_inference_client': None,
+ 'hf_provider': DEFAULT_PROVIDER,
+ 'hf_custom_key': "",
+ 'hf_selected_api_model': FEATURED_MODELS_LIST[0],
+ 'hf_custom_api_model': "",
+ 'local_models': {},
+ 'selected_local_model_path': None,
+ 'gen_max_tokens': 512,
+ 'gen_temperature': 0.7,
+ 'gen_top_p': 0.95,
+ 'gen_frequency_penalty': 0.0,
+ 'gen_seed': -1
+}.items():
+ _init_state(k, v)
+
+# --- Utility Functions ---
+def generate_filename(seq: str, ext: str = "png") -> str:
+ ts = time.strftime('%Y%m%d_%H%M%S')
+ safe = re.sub(r'[^\w\-]+', '_', seq)
+ return f"{safe}_{ts}.{ext}"
-# --- Dataclasses (Refined for Local Models) -------------
-@dataclass
-class LocalModelConfig:
- name: str # User-defined local name
- hf_id: str # Hugging Face model ID used for download
- model_type: str # 'causal', 'vision', 'diffusion', 'ocr', etc.
- size_category: str = "unknown" # e.g., 'small', 'medium', 'large'
- domain: Optional[str] = None
- local_path: str = field(init=False) # Path where it's saved
-
- def __post_init__(self):
- # Define local path based on type and name
- type_folder = f"{self.model_type}_models"
- safe_name = re.sub(r'[^\w\-]+', '_', self.name) # Sanitize name for path
- self.local_path = os.path.join(type_folder, safe_name)
-
- def get_full_path(self):
- return os.path.abspath(self.local_path)
-
-# (Keep DiffusionConfig if still using diffusers library separately)
-@dataclass
-class DiffusionConfig: # Kept for clarity in diffusion tab if needed
- name: str
- base_model: str
- size: str
- domain: Optional[str] = None
- @property
- def model_path(self):
- return f"diffusion_models/{self.name}"
-
-
-# --- Helper Functions (Combined and refined) -------------
-# (Keep generate_filename, pdf_url_to_filename, get_download_link, zip_directory)
-# ... (previous helper functions like generate_filename, pdf_url_to_filename etc. are assumed here) ...
-def generate_filename(sequence, ext="png"):
- timestamp = time.strftime('%Y%m%d_%H%M%S')
- safe_sequence = re.sub(r'[^\w\-]+', '_', str(sequence))
- return f"{safe_sequence}_{timestamp}.{ext}"
-
-def pdf_url_to_filename(url):
- name = re.sub(r'^https?://', '', url)
- name = re.sub(r'[<>:"/\\|?*]', '_', name)
- return name[:100] + ".pdf" # Limit length
-
-def get_download_link(file_path, mime_type="application/octet-stream", label="Download"):
- if not os.path.exists(file_path): return f"{label} (File not found)"
- try:
- with open(file_path, "rb") as f: file_bytes = f.read()
- b64 = base64.b64encode(file_bytes).decode()
- return f'{label}'
- except Exception as e:
- logger.error(f"Error creating download link for {file_path}: {e}")
- return f"{label} (Error)"
-
-def zip_directory(directory_path, zip_path):
- with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
- for root, _, files in os.walk(directory_path):
- for file in files:
- file_path = os.path.join(root, file)
- zipf.write(file_path, os.path.relpath(file_path, os.path.dirname(directory_path)))
-
-def get_local_model_paths(model_type="causal"):
- """Gets paths of locally saved models of a specific type."""
- pattern = f"{model_type}_models/*"
- dirs = [d for d in glob.glob(pattern) if os.path.isdir(d)]
- return dirs
-
-def get_gallery_files(file_types=("png", "pdf", "jpg", "jpeg", "md", "txt")):
- all_files = set()
- for ext in file_types:
- all_files.update(glob.glob(f"*.{ext.lower()}"))
- all_files.update(glob.glob(f"*.{ext.upper()}"))
- return sorted(list(all_files))
-
-def get_pdf_files():
- return sorted(glob.glob("*.pdf") + glob.glob("*.PDF"))
-
-def download_pdf(url, output_path):
+def clean_stem(fn: str) -> str:
+ return os.path.splitext(os.path.basename(fn))[0].replace('-', ' ').replace('_', ' ').title()
+
+def get_download_link(path: str, mime: str, label: str = "Download") -> str:
+ if not os.path.exists(path): return f"{label} (not found)"
+ data = open(path,'rb').read()
+ b64 = base64.b64encode(data).decode()
+ return f'{label}'
+
+def get_gallery_files(types: List[str] = ['png','jpg','jpeg','pdf','md','txt']) -> List[str]:
+ files = set()
+ for ext in types:
+ files.update(glob.glob(f"*.{ext}"))
+ files.update(glob.glob(f"*.{ext.upper()}"))
+ return sorted(files)
+
+# Delete with rerun
+def delete_asset(path: str):
try:
- headers = {'User-Agent': 'Mozilla/5.0'}
- response = requests.get(url, stream=True, timeout=20, headers=headers)
- response.raise_for_status()
- with open(output_path, "wb") as f:
- for chunk in response.iter_content(chunk_size=8192): f.write(chunk)
- logger.info(f"Successfully downloaded {url} to {output_path}")
- return True
- except requests.exceptions.RequestException as e:
- logger.error(f"Failed to download {url}: {e}")
- if os.path.exists(output_path):
- try:
- os.remove(output_path)
- except:
- pass
- return False
- except Exception as e:
- logger.error(f"An unexpected error occurred during download of {url}: {e}")
- if os.path.exists(output_path):
- try:
- os.remove(output_path)
- except:
- pass
- return False
-
-# (Keep process_pdf_snapshot - it doesn't use AI)
-async def process_pdf_snapshot(pdf_path, mode="single", resolution_factor=2.0):
- start_time = time.time()
- status_placeholder = st.empty()
- status_placeholder.text(f"Processing PDF Snapshot ({mode}, Res: {resolution_factor}x)... (0s)")
- output_files = []
+ os.remove(path)
+ st.session_state['asset_checkboxes'].pop(path, None)
+ if path in st.session_state['layout_snapshots']:
+ st.session_state['layout_snapshots'].remove(path)
+ st.toast(f"Deleted {os.path.basename(path)}", icon="β
")
+ except OSError as e:
+ st.error(f"Delete failed: {e}")
+ st.rerun()
+
+# Sidebar gallery updater
+def update_gallery():
+ st.sidebar.markdown("### Asset Gallery πΈπ")
+ files = get_gallery_files()
+ if not files:
+ st.sidebar.info("No assets.")
+ return
+ st.sidebar.caption(f"Found {len(files)} assets.")
+ for f in files[:st.session_state['gallery_size']]:
+ name = os.path.basename(f)
+ ext = os.path.splitext(f)[1].lower()
+ st.sidebar.markdown(f"**{name}**")
+ with st.sidebar.expander("Preview", expanded=False):
+ try:
+ if ext in ['.png','.jpg','.jpeg']:
+ st.image(Image.open(f), use_container_width=True)
+ elif ext == '.pdf':
+ doc = fitz.open(f)
+ if doc.page_count:
+ pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5,0.5))
+ img = Image.frombytes('RGB',[pix.width,pix.height],pix.samples)
+ st.image(img, use_container_width=True)
+ doc.close()
+ else:
+ txt = Path(f).read_text(errors='ignore')
+ st.code(txt[:200]+'β¦')
+ except:
+ st.warning("Preview error")
+ c1,c2,c3 = st.sidebar.columns(3)
+ sel = st.session_state['asset_checkboxes'].get(f, False)
+ c1.checkbox("Select", value=sel, key=f"cb_{f}")
+ st.session_state['asset_checkboxes'][f] = st.session_state.get(f"cb_{f}")
+ mime = {'png':'image/png','jpg':'image/jpeg','jpeg':'image/jpeg','pdf':'application/pdf','md':'text/markdown','txt':'text/plain'}.get(ext[1:], 'application/octet-stream')
+ with open(f,'rb') as fp:
+ c2.download_button("π₯", data=fp, file_name=name, mime=mime, key=f"dl_{f}")
+ c3.button("ποΈ", key=f"del_{f}", on_click=delete_asset, args=(f,))
+ st.sidebar.markdown("---")
+
+# --- PDF Snapshot & Generation ---
+async def process_pdf_snapshot(path: str, mode: str='single', resF: float=2.0) -> List[str]:
+ status = st.empty()
+ status.text("Snapshot start...")
+ out_files: List[str] = []
try:
- doc = fitz.open(pdf_path)
- matrix = fitz.Matrix(resolution_factor, resolution_factor)
- num_pages_to_process = 0
- if mode == "single": num_pages_to_process = min(1, len(doc))
- elif mode == "twopage": num_pages_to_process = min(2, len(doc))
- elif mode == "allpages": num_pages_to_process = len(doc)
-
- for i in range(num_pages_to_process):
- page_start_time = time.time()
+ doc = fitz.open(path)
+ mat = fitz.Matrix(resF,resF)
+ cnt = {'single':1,'twopage':2,'allpages':len(doc)}.get(mode,1)
+ for i in range(min(cnt,len(doc))):
+ s = time.time()
page = doc[i]
- pix = page.get_pixmap(matrix=matrix)
- base_name = os.path.splitext(os.path.basename(pdf_path))[0]
- output_file = generate_filename(f"{base_name}_pg{i+1}_{mode}", "png")
- await asyncio.to_thread(pix.save, output_file)
- output_files.append(output_file)
- elapsed_page = int(time.time() - page_start_time)
- status_placeholder.text(f"Processing PDF Snapshot ({mode}, Res: {resolution_factor}x)... Page {i+1}/{num_pages_to_process} done ({elapsed_page}s)")
- await asyncio.sleep(0.01)
-
+ pix = page.get_pixmap(matrix=mat)
+ base = os.path.splitext(os.path.basename(path))[0]
+ fname = generate_filename(f"{base}_pg{i+1}_{mode}","png")
+ await asyncio.to_thread(pix.save, fname)
+ out_files.append(fname)
+ status.text(f"Saved {fname} ({int(time.time()-s)}s)")
doc.close()
- elapsed = int(time.time() - start_time)
- status_placeholder.success(f"PDF Snapshot ({mode}, {len(output_files)} files) completed in {elapsed}s!")
- return output_files
+ status.success(f"Snapshot done: {len(out_files)} files")
except Exception as e:
- logger.error(f"Failed to process PDF snapshot for {pdf_path}: {e}")
- status_placeholder.error(f"Failed to process PDF {os.path.basename(pdf_path)}: {e}")
- for f in output_files:
+ status.error(f"Snapshot error: {e}")
+ for f in out_files:
if os.path.exists(f): os.remove(f)
- return []
-
-
-# --- HF Inference Client Management ---
-def get_hf_client() -> Optional[InferenceClient]:
- """Gets or initializes the Hugging Face Inference Client based on session state."""
- provider = st.session_state.hf_provider
- custom_key = st.session_state.hf_custom_key.strip()
- token_to_use = custom_key if custom_key else HF_TOKEN
-
- if not token_to_use and provider != "hf-inference":
- st.error(f"Provider '{provider}' requires a Hugging Face API token (either via HF_TOKEN env var or custom key).")
+ out_files = []
+ return out_files
+
+from reportlab.lib.pagesizes import letter
+
+def make_image_sized_pdf(sources: List[Any]) -> Optional[bytes]:
+ # dedupe
+ seen, uniq = set(), []
+ for s in sources:
+ key = s if isinstance(s,str) else getattr(s,'name',None)
+ if key and key not in seen:
+ seen.add(key)
+ uniq.append(s)
+ if not uniq:
+ st.warning("No images for PDF")
return None
- if provider == "hf-inference" and not token_to_use:
- logger.warning("Using hf-inference provider without a token. Rate limits may apply.")
- token_to_use = None # Explicitly set to None for public inference API
-
- # Check if client needs re-initialization
- current_client = st.session_state.get('hf_inference_client')
- # Simple check: re-init if provider or token presence changes
- needs_reinit = True
- if current_client:
- # Basic check, more robust checks could compare client._token etc. if needed
- # This assumes provider and token status are the key determinants
- client_uses_custom = hasattr(current_client, '_token') and current_client._token == custom_key
- client_uses_default = hasattr(current_client, '_token') and current_client._token == HF_TOKEN
- client_uses_no_token = not hasattr(current_client, '_token') or current_client._token is None
-
- if current_client.provider == provider:
- if custom_key and client_uses_custom: needs_reinit = False
- elif not custom_key and HF_TOKEN and client_uses_default: needs_reinit = False
- elif not custom_key and not HF_TOKEN and client_uses_no_token: needs_reinit = False
-
-
- if needs_reinit:
+ buf = io.BytesIO()
+ c = canvas.Canvas(buf, pagesize=letter)
+ status = st.empty()
+ for idx,s in enumerate(uniq,1):
try:
- logger.info(f"Initializing InferenceClient for provider: {provider}. Token source: {'Custom Key' if custom_key else ('HF_TOKEN' if HF_TOKEN else 'None')}")
- st.session_state.hf_inference_client = InferenceClient(token=token_to_use, provider=provider)
- logger.info("InferenceClient initialized successfully.")
+ img = Image.open(s) if isinstance(s,str) else Image.open(s)
+ w,h = img.size
+ cap = 30
+ c.setPageSize((w,h+cap))
+ c.drawImage(ImageReader(img),0,cap,w,h,mask='auto')
+ cap_txt = clean_stem(s if isinstance(s,str) else s.name)
+ c.setFont('Helvetica',12)
+ c.drawCentredString(w/2,cap/2,cap_txt)
+ c.setFont('Helvetica',8)
+ c.drawRightString(w-10,10,str(idx))
+ c.showPage()
+ status.text(f"Page {idx}/{len(uniq)} added")
except Exception as e:
- st.error(f"Failed to initialize Hugging Face client for provider {provider}: {e}")
- logger.error(f"InferenceClient initialization failed: {e}")
- st.session_state.hf_inference_client = None
+ status.error(f"Error page {idx}: {e}")
+ c.save()
+ buf.seek(0)
+ return buf.getvalue()
- return st.session_state.hf_inference_client
-
-# --- HF/Local Model Processing Functions (Replaced OpenAI ones) ---
+# --- HF Inference Client ---
+def get_hf_client() -> Optional[InferenceClient]:
+ provider = st.session_state['hf_provider']
+ token = st.session_state['hf_custom_key'].strip() or HF_TOKEN
+ if provider!='hf-inference' and not token:
+ st.error(f"Provider {provider} needs token")
+ return None
+ client = st.session_state['hf_inference_client']
+ if not client:
+ st.session_state['hf_inference_client'] = InferenceClient(token=token, provider=provider)
+ return st.session_state['hf_inference_client']
+# --- HF Processing ---
def process_text_hf(text: str, prompt: str, use_api: bool) -> str:
- """Processes text using either HF Inference API or a loaded local model."""
- status_placeholder = st.empty()
- start_time = time.time()
- result_text = ""
-
- # --- Prepare Parameters ---
- params = {
- "max_new_tokens": st.session_state.gen_max_tokens, # Note: HF uses max_new_tokens typically
- "temperature": st.session_state.gen_temperature,
- "top_p": st.session_state.gen_top_p,
- "repetition_penalty": st.session_state.gen_frequency_penalty + 1.0, # Adjust HF param name if needed
- }
- seed = st.session_state.gen_seed
- if seed != -1: params["seed"] = seed
-
- # --- Prepare Messages ---
- # Simple system prompt + user prompt structure
- # More complex chat history could be added here if needed
- system_prompt = "You are a helpful assistant. Process the following text based on the user's request." # Default, consider making configurable
- full_prompt = f"{prompt}\n\n---\n\n{text}"
- # Basic message format for many models, adjust if needed per model type
- messages = [
- {"role": "system", "content": system_prompt},
- {"role": "user", "content": full_prompt}
- ]
-
-
- if use_api:
- # --- Use Hugging Face Inference API ---
- status_placeholder.info("Processing text using Hugging Face API...")
- client = get_hf_client()
- if not client:
- return "Error: Hugging Face client not available or configured correctly."
-
- model_id = st.session_state.hf_custom_api_model.strip() or st.session_state.hf_selected_api_model
- if not model_id:
- return "Error: No Hugging Face API model selected or specified."
- status_placeholder.info(f"Using API Model: {model_id}")
-
- try:
- # Non-streaming for simplicity in Streamlit integration first
- response = client.chat_completion(
- model=model_id,
- messages=messages,
- max_tokens=params['max_new_tokens'], # chat_completion uses max_tokens
- temperature=params['temperature'],
- top_p=params['top_p'],
- # Add other params if supported by client.chat_completion
- )
- result_text = response.choices[0].message.content or ""
- logger.info(f"HF API text processing successful for model {model_id}.")
-
- except Exception as e:
- logger.error(f"HF API text processing failed for model {model_id}: {e}")
- result_text = f"Error during Hugging Face API inference: {str(e)}"
-
- else:
- # --- Use Loaded Local Model ---
- status_placeholder.info("Processing text using local model...")
- if not _transformers_available:
- return "Error: Transformers library not available for local models."
-
- model_path = st.session_state.get('selected_local_model_path')
- if not model_path or model_path not in st.session_state.get('local_models', {}):
- return "Error: No suitable local model selected or loaded."
-
- local_model_data = st.session_state['local_models'][model_path]
- if local_model_data.get('type') != 'causal':
- return f"Error: Loaded model '{os.path.basename(model_path)}' is not a Causal LM."
-
- status_placeholder.info(f"Using Local Model: {os.path.basename(model_path)}")
- model = local_model_data.get('model')
- tokenizer = local_model_data.get('tokenizer')
-
- if not model or not tokenizer:
- return f"Error: Model or tokenizer not found for {os.path.basename(model_path)}."
-
- try:
- # Prepare input for local transformers model
- # Handle chat template if available, otherwise basic concatenation
- try:
- prompt_for_model = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
- except Exception: # Fallback if template fails or doesn't exist
- logger.warning(f"Could not apply chat template for {model_path}. Using basic formatting.")
- prompt_for_model = f"System: {system_prompt}\nUser: {full_prompt}\nAssistant:"
-
- inputs = tokenizer(prompt_for_model, return_tensors="pt", padding=True, truncation=True, max_length=params['max_new_tokens'] * 2) # Heuristic length limit
- # Move inputs to the same device as the model
- inputs = {k: v.to(model.device) for k, v in inputs.items()}
-
- # Generate
- # Ensure generate parameters match transformers' expected names
- generate_params = {
- "max_new_tokens": params['max_new_tokens'],
- "temperature": params['temperature'],
- "top_p": params['top_p'],
- "repetition_penalty": params.get('repetition_penalty', 1.0), # Use adjusted name
- "do_sample": True if params['temperature'] > 0.1 else False, # Required for temp/top_p
- "pad_token_id": tokenizer.eos_token_id # Avoid PAD warning
- }
- if 'seed' in params: pass # Seed handling can be complex with transformers, often set globally
-
- with torch.no_grad(): # Disable gradient calculation for inference
- outputs = model.generate(**inputs, **generate_params)
-
- # Decode the output, skipping special tokens and the prompt
- # output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
- # More robust decoding: only decode the newly generated part
- input_length = inputs['input_ids'].shape[1]
- generated_ids = outputs[0][input_length:]
- result_text = tokenizer.decode(generated_ids, skip_special_tokens=True)
-
- logger.info(f"Local text processing successful for model {model_path}.")
-
- except Exception as e:
- logger.error(f"Local text processing failed for model {model_path}: {e}")
- result_text = f"Error during local model inference: {str(e)}"
-
-
- elapsed = int(time.time() - start_time)
- status_placeholder.success(f"Text processing completed in {elapsed}s.")
- return result_text
-
-
-# --- Image Processing (Placeholder/Basic Implementation) ---
-# This needs significant work depending on the chosen vision model type
-def process_image_hf(image: Image.Image, prompt: str, use_api: bool) -> str:
- """Processes an image using either HF Inference API or a local model."""
- status_placeholder = st.empty()
- start_time = time.time()
- result_text = "[Image processing not fully implemented with HF models yet]"
-
+ stp = st.empty(); stp.text("Processing...")
+ msgs = [{"role":"system","content":"You are an assistant."},
+ {"role":"user","content":f"{prompt}\n\n{text}"}]
+ out = ""
if use_api:
- # --- Use HF API (Basic Image-to-Text Example) ---
- status_placeholder.info("Processing image using Hugging Face API (Image-to-Text)...")
client = get_hf_client()
- if not client: return "Error: HF client not configured."
-
- # Convert PIL image to bytes
- buffered = BytesIO()
- image.save(buffered, format="PNG" if image.format != 'JPEG' else 'JPEG')
- img_bytes = buffered.getvalue()
-
- try:
- # Example using a generic image-to-text model via API
- # NOTE: This does NOT use the 'prompt' effectively like VQA models.
- # Need to select an appropriate model ID known for image captioning.
- # Using a default BLIP model for demonstration.
- captioning_model_id = "Salesforce/blip-image-captioning-large"
- status_placeholder.info(f"Using API Image-to-Text Model: {captioning_model_id}")
-
- response_list = client.image_to_text(data=img_bytes, model=captioning_model_id)
-
- if response_list and isinstance(response_list, list) and 'generated_text' in response_list[0]:
- result_text = f"API Caption ({captioning_model_id}): {response_list[0]['generated_text']}\n\n(Note: API call did not use custom prompt: '{prompt}')"
- logger.info(f"HF API image captioning successful for model {captioning_model_id}.")
- else:
- result_text = "Error: Unexpected response format from image-to-text API."
- logger.warning(f"Unexpected API response for image-to-text: {response_list}")
-
- except Exception as e:
- logger.error(f"HF API image processing failed: {e}")
- result_text = f"Error during Hugging Face API image inference: {str(e)}"
-
- else:
- # --- Use Local Vision Model ---
- status_placeholder.info("Processing image using local model...")
- if not _transformers_available: return "Error: Transformers library needed."
-
- model_path = st.session_state.get('selected_local_model_path')
- if not model_path or model_path not in st.session_state.get('local_models', {}):
- return "Error: No suitable local model selected or loaded."
-
- local_model_data = st.session_state['local_models'][model_path]
- model_type = local_model_data.get('type')
-
- # --- Placeholder Logic - Requires Specific Model Implementation ---
- if model_type == 'vision': # General VQA or Captioning
- status_placeholder.warning(f"Local Vision Model ({os.path.basename(model_path)}): Processing logic depends heavily on the specific model architecture (e.g., LLaVA, BLIP). Placeholder implementation.")
- # Example: Needs processor + model.generate based on model type
- # processor = local_model_data.get('processor')
- # model = local_model_data.get('model')
- # if processor and model:
- # try:
- # # inputs = processor(images=image, text=prompt, return_tensors="pt").to(model.device)
- # # generated_ids = model.generate(**inputs, max_new_tokens=...)
- # # result_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
- # result_text = f"[Local vision processing for {os.path.basename(model_path)} needs specific implementation based on its type.] Prompt was: {prompt}"
- # except Exception as e:
- # result_text = f"Error during local vision model inference: {e}"
- # else:
- # result_text = "Error: Processor or model missing for local vision task."
- result_text = f"[Local vision processing for {os.path.basename(model_path)} needs specific implementation based on its type.] Prompt was: {prompt}" # Placeholder
-
- elif model_type == 'ocr': # OCR Specific Model
- status_placeholder.warning(f"Local OCR Model ({os.path.basename(model_path)}): Placeholder implementation.")
- # Example for TrOCR style models
- # processor = local_model_data.get('processor')
- # model = local_model_data.get('model')
- # if processor and model:
- # try:
- # # pixel_values = processor(images=image, return_tensors="pt").pixel_values.to(model.device)
- # # generated_ids = model.generate(pixel_values, max_new_tokens=...)
- # # result_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
- # result_text = f"[Local OCR processing for {os.path.basename(model_path)} needs specific implementation.]"
- # except Exception as e:
- # result_text = f"Error during local OCR model inference: {e}"
- # else:
- # result_text = "Error: Processor or model missing for local OCR task."
- result_text = f"[Local OCR processing for {os.path.basename(model_path)} needs specific implementation.]" # Placeholder
- else:
- result_text = f"Error: Loaded model '{os.path.basename(model_path)}' is not a recognized vision/OCR type for this function."
-
-
- elapsed = int(time.time() - start_time)
- status_placeholder.success(f"Image processing attempt completed in {elapsed}s.")
- return result_text
-
-# Basic OCR function using the image processor above
-async def process_hf_ocr(image: Image.Image, output_file: str, use_api: bool) -> str:
- """ Performs OCR using the process_image_hf function framework. """
- # Simple prompt for OCR task
- ocr_prompt = "Extract text content from this image."
- result = process_image_hf(image, ocr_prompt, use_api)
-
- # Save the result if it looks like text (basic check)
- if result and not result.startswith("Error") and not result.startswith("["):
- try:
- async with aiofiles.open(output_file, "w", encoding='utf-8') as f:
- await f.write(result)
- logger.info(f"HF OCR result saved to {output_file}")
- except IOError as e:
- logger.error(f"Failed to save HF OCR output to {output_file}: {e}")
- result += f"\n[Error saving file: {e}]" # Append error to result if save fails
- elif os.path.exists(output_file):
- # Remove file if processing failed or was just a placeholder message
- try: os.remove(output_file)
- except OSError: pass
-
- return result
-
-
-# --- Character Functions (Keep from previous) -----------
-# ... (randomize_character_content, save_character, load_characters are assumed here) ...
-def randomize_character_content():
- intro_templates = [
- "{char} is a valiant knight...", "{char} is a mischievous thief...",
- "{char} is a wise scholar...", "{char} is a fiery warrior...", "{char} is a gentle healer..."
- ]
- greeting_templates = [
- "'I am from the knight's guild...'", "'I heard you needed helpβnameβs {char}...",
- "'Oh, hello! Iβm {char}, didnβt see you there...'", "'Iβm {char}, and Iβm here to fight...'",
- "'Iβm {char}, here to heal...'" ]
- name = f"Character_{random.randint(1000, 9999)}"
- gender = random.choice(["Male", "Female"])
- intro = random.choice(intro_templates).format(char=name)
- greeting = random.choice(greeting_templates).format(char=name)
- return name, gender, intro, greeting
-
-def save_character(character_data):
- characters = st.session_state.get('characters', [])
- if any(c['name'] == character_data['name'] for c in characters):
- st.error(f"Character name '{character_data['name']}' already exists.")
- return False
- characters.append(character_data)
- st.session_state['characters'] = characters
- try:
- with open("characters.json", "w", encoding='utf-8') as f: json.dump(characters, f, indent=2)
- logger.info(f"Saved character: {character_data['name']}")
- return True
- except IOError as e:
- logger.error(f"Failed to save characters.json: {e}")
- st.error(f"Failed to save character file: {e}")
- return False
-
-def load_characters():
- if not os.path.exists("characters.json"): st.session_state['characters'] = []; return
- try:
- with open("characters.json", "r", encoding='utf-8') as f: characters = json.load(f)
- if isinstance(characters, list): st.session_state['characters'] = characters; logger.info(f"Loaded {len(characters)} characters.")
- else: st.session_state['characters'] = []; logger.warning("characters.json is not a list, resetting."); os.remove("characters.json")
- except (json.JSONDecodeError, IOError) as e:
- logger.error(f"Failed to load or decode characters.json: {e}")
- st.error(f"Error loading character file: {e}. Starting fresh.")
- st.session_state['characters'] = []
- try:
- corrupt_filename = f"characters_corrupt_{int(time.time())}.json"
- shutil.copy("characters.json", corrupt_filename); logger.info(f"Backed up corrupted character file to {corrupt_filename}"); os.remove("characters.json")
- except Exception as backup_e: logger.error(f"Could not backup corrupted character file: {backup_e}")
-
-
-# --- Utility: Clean stems (Keep from previous) ----------
-def clean_stem(fn: str) -> str:
- name = os.path.splitext(os.path.basename(fn))[0]
- name = name.replace('-', ' ').replace('_', ' ')
- return name.strip().title()
-
-
-# --- PDF Creation: Image Sized + Captions (Keep from previous) ---
-def make_image_sized_pdf(sources):
- if not sources: st.warning("No image sources provided for PDF generation."); return None
- buf = io.BytesIO()
- c = canvas.Canvas(buf, pagesize=letter) # Default letter
- try:
- for idx, src in enumerate(sources, start=1):
- status_placeholder = st.empty()
- status_placeholder.info(f"Adding page {idx}/{len(sources)}: {os.path.basename(str(src))}...")
- try:
- filename = f'page_{idx}'
- if isinstance(src, str):
- if not os.path.exists(src): logger.warning(f"Image file not found: {src}. Skipping."); status_placeholder.warning(f"Skipping missing file: {os.path.basename(src)}"); continue
- img_obj = Image.open(src); filename = os.path.basename(src)
- else:
- src.seek(0); img_obj = Image.open(src); filename = getattr(src, 'name', f'uploaded_image_{idx}'); src.seek(0)
-
- with img_obj:
- iw, ih = img_obj.size
- if iw <= 0 or ih <= 0: logger.warning(f"Invalid image dimensions ({iw}x{ih}) for {filename}. Skipping."); status_placeholder.warning(f"Skipping invalid image: {filename}"); continue
- cap_h = 30; pw, ph = iw, ih + cap_h
- c.setPageSize((pw, ph))
- img_reader = ImageReader(img_obj)
- c.drawImage(img_reader, 0, cap_h, width=iw, height=ih, preserveAspectRatio=True, anchor='c', mask='auto')
- caption = clean_stem(filename); c.setFont('Helvetica', 12); c.setFillColorRGB(0, 0, 0); c.drawCentredString(pw / 2, cap_h / 2 + 3, caption)
- c.setFont('Helvetica', 8); c.setFillColorRGB(0.5, 0.5, 0.5); c.drawRightString(pw - 10, 8, f"Page {idx}")
- c.showPage()
- status_placeholder.success(f"Added page {idx}/{len(sources)}: {filename}")
-
- except (IOError, OSError, UnidentifiedImageError) as img_err: logger.error(f"Error processing image {src}: {img_err}"); status_placeholder.error(f"Error adding page {idx}: {img_err}")
- except Exception as e: logger.error(f"Unexpected error adding page {idx} ({src}): {e}"); status_placeholder.error(f"Unexpected error on page {idx}: {e}")
-
- c.save(); buf.seek(0)
- if buf.getbuffer().nbytes < 100: st.error("PDF generation resulted in an empty file."); return None
- return buf.getvalue()
- except Exception as e:
- logger.error(f"Fatal error during PDF generation: {e}")
- st.error(f"PDF Generation Failed: {e}")
- return None
-
-
-# --- Sidebar Gallery Update Function (MODIFIED) --------
-def update_gallery():
- st.sidebar.markdown("### Asset Gallery πΈπ")
-
- all_files = get_gallery_files() # Get currently available files
-
- if not all_files:
- st.sidebar.info("No assets (images, PDFs, text files) found yet.")
- return
-
- st.sidebar.caption(f"Found {len(all_files)} assets:")
-
- for idx, file in enumerate(all_files):
- st.session_state['unique_counter'] += 1
- unique_id = st.session_state['unique_counter']
- item_key_base = f"gallery_item_{os.path.basename(file)}_{unique_id}"
- basename = os.path.basename(file)
- st.sidebar.markdown(f"**{basename}**") # Display filename clearly
-
+ if not client: return "Client error"
+ model = st.session_state['hf_custom_api_model'] or st.session_state['hf_selected_api_model']
try:
- file_ext = os.path.splitext(file)[1].lower()
- # Display previews
- if file_ext in ['.png', '.jpg', '.jpeg']:
- # Add expander for large galleries
- with st.sidebar.expander("Preview", expanded=False):
- st.image(Image.open(file), use_container_width=True)
- elif file_ext == '.pdf':
- with st.sidebar.expander("Preview (Page 1)", expanded=False):
- doc = fitz.open(file)
- if len(doc) > 0:
- pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5)) # Smaller preview
- img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
- st.image(img, use_container_width=True)
- else:
- st.warning("Empty PDF")
- doc.close()
- elif file_ext in ['.md', '.txt']:
- with st.sidebar.expander("Preview (Start)", expanded=False):
- with open(file, 'r', encoding='utf-8', errors='ignore') as f:
- content_preview = f.read(200) # Show first 200 chars
- st.code(content_preview + "...", language='markdown' if file_ext == '.md' else 'text')
-
- # --- Actions for the file (Select, Download, Delete) ---
- action_cols = st.sidebar.columns(3) # Use columns for buttons
- with action_cols[0]:
- checkbox_key = f"cb_{item_key_base}"
- st.session_state['asset_checkboxes'][file] = st.checkbox(
- "Select",
- value=st.session_state['asset_checkboxes'].get(file, False),
- key=checkbox_key
- )
- with action_cols[1]:
- mime_map = {'.png': 'image/png', '.jpg': 'image/jpeg', '.jpeg': 'image/jpeg', '.pdf': 'application/pdf', '.txt': 'text/plain', '.md': 'text/markdown'}
- mime_type = mime_map.get(file_ext, "application/octet-stream")
- # Use button for download to avoid complex HTML link generation issues sometimes
- dl_key = f"dl_{item_key_base}"
- try:
- with open(file, "rb") as fp:
- st.download_button(
- label="π₯",
- data=fp,
- file_name=basename,
- mime=mime_type,
- key=dl_key,
- help="Download this file"
- )
- except Exception as dl_e:
- st.error(f"DL Err: {dl_e}")
-
- with action_cols[2]:
- delete_key = f"del_{item_key_base}"
- if st.button("ποΈ", key=delete_key, help=f"Delete {basename}"):
- try:
- os.remove(file)
- st.session_state['asset_checkboxes'].pop(file, None) # Remove from selection state
- # Remove from layout_snapshots if present
- if file in st.session_state.get('layout_snapshots', []):
- st.session_state['layout_snapshots'].remove(file)
- logger.info(f"Deleted asset: {file}")
- st.toast(f"Deleted {basename}!", icon="β
") # Use toast for less intrusive feedback
- # REMOVED st.rerun() - Rely on file watcher
- except OSError as e:
- logger.error(f"Error deleting file {file}: {e}")
- st.error(f"Could not delete {basename}")
- # Trigger a rerun MANUALLY after deletion completes if file watcher is unreliable
- st.rerun()
-
-
- except (fitz.fitz.FileNotFoundError, FileNotFoundError):
- st.sidebar.error(f"File not found: {basename}")
- st.session_state['asset_checkboxes'].pop(file, None) # Clean up state
- except (fitz.fitz.FileDataError, fitz.fitz.RuntimeException) as pdf_err:
- st.sidebar.error(f"Corrupt PDF: {basename}")
- logger.warning(f"Error opening PDF {file}: {pdf_err}")
- except UnidentifiedImageError:
- st.sidebar.error(f"Invalid Image: {basename}")
- logger.warning(f"Cannot identify image file {file}")
- except Exception as e:
- st.sidebar.error(f"Error: {basename}")
- logger.error(f"Error displaying asset {file}: {e}")
-
- st.sidebar.markdown("---") # Separator between items
-
-# --- UI Elements -----------------------------------------
-
-# --- Sidebar: HF Inference Settings ---
-st.sidebar.subheader("π€ Hugging Face Settings")
-st.sidebar.markdown("Configure API inference or select local models.")
-
-# API Settings Expander
-with st.sidebar.expander("API Inference Settings", expanded=False):
- st.session_state.hf_custom_key = st.text_input(
- "Custom HF Token (BYOK)",
- value=st.session_state.get('hf_custom_key', ""),
- type="password",
- key="hf_custom_key_input",
- help="Enter your Hugging Face API token. Overrides HF_TOKEN env var."
- )
- token_status = "Custom Key Set" if st.session_state.hf_custom_key else ("Default HF_TOKEN Set" if HF_TOKEN else "No Token Set")
- st.caption(f"Token Status: {token_status}")
-
- providers_list = ["hf-inference", "cerebras", "together", "sambanova", "novita", "cohere", "fireworks-ai", "hyperbolic", "nebius"]
- st.session_state.hf_provider = st.selectbox(
- "Inference Provider",
- options=providers_list,
- index=providers_list.index(st.session_state.get('hf_provider', DEFAULT_PROVIDER)),
- key="hf_provider_select",
- help="Select the backend provider. Some require specific API keys."
- )
- # Validate provider based on key (simple validation)
- if not st.session_state.hf_custom_key and not HF_TOKEN and st.session_state.hf_provider != "hf-inference":
- st.warning(f"Provider '{st.session_state.hf_provider}' may require a token. Using 'hf-inference' may work without a token but with rate limits.")
-
- # API Model Selection
- st.session_state.hf_custom_api_model = st.text_input(
- "Custom API Model ID",
- value=st.session_state.get('hf_custom_api_model', ""),
- key="hf_custom_model_input",
- placeholder="e.g., google/gemma-2-9b-it",
- help="Overrides the featured model selection below if provided."
- )
- # Use custom if provided, otherwise use the selected featured model
- effective_api_model = st.session_state.hf_custom_api_model.strip() or st.session_state.hf_selected_api_model
-
- st.session_state.hf_selected_api_model = st.selectbox(
- "Featured API Model",
- options=FEATURED_MODELS_LIST,
- index=FEATURED_MODELS_LIST.index(st.session_state.get('hf_selected_api_model', FEATURED_MODELS_LIST[0])),
- key="hf_featured_model_select",
- help="Select a common model. Ignored if Custom API Model ID is set."
- )
- st.caption(f"Effective API Model: {effective_api_model}")
-
-
-# Local Model Selection Expander
-with st.sidebar.expander("Local Model Selection", expanded=True):
- if not _transformers_available:
- st.warning("Transformers library not found. Cannot load or use local models.")
- else:
- local_model_options = ["None"] + list(st.session_state.get('local_models', {}).keys())
- current_selection = st.session_state.get('selected_local_model_path')
- # Ensure current selection is valid
- if current_selection not in local_model_options:
- current_selection = "None"
-
- selected_path = st.selectbox(
- "Active Local Model",
- options=local_model_options,
- index=local_model_options.index(current_selection),
- format_func=lambda x: os.path.basename(x) if x != "None" else "None",
- key="local_model_selector",
- help="Select a model loaded via the 'Build Titan' tab to use for processing."
- )
- st.session_state.selected_local_model_path = selected_path if selected_path != "None" else None
-
- if st.session_state.selected_local_model_path:
- model_info = st.session_state.local_models[st.session_state.selected_local_model_path]
- st.caption(f"Type: {model_info.get('type', 'Unknown')}")
- st.caption(f"Device: {model_info.get('model').device if model_info.get('model') else 'N/A'}")
- else:
- st.caption("No local model selected.")
-
-# Generation Parameters Expander
-with st.sidebar.expander("Generation Parameters", expanded=False):
- st.session_state.gen_max_tokens = st.slider("Max New Tokens", 1, 4096, st.session_state.get('gen_max_tokens', 512), step=1, key="param_max_tokens")
- st.session_state.gen_temperature = st.slider("Temperature", 0.01, 2.0, st.session_state.get('gen_temperature', 0.7), step=0.01, key="param_temp")
- st.session_state.gen_top_p = st.slider("Top-P", 0.01, 1.0, st.session_state.get('gen_top_p', 0.95), step=0.01, key="param_top_p")
- # Note: HF often uses repetition_penalty instead of frequency_penalty. We'll use it here.
- st.session_state.gen_frequency_penalty = st.slider("Repetition Penalty", 1.0, 2.0, st.session_state.get('gen_frequency_penalty', 0.0)+1.0, step=0.05, key="param_repetition", help="1.0 means no penalty.")
- st.session_state.gen_seed = st.slider("Seed", -1, 65535, st.session_state.get('gen_seed', -1), step=1, key="param_seed", help="-1 for random.")
-
-
-
-st.sidebar.markdown("---") # Separator before gallery settings
-
-# --- ADDED: Gallery Settings Section ---
-st.sidebar.subheader("πΌοΈ Gallery Settings")
-st.slider(
- "Max Items Shown",
- min_value=2,
- max_value=50, # Adjust max if needed
- value=st.session_state.get('gallery_size', 10),
- key="gallery_size_slider", # Keep the key, define it ONCE here
- help="Controls the maximum number of assets displayed in the sidebar gallery."
-)
-st.session_state.gallery_size = st.session_state.gallery_size_slider # Ensure sync
-st.sidebar.markdown("---") # Separator after gallery settings
-
-
-
-
-# --- App Title -------------------------------------------
-st.title("Vision & Layout Titans (HF) ππΌοΈπ")
-st.markdown("Combined App: Image-to-PDF Layout + Hugging Face Powered AI Tools")
-
-# --- Main Application Tabs -------------------------------
-tab_list = [
- "Image->PDF Layout πΌοΈβ‘οΈπ", # From App 1
- "Camera Snap π·",
- "Download PDFs π₯",
- "Build Titan (Local Models) π±", # Renamed for clarity
- "Text Process (HF) π", # New tab for text
- "Image Process (HF) πΌοΈ", # New tab for image
- "Test OCR (HF) π", # Renamed
- "Character Editor π§βπ¨",
- "Character Gallery πΌοΈ",
- # Original Tabs (potentially redundant or integrated now):
- # "PDF Process π", (Integrated into Text/Image process conceptually)
- # "MD Gallery & Process π", (Use Text Process tab)
- # "Test Image Gen π¨", (Separate Diffusion logic)
-]
-# Filter out redundant tabs if they are fully replaced
-# Example: If MD Gallery is fully handled by Text Process, remove it. For now, keep most.
-# Let's keep PDF Process and Image Process separate for clarity of input type, but use the new HF functions
-tabs_to_create = [
- "Image->PDF Layout πΌοΈβ‘οΈπ",
- "Camera Snap π·",
- "Download PDFs π₯",
- "Build Titan (Local Models) π±",
- "PDF Process (HF) π", # Use HF functions for PDF pages
- "Image Process (HF) πΌοΈ",# Use HF functions for images
- "Text Process (HF) π", # Use HF functions for MD/TXT files
- "Test OCR (HF) π", # Use HF OCR logic
- "Test Image Gen (Diffusers) π¨", # Keep diffusion separate
- "Character Editor π§βπ¨",
- "Character Gallery πΌοΈ",
-]
-
-tabs = st.tabs(tabs_to_create)
-
-# --- Tab Implementations ---
-
-# --- Tab 1: Image -> PDF Layout (Keep from previous merge) ---
-with tabs[0]:
- # ... (Code from previous merge for this tab remains largely the same) ...
- st.header("Image to PDF Layout Generator")
- st.markdown("Upload or scan images, reorder them, and generate a PDF where each page matches the image dimensions and includes a simple caption.")
- col1, col2 = st.columns(2)
- with col1:
- st.subheader("A. Scan or Upload Images")
- layout_cam = st.camera_input("πΈ Scan Document for Layout PDF", key="layout_cam")
- if layout_cam:
- now = datetime.now(pytz.timezone("US/Central"))
- scan_name = generate_filename(f"layout_scan_{now.strftime('%a').upper()}", "png")
- try:
- with open(scan_name, "wb") as f: f.write(layout_cam.getvalue())
- st.image(Image.open(scan_name), caption=f"Scanned: {scan_name}", use_container_width=True)
- if scan_name not in st.session_state['layout_snapshots']: st.session_state['layout_snapshots'].append(scan_name)
- st.success(f"Scan saved as {scan_name}")
- update_gallery(); # Add to gallery
- except Exception as e: st.error(f"Failed to save scan: {e}"); logger.error(f"Failed to save camera scan {scan_name}: {e}")
-
- layout_uploads = st.file_uploader("π Upload PNG/JPG Images for Layout PDF", type=["png","jpg","jpeg"], accept_multiple_files=True, key="layout_uploader")
- if layout_uploads: st.session_state['layout_new_uploads'] = layout_uploads # Store for processing below
- with col2:
- st.subheader("B. Review and Reorder")
- layout_records = []
- processed_snapshots = set()
- # Process snapshots
- for idx, path in enumerate(st.session_state.get('layout_snapshots', [])):
- if path not in processed_snapshots and os.path.exists(path):
- try:
- with Image.open(path) as im: w, h = im.size; ar = round(w / h, 2) if h > 0 else 0; orient = "Square" if 0.9 <= ar <= 1.1 else ("Landscape" if ar > 1.1 else "Portrait")
- layout_records.append({"filename": os.path.basename(path), "source": path, "width": w, "height": h, "aspect_ratio": ar, "orientation": orient, "order": idx, "type": "Scan"})
- processed_snapshots.add(path)
- except Exception as e: logger.warning(f"Could not process snapshot {path}: {e}"); st.warning(f"Skipping invalid snapshot: {os.path.basename(path)}")
- # Process current uploads
- current_uploads = st.session_state.get('layout_new_uploads', [])
- if current_uploads:
- start_idx = len(layout_records)
- for jdx, f_obj in enumerate(current_uploads, start=start_idx):
- try:
- f_obj.seek(0)
- with Image.open(f_obj) as im: w, h = im.size; ar = round(w / h, 2) if h > 0 else 0; orient = "Square" if 0.9 <= ar <= 1.1 else ("Landscape" if ar > 1.1 else "Portrait")
- layout_records.append({"filename": f_obj.name, "source": f_obj, "width": w, "height": h, "aspect_ratio": ar, "orientation": orient, "order": jdx, "type": "Upload"})
- f_obj.seek(0)
- except Exception as e: logger.warning(f"Could not process uploaded file {f_obj.name}: {e}"); st.warning(f"Skipping invalid upload: {f_obj.name}")
-
- if not layout_records: st.info("Scan or upload images using the controls on the left.")
- else:
- layout_df = pd.DataFrame(layout_records); dims = st.multiselect("Include orientations:", options=["Landscape","Portrait","Square"], default=["Landscape","Portrait","Square"], key="layout_dims_filter")
- filtered_df = layout_df[layout_df['orientation'].isin(dims)].copy() if dims else layout_df.copy()
- filtered_df['order'] = filtered_df['order'].astype(int); filtered_df = filtered_df.sort_values('order').reset_index(drop=True)
- st.markdown("Edit 'Order' column or drag rows to set PDF page sequence:")
- edited_df = st.data_editor(filtered_df, column_config={"filename": st.column_config.TextColumn("Filename", disabled=True), "source": None, "width": st.column_config.NumberColumn("Width", disabled=True), "height": st.column_config.NumberColumn("Height", disabled=True), "aspect_ratio": st.column_config.NumberColumn("Aspect Ratio", format="%.2f", disabled=True), "orientation": st.column_config.TextColumn("Orientation", disabled=True), "type": st.column_config.TextColumn("Source Type", disabled=True), "order": st.column_config.NumberColumn("Order", min_value=0, step=1, required=True)}, hide_index=True, use_container_width=True, num_rows="dynamic", key="layout_editor")
- ordered_layout_df = edited_df.sort_values('order').reset_index(drop=True)
- ordered_sources_for_pdf = ordered_layout_df['source'].tolist()
-
- st.subheader("C. Generate & Download PDF")
- if st.button("ποΈ Generate Image-Sized PDF", key="generate_layout_pdf"):
- if not ordered_sources_for_pdf: st.warning("No images selected or available after filtering.")
- else:
- with st.spinner("Generating PDF..."): pdf_bytes = make_image_sized_pdf(ordered_sources_for_pdf)
- if pdf_bytes:
- now = datetime.now(pytz.timezone("US/Central")); prefix = now.strftime("%Y%m%d-%H%M%p")
- stems = [clean_stem(s) if isinstance(s, str) else clean_stem(getattr(s, 'name', 'upload')) for s in ordered_sources_for_pdf[:4]]
- basename = " - ".join(stems) or "Layout"; pdf_fname = f"{prefix}_{basename}.pdf"; pdf_fname = re.sub(r'[^\w\- \.]', '_', pdf_fname)
- st.success(f"β
PDF ready: **{pdf_fname}**")
- st.download_button("β¬οΈ Download PDF", data=pdf_bytes, file_name=pdf_fname, mime="application/pdf", key="download_layout_pdf")
- st.markdown("#### Preview First Page")
- try:
- doc = fitz.open(stream=pdf_bytes, filetype='pdf')
- if len(doc) > 0: pix = doc[0].get_pixmap(matrix=fitz.Matrix(1.0, 1.0)); preview_img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); st.image(preview_img, caption=f"Preview of {pdf_fname} (Page 1)", use_container_width=True)
- else: st.warning("Generated PDF appears empty.")
- doc.close()
- except Exception as preview_err: st.warning(f"Could not generate PDF preview: {preview_err}"); logger.warning(f"PDF preview error for {pdf_fname}: {preview_err}")
- else: st.error("PDF generation failed. Check logs or image files.")
-
-
-# --- Tab 2: Camera Snap (Keep from previous merge) ---
-with tabs[1]:
- # ... (Code from previous merge for this tab) ...
- st.header("Camera Snap π·")
- st.subheader("Single Capture (Adds to General Gallery)")
- cols = st.columns(2)
- with cols[0]:
- cam0_img = st.camera_input("Take a picture - Cam 0", key="main_cam0")
- if cam0_img:
- filename = generate_filename("cam0_snap");
- if st.session_state.get('cam0_file') and os.path.exists(st.session_state['cam0_file']):
- try:
- os.remove(st.session_state['cam0_file'])
- except OSError:
- pass
- try:
- with open(filename, "wb") as f: f.write(cam0_img.getvalue())
- st.session_state['cam0_file'] = filename; st.session_state['history'].append(f"Snapshot from Cam 0: {filename}"); st.image(Image.open(filename), caption="Camera 0 Snap", use_container_width=True); logger.info(f"Saved snapshot from Camera 0: {filename}"); st.success(f"Saved {filename}")
- update_gallery();
- except Exception as e:
- st.error(f"Failed to save Cam 0 snap: {e}"); logger.error(f"Failed to save Cam 0 snap {filename}: {e}")
- with cols[1]:
- cam1_img = st.camera_input("Take a picture - Cam 1", key="main_cam1")
- if cam1_img:
- filename = generate_filename("cam1_snap")
- if st.session_state.get('cam1_file') and os.path.exists(st.session_state['cam1_file']):
- try:
- os.remove(st.session_state['cam1_file'])
- except OSError:
- pass
- try:
- with open(filename, "wb") as f: f.write(cam1_img.getvalue())
- st.session_state['cam1_file'] = filename; st.session_state['history'].append(f"Snapshot from Cam 1: {filename}"); st.image(Image.open(filename), caption="Camera 1 Snap", use_container_width=True); logger.info(f"Saved snapshot from Camera 1: {filename}"); st.success(f"Saved {filename}")
- update_gallery();
- except Exception as e: st.error(f"Failed to save Cam 1 snap: {e}"); logger.error(f"Failed to save Cam 1 snap {filename}: {e}")
-
-
-# --- Tab 3: Download PDFs (Keep from previous merge) ---
-with tabs[2]:
- # ... (Code from previous merge for this tab) ...
- st.header("Download PDFs π₯")
- st.markdown("Download PDFs from URLs and optionally create image snapshots.")
- if st.button("Load Example arXiv URLs π", key="load_examples"):
- example_urls = ["https://arxiv.org/pdf/2308.03892", "https://arxiv.org/pdf/1706.03762", "https://arxiv.org/pdf/2402.17764", "https://www.clickdimensions.com/links/ACCERL/"]
- st.session_state['pdf_urls_input'] = "\n".join(example_urls)
- url_input = st.text_area("Enter PDF URLs (one per line)", value=st.session_state.get('pdf_urls_input', ""), height=150, key="pdf_urls_textarea")
- if st.button("Robo-Download PDFs π€", key="download_pdfs_button"):
- urls = [url.strip() for url in url_input.strip().split("\n") if url.strip()]
- if not urls: st.warning("Please enter at least one URL.")
- else:
- progress_bar = st.progress(0); status_text = st.empty(); total_urls = len(urls); download_count = 0; existing_pdfs = get_pdf_files()
- for idx, url in enumerate(urls):
- output_path = pdf_url_to_filename(url); status_text.text(f"Processing {idx + 1}/{total_urls}: {os.path.basename(output_path)}..."); progress_bar.progress((idx + 1) / total_urls)
- if output_path in existing_pdfs: st.info(f"Already exists: {os.path.basename(output_path)}"); st.session_state['downloaded_pdfs'][url] = output_path; st.session_state['asset_checkboxes'][output_path] = st.session_state['asset_checkboxes'].get(output_path, False)
- else:
- if download_pdf(url, output_path): st.session_state['downloaded_pdfs'][url] = output_path; logger.info(f"Downloaded PDF from {url} to {output_path}"); st.session_state['history'].append(f"Downloaded PDF: {output_path}"); st.session_state['asset_checkboxes'][output_path] = False; download_count += 1; existing_pdfs.append(output_path)
- else: st.error(f"Failed to download: {url}")
- status_text.success(f"Download process complete! Successfully downloaded {download_count} new PDFs.")
- if download_count > 0: update_gallery();
-
- st.subheader("Create Snapshots from Gallery PDFs")
- snapshot_mode = st.selectbox("Snapshot Mode", ["First Page (High-Res)", "First Two Pages (High-Res)", "All Pages (High-Res)", "First Page (Low-Res Preview)"], key="pdf_snapshot_mode")
- resolution_map = {"First Page (High-Res)": 2.0, "First Two Pages (High-Res)": 2.0, "All Pages (High-Res)": 2.0, "First Page (Low-Res Preview)": 1.0}
- mode_key_map = {"First Page (High-Res)": "single", "First Two Pages (High-Res)": "twopage", "All Pages (High-Res)": "allpages", "First Page (Low-Res Preview)": "single"}
- resolution = resolution_map[snapshot_mode]; mode_key = mode_key_map[snapshot_mode]
- if st.button("Snapshot Selected PDFs πΈ", key="snapshot_selected_pdfs"):
- selected_pdfs = [path for path in get_gallery_files(['pdf']) if st.session_state['asset_checkboxes'].get(path, False)]
- if not selected_pdfs: st.warning("No PDFs selected in the sidebar gallery!")
- else:
- st.info(f"Starting snapshot process for {len(selected_pdfs)} selected PDF(s)..."); snapshot_count = 0; total_snapshots_generated = 0
- for pdf_path in selected_pdfs:
- if not os.path.exists(pdf_path): st.warning(f"File not found: {pdf_path}. Skipping."); continue
- new_snapshots = asyncio.run(process_pdf_snapshot(pdf_path, mode_key, resolution))
- if new_snapshots:
- snapshot_count += 1; total_snapshots_generated += len(new_snapshots)
- st.write(f"Snapshots for {os.path.basename(pdf_path)}:"); cols = st.columns(3)
- for i, snap_path in enumerate(new_snapshots):
- with cols[i % 3]: st.image(Image.open(snap_path), caption=os.path.basename(snap_path), use_container_width=True); st.session_state['asset_checkboxes'][snap_path] = False # Add to gallery
- if total_snapshots_generated > 0: st.success(f"Generated {total_snapshots_generated} snapshots from {snapshot_count} PDFs."); update_gallery();
- else: st.warning("No snapshots were generated. Check logs or PDF files.")
-
-# --- Tab 4: Build Titan (Local Models) ---
-with tabs[3]:
- st.header("Build Titan (Local Models) π±")
- st.markdown("Download and save models from Hugging Face Hub for local use.")
-
- if not _transformers_available:
- st.error("Transformers library not available. Cannot download or load local models.")
- else:
- build_model_type = st.selectbox(
- "Select Model Type",
- ["Causal LM", "Vision/Multimodal", "OCR", "Diffusion"], # Added more types
- key="build_type_local"
- )
-
- st.subheader(f"Download {build_model_type} Model")
- # Model ID Input (allow searching/pasting)
- hf_model_id = st.text_input(
- "Hugging Face Model ID",
- placeholder=f"e.g., {'google/gemma-2-9b-it' if build_model_type == 'Causal LM' else 'llava-hf/llava-1.5-7b-hf' if build_model_type == 'Vision/Multimodal' else 'microsoft/trocr-base-handwritten' if build_model_type == 'OCR' else 'stabilityai/stable-diffusion-xl-base-1.0'}",
- key="build_hf_model_id"
- )
- local_model_name = st.text_input(
- "Local Name for this Model",
- value=f"{build_model_type.split('/')[0].lower()}_{os.path.basename(hf_model_id).replace('.','') if hf_model_id else 'model'}",
- key="build_local_name",
- help="A unique name to identify this model locally."
- )
-
- # Add a note about token requirements for gated models
- st.info("Private or gated models require a valid Hugging Face token (set via HF_TOKEN env var or the Custom Key in sidebar API settings).")
-
- if st.button(f"Download & Save '{hf_model_id}' Locally", key="build_download_button", disabled=not hf_model_id or not local_model_name):
- # Validate local name uniqueness
- if local_model_name in [os.path.basename(p) for p in st.session_state.get('local_models', {})]:
- st.error(f"A local model named '{local_model_name}' already exists. Choose a different name.")
- else:
- model_type_map = {
- "Causal LM": "causal", "Vision/Multimodal": "vision", "OCR": "ocr", "Diffusion": "diffusion"
- }
- model_type_short = model_type_map.get(build_model_type, "unknown")
-
- config = LocalModelConfig(
- name=local_model_name,
- hf_id=hf_model_id,
- model_type=model_type_short
- )
- save_path = config.get_full_path()
- os.makedirs(os.path.dirname(save_path), exist_ok=True)
-
- st.info(f"Attempting to download '{hf_model_id}' to '{save_path}'...")
- progress_bar_build = st.progress(0)
- status_text_build = st.empty()
- token_build = st.session_state.hf_custom_key or HF_TOKEN or None
-
- try:
- if build_model_type == "Diffusion":
- # Use Diffusers library download
- if not _diffusers_available: raise ImportError("Diffusers library required for diffusion models.")
- # Diffusers downloads directly, no explicit save needed after load typically
- status_text_build.text("Downloading diffusion model pipeline...")
- pipeline_obj = StableDiffusionPipeline.from_pretrained(hf_model_id, token=token_build)
- status_text_build.text("Saving diffusion model pipeline...")
- pipeline_obj.save_pretrained(save_path)
- # Store info, but maybe not the full pipeline object in session state due to size
- st.session_state.local_models[save_path] = {'type': 'diffusion', 'hf_id': hf_model_id, 'model':None, 'tokenizer':None} # Mark as downloaded
- st.success(f"Diffusion model '{hf_model_id}' downloaded and saved to {save_path}")
-
- else:
- # Use Transformers library download
- status_text_build.text("Downloading model components...")
- # Determine AutoModel class based on type (can be refined)
- if model_type_short == 'causal':
- model_class = AutoModelForCausalLM
- tokenizer_class = AutoTokenizer
- processor_class = None
- elif model_type_short == 'vision':
- model_class = AutoModelForVision2Seq # Common for VQA/Captioning
- processor_class = AutoProcessor # Handles image+text
- tokenizer_class = None # Usually part of processor
- elif model_type_short == 'ocr':
- model_class = AutoModelForVision2Seq # TrOCR uses this
- processor_class = AutoProcessor
- tokenizer_class = None
- else:
- raise ValueError(f"Unknown model type for downloading: {model_type_short}")
-
- # Download and save model
- model_obj = model_class.from_pretrained(hf_model_id, token=token_build)
- model_obj.save_pretrained(save_path)
- status_text_build.text(f"Model saved. Downloading processor/tokenizer...")
-
- # Download and save tokenizer/processor
- if processor_class:
- processor_obj = processor_class.from_pretrained(hf_model_id, token=token_build)
- processor_obj.save_pretrained(save_path)
- tokenizer_obj = getattr(processor_obj, 'tokenizer', None) # Get tokenizer from processor if exists
- elif tokenizer_class:
- tokenizer_obj = tokenizer_class.from_pretrained(hf_model_id, token=token_build)
- tokenizer_obj.save_pretrained(save_path)
- processor_obj = None # No separate processor
- else: # Should not happen with current logic
- tokenizer_obj = None
- processor_obj = None
-
- # --- Load into memory and store in session state ---
- # This might consume significant memory! Consider loading on demand instead.
- status_text_build.text(f"Loading '{local_model_name}' into memory...")
- device = "cuda" if torch.cuda.is_available() else "cpu"
-
- reloaded_model = model_class.from_pretrained(save_path).to(device)
- reloaded_processor = processor_class.from_pretrained(save_path) if processor_class else None
- reloaded_tokenizer = tokenizer_class.from_pretrained(save_path) if tokenizer_class and not reloaded_processor else getattr(reloaded_processor, 'tokenizer', None)
-
- st.session_state.local_models[save_path] = {
- 'type': model_type_short,
- 'hf_id': hf_model_id,
- 'model': reloaded_model,
- 'tokenizer': reloaded_tokenizer,
- 'processor': reloaded_processor, # Store processor if it exists
- }
- st.success(f"{build_model_type} model '{hf_model_id}' downloaded to {save_path} and loaded into memory ({device}).")
- # Optionally select the newly loaded model
- st.session_state.selected_local_model_path = save_path
-
-
- except (RepositoryNotFoundError, GatedRepoError) as e:
- st.error(f"Download failed: Repository not found or requires specific access/token. Check Model ID and your HF token. Error: {e}")
- logger.error(f"Download failed for {hf_model_id}: {e}")
- if os.path.exists(save_path): shutil.rmtree(save_path) # Clean up partial download
- except ImportError as e:
- st.error(f"Download failed: Required library missing. {e}")
- logger.error(f"ImportError during download of {hf_model_id}: {e}")
- except Exception as e:
- st.error(f"An unexpected error occurred during download: {e}")
- logger.error(f"Download failed for {hf_model_id}: {e}")
- if os.path.exists(save_path): shutil.rmtree(save_path) # Clean up
-
- finally:
- progress_bar_build.progress(1.0)
- status_text_build.empty()
-
- st.subheader("Manage Local Models")
- loaded_model_paths = list(st.session_state.get('local_models', {}).keys())
- if not loaded_model_paths:
- st.info("No models downloaded yet.")
- else:
- models_df_data = []
- for path, data in st.session_state.local_models.items():
- models_df_data.append({
- "Local Name": os.path.basename(path),
- "Type": data.get('type', 'N/A'),
- "HF ID": data.get('hf_id', 'N/A'),
- "Loaded": "Yes" if data.get('model') else "No (Info only)",
- "Path": path
- })
- models_df = pd.DataFrame(models_df_data)
- st.dataframe(models_df, use_container_width=True, hide_index=True, column_order=["Local Name", "Type", "HF ID", "Loaded"])
-
- model_to_delete = st.selectbox("Select model to delete", [""] + [os.path.basename(p) for p in loaded_model_paths], key="delete_model_select")
- if model_to_delete and st.button(f"Delete Local Model '{model_to_delete}'", type="primary"):
- path_to_delete = next((p for p in loaded_model_paths if os.path.basename(p) == model_to_delete), None)
- if path_to_delete:
- try:
- # Remove from session state first
- del st.session_state.local_models[path_to_delete]
- if st.session_state.selected_local_model_path == path_to_delete:
- st.session_state.selected_local_model_path = None
- # Delete from disk
- if os.path.exists(path_to_delete):
- shutil.rmtree(path_to_delete)
- st.success(f"Deleted model '{model_to_delete}' and its files.")
- logger.info(f"Deleted local model: {path_to_delete}")
- except Exception as e:
- st.error(f"Failed to delete model '{model_to_delete}': {e}")
- logger.error(f"Failed to delete model {path_to_delete}: {e}")
-
-
-# --- Tab 5: PDF Process (HF) ---
-with tabs[4]:
- st.header("PDF Process with HF Models π")
- st.markdown("Upload PDFs, view pages, and extract text using selected HF models (API or Local).")
-
- # Inference Source Selection
- pdf_use_api = st.radio(
- "Choose Processing Method",
- ["Hugging Face API", "Loaded Local Model"],
- key="pdf_process_source",
- horizontal=True,
- help="API uses settings from sidebar. Local uses the selected local model (if suitable)."
- )
-
- if pdf_use_api == "Hugging Face API":
- st.info(f"Using API Model: {st.session_state.hf_custom_api_model.strip() or st.session_state.hf_selected_api_model}")
- else:
- if st.session_state.selected_local_model_path:
- st.info(f"Using Local Model: {os.path.basename(st.session_state.selected_local_model_path)}")
- else:
- st.warning("No local model selected. Please select one in the sidebar.")
-
- uploaded_pdfs_process_hf = st.file_uploader("Upload PDF files to process", type=["pdf"], accept_multiple_files=True, key="pdf_process_uploader_hf")
-
- if uploaded_pdfs_process_hf:
- # Simplified: Process only the first page for demonstration
- process_all_pages_pdf = st.checkbox("Process All Pages (can be slow/expensive)", value=False, key="pdf_process_all_hf")
- pdf_prompt = st.text_area("Prompt for PDF Page Processing", "Extract the text content from this page.", key="pdf_process_prompt_hf")
-
- if st.button("Process Uploaded PDFs with HF", key="process_uploaded_pdfs_hf"):
- if pdf_use_api == "Loaded Local Model" and not st.session_state.selected_local_model_path:
- st.error("Cannot process locally: No local model selected.")
- else:
- combined_text_output_hf = f"# HF PDF Processing Results ({'API' if pdf_use_api else 'Local'})\n\n"
- total_pages_processed_hf = 0
- output_placeholder_hf = st.container()
-
- for pdf_file in uploaded_pdfs_process_hf:
- output_placeholder_hf.markdown(f"--- \n### Processing: {pdf_file.name}")
- # Read PDF bytes
- pdf_bytes = pdf_file.read()
- try:
- doc = fitz.open("pdf", pdf_bytes) # Open from bytes
- num_pages = len(doc)
- pages_to_process = range(num_pages) if process_all_pages_pdf else range(min(1, num_pages)) # Limit to 1 unless checked
-
- output_placeholder_hf.info(f"Processing {len(pages_to_process)} of {num_pages} pages...")
- doc_text = f"## File: {pdf_file.name}\n\n"
-
- for i in pages_to_process:
- page_placeholder = output_placeholder_hf.empty()
- page_placeholder.info(f"Processing Page {i + 1}/{num_pages}...")
- page = doc[i]
- pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
- img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
-
- # Display image and process
- cols_pdf = output_placeholder_hf.columns(2)
- cols_pdf[0].image(img, caption=f"Page {i+1}", use_container_width=True)
- with cols_pdf[1]:
- # Use the new image processing function
- # NOTE: This relies on the process_image_hf implementation
- # which is currently basic/placeholder for local models.
- with st.spinner("Processing page with HF model..."):
- hf_text = process_image_hf(img, pdf_prompt, use_api=pdf_use_api)
- st.text_area(f"Result (Page {i+1})", hf_text, height=250, key=f"pdf_hf_out_{pdf_file.name}_{i}")
-
- doc_text += f"### Page {i + 1}\n\n{hf_text}\n\n---\n\n"
- total_pages_processed_hf += 1
- page_placeholder.empty() # Clear status message
-
- combined_text_output_hf += doc_text
- doc.close()
-
- except (fitz.fitz.FileDataError, fitz.fitz.RuntimeException) as pdf_err:
- output_placeholder_hf.error(f"Error opening PDF {pdf_file.name}: {pdf_err}. Skipping.")
- except Exception as e:
- output_placeholder_hf.error(f"Error processing {pdf_file.name}: {str(e)}")
-
- if total_pages_processed_hf > 0:
- st.markdown("--- \n### Combined Processing Results")
- st.text_area("Full Output", combined_text_output_hf, height=400, key="combined_pdf_hf_output")
- output_filename_pdf_hf = generate_filename("hf_processed_pdfs", "md")
- try:
- with open(output_filename_pdf_hf, "w", encoding="utf-8") as f: f.write(combined_text_output_hf)
- st.success(f"Combined output saved to {output_filename_pdf_hf}")
- st.markdown(get_download_link(output_filename_pdf_hf, "text/markdown", "Download Combined MD"), unsafe_allow_html=True)
- st.session_state['asset_checkboxes'][output_filename_pdf_hf] = False; update_gallery()
- except IOError as e: st.error(f"Failed to save combined output file: {e}")
-
-
-# --- Tab 6: Image Process (HF) ---
-with tabs[5]:
- st.header("Image Process with HF Models πΌοΈ")
- st.markdown("Upload images and process them using selected HF models (API or Local).")
-
- img_use_api = st.radio(
- "Choose Processing Method",
- ["Hugging Face API", "Loaded Local Model"],
- key="img_process_source_hf",
- horizontal=True
- )
- if img_use_api == "Hugging Face API":
- st.info(f"Using API Model: {st.session_state.hf_custom_api_model.strip() or st.session_state.hf_selected_api_model}")
- else:
- if st.session_state.selected_local_model_path: st.info(f"Using Local Model: {os.path.basename(st.session_state.selected_local_model_path)}")
- else: st.warning("No local model selected.")
-
- img_prompt_hf = st.text_area("Prompt for Image Processing", "Describe this image in detail.", key="img_process_prompt_hf")
- uploaded_images_process_hf = st.file_uploader("Upload image files", type=["png", "jpg", "jpeg"], accept_multiple_files=True, key="image_process_uploader_hf")
-
- if uploaded_images_process_hf:
- if st.button("Process Uploaded Images with HF", key="process_images_hf"):
- if img_use_api == "Loaded Local Model" and not st.session_state.selected_local_model_path:
- st.error("Cannot process locally: No local model selected.")
- else:
- combined_img_text_hf = f"# HF Image Processing Results ({'API' if img_use_api else 'Local'})\n\n**Prompt:** {img_prompt_hf}\n\n---\n\n"
- images_processed_hf = 0
- output_img_placeholder_hf = st.container()
-
- for img_file in uploaded_images_process_hf:
- output_img_placeholder_hf.markdown(f"### Processing: {img_file.name}")
- try:
- img = Image.open(img_file)
- cols_img_hf = output_img_placeholder_hf.columns(2)
- cols_img_hf[0].image(img, caption=f"Input: {img_file.name}", use_container_width=True)
- with cols_img_hf[1], st.spinner("Processing image with HF model..."):
- # Use the new image processing function
- hf_img_text = process_image_hf(img, img_prompt_hf, use_api=img_use_api)
- st.text_area(f"Result", hf_img_text, height=300, key=f"img_hf_out_{img_file.name}")
-
- combined_img_text_hf += f"## Image: {img_file.name}\n\n{hf_img_text}\n\n---\n\n"
- images_processed_hf += 1
-
- except UnidentifiedImageError: output_img_placeholder_hf.error(f"Invalid Image: {img_file.name}. Skipping.")
- except Exception as e: output_img_placeholder_hf.error(f"Error processing {img_file.name}: {str(e)}")
-
- if images_processed_hf > 0:
- st.markdown("--- \n### Combined Processing Results")
- st.text_area("Full Output", combined_img_text_hf, height=400, key="combined_img_hf_output")
- output_filename_img_hf = generate_filename("hf_processed_images", "md")
- try:
- with open(output_filename_img_hf, "w", encoding="utf-8") as f: f.write(combined_img_text_hf)
- st.success(f"Combined output saved to {output_filename_img_hf}")
- st.markdown(get_download_link(output_filename_img_hf, "text/markdown", "Download Combined MD"), unsafe_allow_html=True)
- st.session_state['asset_checkboxes'][output_filename_img_hf] = False; update_gallery()
- except IOError as e: st.error(f"Failed to save combined output file: {e}")
-
-
-# --- Tab 7: Text Process (HF) ---
-with tabs[6]:
- st.header("Text Process with HF Models π")
- st.markdown("Process Markdown (.md) or Text (.txt) files using selected HF models (API or Local).")
-
- text_use_api = st.radio(
- "Choose Processing Method",
- ["Hugging Face API", "Loaded Local Model"],
- key="text_process_source_hf",
- horizontal=True
- )
- if text_use_api == "Hugging Face API":
- st.info(f"Using API Model: {st.session_state.hf_custom_api_model.strip() or st.session_state.hf_selected_api_model}")
- else:
- if st.session_state.selected_local_model_path: st.info(f"Using Local Model: {os.path.basename(st.session_state.selected_local_model_path)}")
- else: st.warning("No local model selected.")
-
- text_files_hf = get_gallery_files(['md', 'txt'])
- if not text_files_hf:
- st.warning("No .md or .txt files in gallery to process.")
- else:
- selected_text_file_hf = st.selectbox(
- "Select Text/MD File to Process",
- options=[""] + text_files_hf,
- format_func=lambda x: os.path.basename(x) if x else "Select a file...",
- key="text_process_select_hf"
- )
-
- if selected_text_file_hf:
- st.write(f"Selected: {os.path.basename(selected_text_file_hf)}")
- try:
- with open(selected_text_file_hf, "r", encoding="utf-8", errors='ignore') as f:
- content_text_hf = f.read()
- st.text_area("File Content Preview", content_text_hf[:1000] + ("..." if len(content_text_hf) > 1000 else ""), height=200, key="text_content_preview_hf")
-
- prompt_text_hf = st.text_area(
- "Enter Prompt for this File",
- "Summarize the key points of this text.",
- key="text_individual_prompt_hf"
- )
-
- if st.button(f"Process '{os.path.basename(selected_text_file_hf)}' with HF", key=f"process_text_hf_btn"):
- if text_use_api == "Loaded Local Model" and not st.session_state.selected_local_model_path:
- st.error("Cannot process locally: No local model selected.")
- else:
- with st.spinner("Processing text with HF model..."):
- result_text_processed = process_text_hf(content_text_hf, prompt_text_hf, use_api=text_use_api)
-
- st.markdown("### Processing Result")
- st.markdown(result_text_processed) # Display result
-
- output_filename_text_hf = generate_filename(f"hf_processed_{os.path.splitext(os.path.basename(selected_text_file_hf))[0]}", "md")
- try:
- with open(output_filename_text_hf, "w", encoding="utf-8") as f: f.write(result_text_processed)
- st.success(f"Result saved to {output_filename_text_hf}")
- st.markdown(get_download_link(output_filename_text_hf, "text/markdown", "Download Result MD"), unsafe_allow_html=True)
- st.session_state['asset_checkboxes'][output_filename_text_hf] = False; update_gallery()
- except IOError as e: st.error(f"Failed to save result file: {e}")
-
- except FileNotFoundError: st.error("Selected file not found.")
- except Exception as e: st.error(f"Error reading file: {e}")
-
-
-# --- Tab 8: Test OCR (HF) ---
-with tabs[7]:
- st.header("Test OCR with HF Models π")
- st.markdown("Select an image/PDF and run OCR using HF models (API or Local - requires suitable local model).")
-
- ocr_use_api = st.radio(
- "Choose OCR Method",
- ["Hugging Face API (Basic Captioning/OCR)", "Loaded Local OCR Model"],
- key="ocr_source_hf",
- horizontal=True,
- help="API uses basic image-to-text. Local requires a dedicated OCR model (e.g., TrOCR) to be loaded."
- )
- if ocr_use_api == "Loaded Local OCR Model":
- if st.session_state.selected_local_model_path:
- model_type = st.session_state.local_models.get(st.session_state.selected_local_model_path,{}).get('type')
- if model_type != 'ocr':
- st.warning(f"Selected local model ({os.path.basename(st.session_state.selected_local_model_path)}) is type '{model_type}', not 'ocr'. Results may be poor.")
- else:
- st.info(f"Using Local OCR Model: {os.path.basename(st.session_state.selected_local_model_path)}")
- else: st.warning("No local model selected.")
-
- gallery_files_ocr_hf = get_gallery_files(['png', 'jpg', 'jpeg', 'pdf'])
- if not gallery_files_ocr_hf:
- st.warning("No images or PDFs in gallery.")
- else:
- selected_file_ocr_hf = st.selectbox(
- "Select Image or PDF from Gallery for OCR",
- options=[""] + gallery_files_ocr_hf,
- format_func=lambda x: os.path.basename(x) if x else "Select a file...",
- key="ocr_select_file_hf"
- )
-
- if selected_file_ocr_hf:
- st.write(f"Selected: {os.path.basename(selected_file_ocr_hf)}")
- file_ext_ocr_hf = os.path.splitext(selected_file_ocr_hf)[1].lower()
- image_to_ocr_hf = None; page_info_hf = ""
-
- try:
- if file_ext_ocr_hf in ['.png', '.jpg', '.jpeg']: image_to_ocr_hf = Image.open(selected_file_ocr_hf)
- elif file_ext_ocr_hf == '.pdf':
- doc = fitz.open(selected_file_ocr_hf)
- if len(doc) > 0: pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); image_to_ocr_hf = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); page_info_hf = " (Page 1)"
- else: st.warning("Selected PDF is empty.")
- doc.close()
-
- if image_to_ocr_hf:
- st.image(image_to_ocr_hf, caption=f"Image for OCR{page_info_hf}", use_container_width=True)
- if st.button("Run HF OCR on this Image π", key="ocr_run_button_hf"):
- if ocr_use_api == "Loaded Local OCR Model" and not st.session_state.selected_local_model_path:
- st.error("Cannot run locally: No local model selected.")
- else:
- output_ocr_file_hf = generate_filename(f"hf_ocr_{os.path.splitext(os.path.basename(selected_file_ocr_hf))[0]}", "txt")
- st.session_state['processing']['ocr'] = True
- with st.spinner("Performing OCR with HF model..."):
- ocr_result_hf = asyncio.run(process_hf_ocr(image_to_ocr_hf, output_ocr_file_hf, use_api=ocr_use_api))
- st.session_state['processing']['ocr'] = False
-
- st.text_area("OCR Result", ocr_result_hf, height=300, key="ocr_result_display_hf")
- if ocr_result_hf and not ocr_result_hf.startswith("Error") and not ocr_result_hf.startswith("["):
- entry = f"HF OCR: {selected_file_ocr_hf}{page_info_hf} -> {output_ocr_file_hf}"
- st.session_state['history'].append(entry)
- if len(ocr_result_hf) > 5: # Minimal check
- st.success(f"OCR output saved to {output_ocr_file_hf}")
- st.markdown(get_download_link(output_ocr_file_hf, "text/plain", "Download OCR Text"), unsafe_allow_html=True)
- st.session_state['asset_checkboxes'][output_ocr_file_hf] = False; update_gallery()
- else: st.warning("OCR output seems short/empty.")
- else: st.error(f"OCR failed. {ocr_result_hf}")
-
- except Exception as e: st.error(f"Error loading file for OCR: {e}")
-
-# --- Tab 9: Test Image Gen (Diffusers) ---
-with tabs[8]:
- st.header("Test Image Generation (Diffusers) π¨")
- st.markdown("Generate images using Stable Diffusion models loaded locally via the Diffusers library.")
-
- if not _diffusers_available:
- st.error("Diffusers library is required for image generation.")
- else:
- # Select from locally downloaded *diffusion* models
- local_diffusion_paths = get_local_model_paths("diffusion")
- if not local_diffusion_paths:
- st.warning("No local diffusion models found. Download one using the 'Build Titan' tab.")
- selected_diffusion_model_path = None
- else:
- selected_diffusion_model_path = st.selectbox(
- "Select Local Diffusion Model",
- options=[""] + local_diffusion_paths,
- format_func=lambda x: os.path.basename(x) if x else "Select...",
- key="imggen_diffusion_model_select"
- )
-
- prompt_imggen_diff = st.text_area("Image Generation Prompt", "A photorealistic cat wearing sunglasses, studio lighting", key="imggen_prompt_diff")
- neg_prompt_imggen_diff = st.text_area("Negative Prompt (Optional)", "ugly, deformed, blurry, low quality", key="imggen_neg_prompt_diff")
- steps_imggen_diff = st.slider("Inference Steps", 10, 100, 25, key="imggen_steps")
- guidance_imggen_diff = st.slider("Guidance Scale", 1.0, 20.0, 7.5, step=0.5, key="imggen_guidance")
-
- if st.button("Generate Image π", key="imggen_run_button_diff", disabled=not selected_diffusion_model_path):
- if not prompt_imggen_diff: st.warning("Please enter a prompt.")
- else:
- status_imggen = st.empty()
- try:
- # Load pipeline from saved path on demand
- status_imggen.info(f"Loading diffusion pipeline: {os.path.basename(selected_diffusion_model_path)}...")
- # Determine device
- device = "cuda" if torch.cuda.is_available() else "cpu"
- dtype = torch.float16 if torch.cuda.is_available() else torch.float32 # Use float16 on GPU if available
- pipe = StableDiffusionPipeline.from_pretrained(selected_diffusion_model_path, torch_dtype=dtype).to(device)
- pipe.safety_checker = None # Optional: Disable safety checker if needed
-
- status_imggen.info(f"Generating image on {device} ({dtype})...")
- start_gen_time = time.time()
-
- # Generate using the pipeline
- gen_output = pipe(
- prompt=prompt_imggen_diff,
- negative_prompt=neg_prompt_imggen_diff if neg_prompt_imggen_diff else None,
- num_inference_steps=steps_imggen_diff,
- guidance_scale=guidance_imggen_diff,
- # Add seed if desired: generator=torch.Generator(device=device).manual_seed(your_seed)
- )
- gen_image = gen_output.images[0]
-
- elapsed_gen = int(time.time() - start_gen_time)
- status_imggen.success(f"Image generated in {elapsed_gen}s!")
-
- # Save and display
- output_imggen_file_diff = generate_filename("diffusion_gen", "png")
- gen_image.save(output_imggen_file_diff)
- st.image(gen_image, caption=f"Generated: {output_imggen_file_diff}", use_container_width=True)
- st.markdown(get_download_link(output_imggen_file_diff, "image/png", "Download Generated Image"), unsafe_allow_html=True)
- st.session_state['asset_checkboxes'][output_imggen_file_diff] = False; update_gallery()
- st.session_state['history'].append(f"Diffusion Gen: '{prompt_imggen_diff[:30]}...' -> {output_imggen_file_diff}")
-
- except ImportError: st.error("Diffusers or Torch library not found.")
- except Exception as e:
- st.error(f"Image generation failed: {e}")
- logger.error(f"Diffusion generation failed for {selected_diffusion_model_path}: {e}")
- finally:
- # Clear pipeline from memory? (Optional, depends on memory usage)
- if 'pipe' in locals(): del pipe; torch.cuda.empty_cache() if torch.cuda.is_available() else None
-
-
-# --- Tab 10: Character Editor (Keep from previous merge) ---
-with tabs[9]:
- # ... (Code from previous merge for this tab) ...
- st.header("Character Editor π§βπ¨")
- st.subheader("Create Your Character")
- load_characters(); existing_char_names = [c['name'] for c in st.session_state.get('characters', [])]
- form_key = f"character_form_{st.session_state.get('char_form_reset_key', 0)}"
- with st.form(key=form_key):
- st.markdown("**Create New Character**")
- if st.form_submit_button("Randomize Content π²"): st.session_state['char_form_reset_key'] = st.session_state.get('char_form_reset_key', 0) + 1; st.rerun()
- rand_name, rand_gender, rand_intro, rand_greeting = randomize_character_content()
- name_char = st.text_input("Name (3-25 chars...)", value=rand_name, max_chars=25, key="char_name_input")
- gender_char = st.radio("Gender", ["Male", "Female"], index=["Male", "Female"].index(rand_gender), key="char_gender_radio")
- intro_char = st.text_area("Intro (Public description)", value=rand_intro, max_chars=300, height=100, key="char_intro_area")
- greeting_char = st.text_area("Greeting (First message)", value=rand_greeting, max_chars=300, height=100, key="char_greeting_area")
- tags_char = st.text_input("Tags (comma-separated)", "OC, friendly", key="char_tags_input")
- submitted = st.form_submit_button("Create Character β¨")
- if submitted:
- error = False
- if not (3 <= len(name_char) <= 25): st.error("Name must be 3-25 characters."); error = True
- if not re.match(r'^[a-zA-Z0-9 _-]+$', name_char): st.error("Name contains invalid characters."); error = True
- if name_char in existing_char_names: st.error(f"Name '{name_char}' already exists!"); error = True
- if not intro_char or not greeting_char: st.error("Intro/Greeting cannot be empty."); error = True
- if not error:
- tag_list = [tag.strip() for tag in tags_char.split(',') if tag.strip()]
- character_data = {"name": name_char, "gender": gender_char, "intro": intro_char, "greeting": greeting_char, "created_at": datetime.now(pytz.timezone("US/Central")).strftime('%Y-%m-%d %H:%M:%S %Z'), "tags": tag_list}
- if save_character(character_data):
- st.success(f"Character '{name_char}' created!"); st.session_state['char_form_reset_key'] = st.session_state.get('char_form_reset_key', 0) + 1; st.rerun()
-
-# --- Tab 11: Character Gallery (Keep from previous merge) ---
-with tabs[10]:
- # ... (Code from previous merge for this tab) ...
- st.header("Character Gallery πΌοΈ")
- load_characters(); characters_list = st.session_state.get('characters', [])
- if not characters_list: st.warning("No characters created yet.")
- else:
- st.subheader(f"Your Characters ({len(characters_list)})")
- search_term = st.text_input("Search Characters by Name", key="char_gallery_search")
- if search_term: characters_list = [c for c in characters_list if search_term.lower() in c['name'].lower()]
- cols_char_gallery = st.columns(3); chars_to_delete = []
- for idx, char in enumerate(characters_list):
- with cols_char_gallery[idx % 3], st.container(border=True):
- st.markdown(f"**{char['name']}**"); st.caption(f"Gender: {char.get('gender', 'N/A')}")
- st.markdown("**Intro:**"); st.markdown(f"> {char.get('intro', '')}")
- st.markdown("**Greeting:**"); st.markdown(f"> {char.get('greeting', '')}")
- st.caption(f"Tags: {', '.join(char.get('tags', ['N/A']))}"); st.caption(f"Created: {char.get('created_at', 'N/A')}")
- delete_key_char = f"delete_char_{char['name']}_{idx}";
- if st.button(f"Delete {char['name']}", key=delete_key_char, type="primary"): chars_to_delete.append(char['name'])
- if chars_to_delete:
- current_characters = st.session_state.get('characters', []); updated_characters = [c for c in current_characters if c['name'] not in chars_to_delete]
- st.session_state['characters'] = updated_characters
- try:
- with open("characters.json", "w", encoding='utf-8') as f: json.dump(updated_characters, f, indent=2)
- logger.info(f"Deleted characters: {', '.join(chars_to_delete)}"); st.success(f"Deleted characters: {', '.join(chars_to_delete)}"); st.rerun()
- except IOError as e: logger.error(f"Failed to save characters.json after deletion: {e}"); st.error("Failed to update character file.")
-
-# --- Footer and Persistent Sidebar Elements ------------
-
-# Update Sidebar Gallery (Call this at the end to reflect all changes)
-update_gallery()
-
-# Action Logs in Sidebar
-st.sidebar.subheader("Action Logs π")
-log_expander = st.sidebar.expander("View Logs", expanded=False)
-with log_expander:
- log_text = "\n".join([f"{record.asctime} - {record.levelname} - {record.message}" for record in log_records[-20:]])
- st.code(log_text, language='log')
-
-# History in Sidebar
-st.sidebar.subheader("Session History π")
-history_expander = st.sidebar.expander("View History", expanded=False)
-with history_expander:
- for entry in reversed(st.session_state.get("history", [])):
- if entry: history_expander.write(f"- {entry}")
-
-st.sidebar.markdown("---")
-st.sidebar.info("Using Hugging Face models for AI tasks.")
-st.sidebar.caption("App Modified by AI Assistant")
\ No newline at end of file
+ resp = client.chat_completion(
+ model=model,
+ messages=msgs,
+ max_tokens=st.session_state['gen_max_tokens'],
+ temperature=st.session
+]}]}