Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
|
4 |
+
# Set up default data
|
5 |
+
sem_mem = [{"fact": "The Earth is round", "category": "science", "source": "NASA"}, {"fact": "Pizza is delicious", "category": "food", "source": "me"}]
|
6 |
+
epi_mem = [{"event": "I went to the beach", "sentiment": "happy", "date": "2022-02-28"}, {"event": "I had a fight with my friend", "sentiment": "sad", "date": "2022-02-25"}]
|
7 |
+
|
8 |
+
# Define function to save data to CSV file
|
9 |
+
def save_data():
|
10 |
+
sem_df = pd.DataFrame(sem_mem)
|
11 |
+
sem_df.to_csv("semantic_memory.csv", index=False)
|
12 |
+
epi_df = pd.DataFrame(epi_mem)
|
13 |
+
epi_df.to_csv("episodic_memory.csv", index=False)
|
14 |
+
|
15 |
+
# Define function to load data from CSV file
|
16 |
+
def load_data():
|
17 |
+
try:
|
18 |
+
sem_df = pd.read_csv("semantic_memory.csv")
|
19 |
+
sem_mem = sem_df.to_dict("records")
|
20 |
+
except:
|
21 |
+
sem_mem = [{"fact": "The Earth is round", "category": "science", "source": "NASA"}, {"fact": "Pizza is delicious", "category": "food", "source": "me"}]
|
22 |
+
try:
|
23 |
+
epi_df = pd.read_csv("episodic_memory.csv")
|
24 |
+
epi_mem = epi_df.to_dict("records")
|
25 |
+
except:
|
26 |
+
epi_mem = [{"event": "I went to the beach", "sentiment": "happy", "date": "2022-02-28"}, {"event": "I had a fight with my friend", "sentiment": "sad", "date": "2022-02-25"}]
|
27 |
+
return sem_mem, epi_mem
|
28 |
+
|
29 |
+
# Define function to add a new fact to semantic memory
|
30 |
+
def add_fact(fact, category, source):
|
31 |
+
sem_mem.append({"fact": fact, "category": category, "source": source})
|
32 |
+
|
33 |
+
# Define function to add a new event to episodic memory
|
34 |
+
def add_event(event, sentiment, date):
|
35 |
+
epi_mem.append({"event": event, "sentiment": sentiment, "date": date})
|
36 |
+
|
37 |
+
# Define function to display semantic memory
|
38 |
+
def display_sem_mem():
|
39 |
+
st.write("# Semantic Memory")
|
40 |
+
for item in sem_mem:
|
41 |
+
st.write(f"**{item['fact']}** ({item['category']}) - {item['source']}")
|
42 |
+
|
43 |
+
# Define function to display episodic memory
|
44 |
+
def display_epi_mem():
|
45 |
+
st.write("# Episodic Memory")
|
46 |
+
for item in epi_mem:
|
47 |
+
st.write(f"**{item['event']}** ({item['sentiment']}) - {item['date']}")
|
48 |
+
|
49 |
+
# Load data from CSV files
|
50 |
+
sem_mem, epi_mem = load_data()
|
51 |
+
|
52 |
+
# Set up the Streamlit app
|
53 |
+
st.title("Cognitive Agent")
|
54 |
+
option = st.sidebar.selectbox("Select an option", ["View Semantic Memory", "View Episodic Memory", "Add Fact to Semantic Memory", "Add Event to Episodic Memory"])
|
55 |
+
|
56 |
+
# Handle user input
|
57 |
+
if option == "View Semantic Memory":
|
58 |
+
display_sem_mem()
|
59 |
+
elif option == "View Episodic Memory":
|
60 |
+
display_epi_mem()
|
61 |
+
elif option == "Add Fact to Semantic Memory":
|
62 |
+
fact = st.text_input("Enter a fact")
|
63 |
+
category = st.text_input("Enter a category")
|