Spaces:
Sleeping
Sleeping
import streamlit as st | |
import json | |
import pandas as pd | |
import plotly.express as px | |
import seaborn as sns | |
import matplotlib.pyplot as plt | |
# Function to load JSONL file into a DataFrame | |
def load_jsonl(file_path): | |
data = [] | |
with open(file_path, 'r') as f: | |
for line in f: | |
data.append(json.loads(line)) | |
return pd.DataFrame(data) | |
# Function to filter DataFrame by keyword | |
def filter_by_keyword(df, keyword): | |
return df[df.apply(lambda row: row.astype(str).str.contains(keyword).any(), axis=1)] | |
# Load the data | |
small_data = load_jsonl("small_file.jsonl") | |
large_data = load_jsonl("large_file.jsonl") | |
# Streamlit App | |
st.title("EDA with Plotly and Seaborn ๐") | |
# Dropdown for file selection | |
file_option = st.selectbox("Select file:", ["small_file.jsonl", "large_file.jsonl"]) | |
st.write(f"You selected: {file_option}") | |
# Show filtered data grid | |
if file_option == "small_file.jsonl": | |
data = small_data | |
else: | |
data = large_data | |
# Text input for search keyword | |
search_keyword = st.text_input("Enter a keyword to filter data (e.g., Heart, Lung, Pain, Memory):") | |
# Button to trigger search | |
if st.button("Search"): | |
filtered_data = filter_by_keyword(data, search_keyword) | |
st.write(f"Filtered Dataset by '{search_keyword}'") | |
st.dataframe(filtered_data) | |
# Plotly and Seaborn charts for EDA | |
if st.button("Generate Charts"): | |
st.subheader("Plotly Charts ๐") | |
# 1. Scatter Plot | |
fig = px.scatter(data, x=data.columns[0], y=data.columns[1]) | |
st.plotly_chart(fig) | |
# 2. Line Plot | |
fig = px.line(data, x=data.columns[0], y=data.columns[1]) | |
st.plotly_chart(fig) | |
# 3. Bar Plot | |
fig = px.bar(data, x=data.columns[0], y=data.columns[1]) | |
st.plotly_chart(fig) | |
# 4. Histogram | |
fig = px.histogram(data, x=data.columns[0]) | |
st.plotly_chart(fig) | |
# 5. Box Plot | |
fig = px.box(data, x=data.columns[0], y=data.columns[1]) | |
st.plotly_chart(fig) | |
st.subheader("Seaborn Charts ๐") | |
# 6. Violin Plot | |
fig, ax = plt.subplots() | |
sns.violinplot(x=data.columns[0], y=data.columns[1], data=data) | |
st.pyplot(fig) | |
# 7. Swarm Plot | |
fig, ax = plt.subplots() | |
sns.swarmplot(x=data.columns[0], y=data.columns[1], data=data) | |
st.pyplot(fig) | |
# 8. Pair Plot | |
fig = sns.pairplot(data) | |
st.pyplot(fig) | |
# 9. Heatmap | |
fig, ax = plt.subplots() | |
sns.heatmap(data.corr(), annot=True) | |
st.pyplot(fig) | |
# 10. Regplot (Regression Plot) | |
fig, ax = plt.subplots() | |
sns.regplot(x=data.columns[0], y=data.columns[1], data=data) | |
st.pyplot(fig) | |