File size: 8,580 Bytes
8e7963e
 
 
07dd574
8e7963e
 
 
 
 
07dd574
 
 
 
8e7963e
 
07dd574
 
8e7963e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07dd574
 
8e7963e
 
 
 
 
 
 
 
 
 
 
07dd574
 
 
 
 
 
 
8e7963e
 
 
 
 
 
 
 
 
 
07dd574
 
8e7963e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07dd574
 
 
 
 
8e7963e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07dd574
 
 
 
 
 
 
 
8e7963e
 
 
 
 
07dd574
 
c77f609
8e7963e
 
 
 
 
07dd574
8e7963e
 
 
 
 
 
 
07dd574
8e7963e
07dd574
8e7963e
 
07dd574
 
 
 
 
8e7963e
07dd574
 
8e7963e
07dd574
 
 
 
 
 
 
 
 
 
 
19131c7
 
07dd574
 
19131c7
 
07dd574
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import streamlit as st
import datetime
import os
import base64

# Initialize session state variables
if 'transcript_history' not in st.session_state:
    st.session_state.transcript_history = []

# Function to create a download link for a string
def get_download_link(text, filename):
    b64 = base64.b64encode(text.encode()).decode()
    return f'<a href="data:text/plain;base64,{b64}" download="{filename}">Download Transcript</a>'

# Create the main layout
st.title("Speech Recognition with Transcript History")

col1, col2 = st.columns([2, 1])

with col1:
    html = """
    <!DOCTYPE html>
    <html>
    <head>
        <title>Continuous Speech Demo</title>
        <style>
            body { 
                font-family: sans-serif; 
                padding: 20px; 
                max-width: 800px;
                margin: 0 auto;
            }
            button { 
                padding: 10px 20px; 
                margin: 10px 5px;
                font-size: 16px;
            }
            #status { 
                margin: 10px 0;
                padding: 10px;
                background: #e8f5e9;
                border-radius: 4px;
            }
            #output {
                white-space: pre-wrap;
                padding: 15px;
                background: #f5f5f5;
                border-radius: 4px;
                margin: 10px 0;
                min-height: 100px;
                max-height: 400px;
                overflow-y: auto;
            }
            .controls {
                margin: 10px 0;
            }
        </style>
    </head>
    <body>
        <div class="controls">
            <button id="start">Start Listening</button>
            <button id="stop" disabled>Stop Listening</button>
            <button id="clear">Clear Text</button>
        </div>
        <div id="status">Ready</div>
        <div id="output"></div>

        <script>
            if (!('webkitSpeechRecognition' in window)) {
                alert('Speech recognition not supported');
            } else {
                const recognition = new webkitSpeechRecognition();
                const startButton = document.getElementById('start');
                const stopButton = document.getElementById('stop');
                const clearButton = document.getElementById('clear');
                const status = document.getElementById('status');
                const output = document.getElementById('output');
                let fullTranscript = '';
                let lastUpdateTime = Date.now();

                // Configure recognition
                recognition.continuous = true;
                recognition.interimResults = true;

                // Function to start recognition
                const startRecognition = () => {
                    try {
                        recognition.start();
                        status.textContent = 'Listening...';
                        startButton.disabled = true;
                        stopButton.disabled = false;
                    } catch (e) {
                        console.error(e);
                        status.textContent = 'Error: ' + e.message;
                    }
                };

                // Auto-start on load
                window.addEventListener('load', () => {
                    setTimeout(startRecognition, 1000); // Delay start by 1 second to ensure everything is loaded
                });

                startButton.onclick = startRecognition;

                stopButton.onclick = () => {
                    recognition.stop();
                    status.textContent = 'Stopped';
                    startButton.disabled = false;
                    stopButton.disabled = true;
                };

                clearButton.onclick = () => {
                    fullTranscript = '';
                    output.textContent = '';
                    // Send clear signal to Streamlit
                    window.parent.postMessage({type: 'clear'}, '*');
                };

                recognition.onresult = (event) => {
                    let interimTranscript = '';
                    let finalTranscript = '';

                    for (let i = event.resultIndex; i < event.results.length; i++) {
                        const transcript = event.results[i][0].transcript;
                        if (event.results[i].isFinal) {
                            finalTranscript += transcript + '\\n';
                        } else {
                            interimTranscript += transcript;
                        }
                    }

                    if (finalTranscript || (Date.now() - lastUpdateTime > 5000)) {
                        if (finalTranscript) {
                            fullTranscript += finalTranscript;
                            // Send to Streamlit
                            window.parent.postMessage({
                                type: 'transcript',
                                text: finalTranscript
                            }, '*');
                        }
                        lastUpdateTime = Date.now();
                    }

                    output.textContent = fullTranscript + (interimTranscript ? '... ' + interimTranscript : '');
                    output.scrollTop = output.scrollHeight;
                };

                recognition.onend = () => {
                    if (!stopButton.disabled) {
                        try {
                            recognition.start();
                            console.log('Restarted recognition');
                        } catch (e) {
                            console.error('Failed to restart recognition:', e);
                            status.textContent = 'Error restarting: ' + e.message;
                            startButton.disabled = false;
                            stopButton.disabled = true;
                        }
                    }
                };

                recognition.onerror = (event) => {
                    console.error('Recognition error:', event.error);
                    status.textContent = 'Error: ' + event.error;
                    
                    if (event.error === 'not-allowed' || event.error === 'service-not-allowed') {
                        startButton.disabled = false;
                        stopButton.disabled = true;
                    }
                };

                // Listen for messages from Streamlit
                window.addEventListener('message', (event) => {
                    if (event.data.type === 'clear') {
                        fullTranscript = '';
                        output.textContent = '';
                    }
                });
            }
        </script>
    </body>
    </html>
    """

    # Display the HTML component
    component = st.components.v1.html(html, height=900)

with col2:
    # Display transcript history
    st.subheader("Transcript History")
    
    # Function to save transcript
    def save_transcript(text):
        if not os.path.exists('transcripts'):
            os.makedirs('transcripts')
        timestamp = datetime.datetime.now().strftime('%Y%m%d_%H%M%S')
        filename = f"transcripts/transcript_{timestamp}.md"
        with open(filename, 'w', encoding='utf-8') as f:
            f.write(text)
        return filename

    # Display transcript
    if st.session_state.transcript_history:
        full_transcript = "\n".join(st.session_state.transcript_history)
        st.text_area("Full Transcript", value=full_transcript, height=300)
        
        # Save transcript to file
        timestamp = datetime.datetime.now().strftime('%Y%m%d_%H%M%S')
        filename = f"transcript_{timestamp}.md"
        
        # Create download link
        st.markdown(get_download_link(full_transcript, filename), unsafe_allow_html=True)
        
        # Save to file system
        if st.button("Save to File"):
            saved_file = save_transcript(full_transcript)
            st.success(f"Saved to {saved_file}")

# Handle transcript updates from JavaScript
if component:
    try:
        data = component
        if isinstance(data, dict) and data.get('type') == 'transcript':
            st.session_state.transcript_history.append(data['text'])
            #st.experimental_rerun()
            st.rerun()
        elif isinstance(data, dict) and data.get('type') == 'clear':
            st.session_state.transcript_history = []
            #st.experimental_rerun()
            st.rerun()
    except Exception as e:
        st.error(f"Error processing transcript: {e}")