Spaces:
Sleeping
Sleeping
import base64 | |
import datetime | |
import gradio as gr | |
import numpy as np | |
import os | |
import pytz | |
import psutil | |
import re | |
import random | |
import torch | |
import time | |
import shutil | |
import zipfile | |
from PIL import Image | |
from io import BytesIO | |
from diffusers import DiffusionPipeline, LCMScheduler, AutoencoderTiny | |
try: | |
import intel_extension_for_pytorch as ipex | |
except: | |
pass | |
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None) | |
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None) | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available() | |
xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available() | |
device = torch.device( | |
"cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu" | |
) | |
torch_device = device | |
torch_dtype = torch.float16 | |
# CSS definition | |
css = """ | |
#container{ | |
margin: 0 auto; | |
max-width: 40rem; | |
} | |
#intro{ | |
max-width: 100%; | |
text-align: center; | |
margin: 0 auto; | |
} | |
""" | |
def encode_file_to_base64(file_path): | |
with open(file_path, "rb") as file: | |
encoded = base64.b64encode(file.read()).decode() | |
return encoded | |
def create_zip_of_files(files): | |
zip_name = "all_files.zip" | |
with zipfile.ZipFile(zip_name, 'w') as zipf: | |
for file in files: | |
zipf.write(file) | |
return zip_name | |
def get_zip_download_link(zip_file): | |
with open(zip_file, 'rb') as f: | |
data = f.read() | |
b64 = base64.b64encode(data).decode() | |
href = f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>' | |
return href | |
def clear_all_images(): | |
base_dir = os.getcwd() | |
img_files = [file for file in os.listdir(base_dir) if file.lower().endswith((".png", ".jpg", ".jpeg"))] | |
for file in img_files: | |
os.remove(file) | |
print('removed:' + file) | |
def save_all_images(images): | |
if len(images) == 0: | |
return None, None | |
timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S") | |
zip_filename = f"images_and_history_{timestamp}.zip" | |
with zipfile.ZipFile(zip_filename, 'w') as zipf: | |
# Add image files | |
for file in images: | |
zipf.write(file, os.path.basename(file)) | |
# Add prompt history file | |
if os.path.exists("prompt_history.txt"): | |
zipf.write("prompt_history.txt") | |
# Generate download link | |
zip_base64 = encode_file_to_base64(zip_filename) | |
download_link = f'<a href="data:application/zip;base64,{zip_base64}" download="{zip_filename}">Download All (Images & History)</a>' | |
return zip_filename, download_link | |
def save_all_button_click(): | |
images = [file for file in os.listdir() if file.lower().endswith((".png", ".jpg", ".jpeg"))] | |
zip_filename, download_link = save_all_images(images) | |
if download_link: | |
return gr.HTML(download_link) | |
def clear_all_button_click(): | |
clear_all_images() | |
print(f"SAFETY_CHECKER: {SAFETY_CHECKER}") | |
print(f"TORCH_COMPILE: {TORCH_COMPILE}") | |
print(f"device: {device}") | |
if mps_available: | |
device = torch.device("mps") | |
torch_device = "cpu" | |
torch_dtype = torch.float32 | |
if SAFETY_CHECKER == "True": | |
pipe = DiffusionPipeline.from_pretrained("Lykon/dreamshaper-7") | |
else: | |
pipe = DiffusionPipeline.from_pretrained("Lykon/dreamshaper-7", safety_checker=None) | |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
pipe.to(device=torch_device, dtype=torch_dtype).to(device) | |
pipe.unet.to(memory_format=torch.channels_last) | |
pipe.set_progress_bar_config(disable=True) | |
if psutil.virtual_memory().total < 64 * 1024**3: | |
pipe.enable_attention_slicing() | |
if TORCH_COMPILE: | |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) | |
pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True) | |
pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0) | |
pipe.load_lora_weights("latent-consistency/lcm-lora-sdv1-5") | |
pipe.fuse_lora() | |
def safe_filename(text): | |
safe_text = re.sub(r'\W+', '_', text) | |
timestamp = datetime.datetime.now().strftime("%Y%m%d") | |
return f"{safe_text}_{timestamp}.png" | |
def encode_image(image): | |
buffered = BytesIO() | |
return base64.b64encode(buffered.getvalue()).decode() | |
def fake_gan(): | |
base_dir = os.getcwd() | |
img_files = [file for file in os.listdir(base_dir) if file.lower().endswith((".png", ".jpg", ".jpeg"))] | |
images = [(random.choice(img_files), os.path.splitext(file)[0]) for file in img_files] | |
return images | |
def save_prompt_to_history(prompt): | |
with open("prompt_history.txt", "a") as f: | |
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
f.write(f"{timestamp}: {prompt}\n") | |
def predict(prompt, guidance, steps, seed=1231231): | |
generator = torch.manual_seed(seed) | |
last_time = time.time() | |
results = pipe( | |
prompt=prompt, | |
generator=generator, | |
num_inference_steps=steps, | |
guidance_scale=guidance, | |
width=512, | |
height=512, | |
output_type="pil", | |
) | |
print(f"Pipe took {time.time() - last_time} seconds") | |
# Save prompt to history | |
save_prompt_to_history(prompt) | |
nsfw_content_detected = ( | |
results.nsfw_content_detected[0] | |
if "nsfw_content_detected" in results | |
else False | |
) | |
if nsfw_content_detected: | |
nsfw=gr.Button("🕹️NSFW🎨", scale=1) | |
try: | |
central = pytz.timezone('US/Central') | |
safe_date_time = datetime.datetime.now().strftime("%Y%m%d") | |
replaced_prompt = prompt.replace(" ", "_").replace("\n", "_") | |
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90] | |
filename = f"{safe_date_time}_{safe_prompt}.png" | |
if len(results.images) > 0: | |
image_path = os.path.join("", filename) | |
results.images[0].save(image_path) | |
print(f"#Image saved as {image_path}") | |
gr.File(image_path) | |
gr.Button(link=image_path) | |
except: | |
return results.images[0] | |
return results.images[0] if len(results.images) > 0 else None | |
def read_prompt_history(): | |
if os.path.exists("prompt_history.txt"): | |
with open("prompt_history.txt", "r") as f: | |
return f.read() | |
return "No prompts yet." | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="container"): | |
gr.Markdown( | |
"""4📝RT🖼️Images - 🕹️ Real Time 🎨 Image Generator Gallery 🌐""", | |
elem_id="intro", | |
) | |
with gr.Row(): | |
with gr.Row(): | |
prompt = gr.Textbox( | |
placeholder="Insert your prompt here:", scale=5, container=False | |
) | |
generate_bt = gr.Button("Generate", scale=1) | |
gr.Button("Download", link="/file=all_files.zip") | |
image = gr.Image(type="filepath") | |
with gr.Row(variant="compact"): | |
text = gr.Textbox( | |
label="Image Sets", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
) | |
btn = gr.Button("Generate Gallery of Saved Images") | |
gallery = gr.Gallery( | |
label="Generated Images", show_label=True, elem_id="gallery" | |
) | |
with gr.Row(variant="compact"): | |
save_all_button = gr.Button("💾 Save All", scale=1) | |
clear_all_button = gr.Button("🗑️ Clear All", scale=1) | |
with gr.Accordion("Advanced options", open=False): | |
guidance = gr.Slider( | |
label="Guidance", minimum=0.0, maximum=5, value=0.3, step=0.001 | |
) | |
steps = gr.Slider(label="Steps", value=4, minimum=2, maximum=10, step=1) | |
seed = gr.Slider( | |
randomize=True, minimum=0, maximum=12013012031030, label="Seed", step=1 | |
) | |
with gr.Accordion("Prompt History", open=False): | |
prompt_history = gr.Textbox(label="Prompt History", lines=10, max_lines=20, interactive=False) | |
with gr.Accordion("Run with diffusers"): | |
gr.Markdown( | |
"""## Running LCM-LoRAs it with `diffusers` | |
```bash | |
pip install diffusers==0.23.0 | |
``` | |
```py | |
from diffusers import DiffusionPipeline, LCMScheduler | |
pipe = DiffusionPipeline.from_pretrained("Lykon/dreamshaper-7").to("cuda") | |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
pipe.load_lora_weights("latent-consistency/lcm-lora-sdv1-5") #yes, it's a normal LoRA | |
results = pipe( | |
prompt="ImageEditor", | |
num_inference_steps=4, | |
guidance_scale=0.0, | |
) | |
results.images[0] | |
``` | |
""" | |
) | |
with gr.Column(): | |
file_obj = gr.File(label="Input File") | |
input = file_obj | |
inputs = [prompt, guidance, steps, seed] | |
generate_bt.click(fn=predict, inputs=inputs, outputs=[image, prompt_history], show_progress=False) | |
btn.click(fake_gan, None, gallery) | |
prompt.submit(fn=predict, inputs=inputs, outputs=[image, prompt_history], show_progress=False) | |
guidance.change(fn=predict, inputs=inputs, outputs=[image, prompt_history], show_progress=False) | |
steps.change(fn=predict, inputs=inputs, outputs=[image, prompt_history], show_progress=False) | |
seed.change(fn=predict, inputs=inputs, outputs=[image, prompt_history], show_progress=False) | |
def update_prompt_history(): | |
return read_prompt_history() | |
generate_bt.click(fn=update_prompt_history, outputs=prompt_history) | |
prompt.submit(fn=update_prompt_history, outputs=prompt_history) | |
save_all_button.click( | |
fn=lambda: save_all_images([f for f in os.listdir() if f.lower().endswith((".png", ".jpg", ".jpeg"))]), | |
outputs=[gr.File(), gr.HTML()] | |
) | |
clear_all_button.click(clear_all_button_click) | |
demo.queue() | |
demo.launch(allowed_paths=["/"]) |