Spaces:
Runtime error
Runtime error
Create new file
Browse files
app.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
|
4 |
+
|
5 |
+
|
6 |
+
class TwitterEmotionClassifier:
|
7 |
+
def __init__(self, model_name: str, model_type: str):
|
8 |
+
self.is_gpu = False
|
9 |
+
self.model_type = model_type
|
10 |
+
device = torch.device("cuda") if self.is_gpu else torch.device("cpu")
|
11 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
+
model.to(device)
|
14 |
+
model.eval()
|
15 |
+
self.bertweet = pipeline(
|
16 |
+
"text-classification",
|
17 |
+
model=model,
|
18 |
+
tokenizer=tokenizer,
|
19 |
+
device=self.is_gpu - 1,
|
20 |
+
)
|
21 |
+
self.deberta = None
|
22 |
+
self.emotions = {
|
23 |
+
"LABEL_0": "sadness",
|
24 |
+
"LABEL_1": "joy",
|
25 |
+
"LABEL_2": "love",
|
26 |
+
"LABEL_3": "anger",
|
27 |
+
"LABEL_4": "fear",
|
28 |
+
"LABEL_5": "surprise",
|
29 |
+
}
|
30 |
+
|
31 |
+
def get_model(self, model_type: str):
|
32 |
+
if self.model_type == "bertweet" and model_type == self.model_type:
|
33 |
+
return self.bertweet
|
34 |
+
elif model_type == "deberta":
|
35 |
+
if self.deberta:
|
36 |
+
return self.deberta
|
37 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
38 |
+
"Emanuel/twitter-emotion-deberta-v3-base"
|
39 |
+
)
|
40 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
41 |
+
"Emanuel/twitter-emotion-deberta-v3-base"
|
42 |
+
)
|
43 |
+
self.deberta = pipeline(
|
44 |
+
"text-classification",
|
45 |
+
model=model,
|
46 |
+
tokenizer=tokenizer,
|
47 |
+
device=self.is_gpu - 1,
|
48 |
+
)
|
49 |
+
return self.deberta
|
50 |
+
|
51 |
+
def predict(self, twitter: str, model_type: str):
|
52 |
+
classifier = self.get_model(model_type)
|
53 |
+
preds = classifier(twitter, return_all_scores=True)
|
54 |
+
if preds:
|
55 |
+
pred = preds[0]
|
56 |
+
res = {
|
57 |
+
"Sadness ๐ข": pred[0]["score"],
|
58 |
+
"Joy ๐": pred[1]["score"],
|
59 |
+
"Love ๐": pred[2]["score"],
|
60 |
+
"Anger ๐ ": pred[3]["score"],
|
61 |
+
"Fear ๐ฑ": pred[4]["score"],
|
62 |
+
"Surprise ๐ฎ": pred[5]["score"],
|
63 |
+
}
|
64 |
+
return res
|
65 |
+
return None
|
66 |
+
|
67 |
+
|
68 |
+
def main():
|
69 |
+
|
70 |
+
model = TwitterEmotionClassifier("Emanuel/bertweet-emotion-base", "bertweet")
|
71 |
+
interFace = gr.Interface(
|
72 |
+
fn=model.predict,
|
73 |
+
inputs=[
|
74 |
+
gr.inputs.Textbox(
|
75 |
+
placeholder="What's happenning?", label="Tweet content", lines=5
|
76 |
+
),
|
77 |
+
gr.inputs.Radio(["bertweet", "deberta"], label="Model"),
|
78 |
+
],
|
79 |
+
outputs=gr.outputs.Label(num_top_classes=6, label="Emotions of this tweet is "),
|
80 |
+
verbose=True,
|
81 |
+
examples=[
|
82 |
+
["This GOT show just remember LOTR times!", "bertweet"],
|
83 |
+
[
|
84 |
+
"Man, can't believe that my 30 days of training just got a NaN loss",
|
85 |
+
"bertweet",
|
86 |
+
],
|
87 |
+
["I couldn't see 3 Tom Hollands coming...", "bertweet"],
|
88 |
+
[
|
89 |
+
"There is nothing better than a soul-warming coffee in the morning",
|
90 |
+
"bertweet",
|
91 |
+
],
|
92 |
+
["I fear the vanishing gradient", "deberta"],
|
93 |
+
],
|
94 |
+
title="Emotion classification ๐ค",
|
95 |
+
description="",
|
96 |
+
theme="huggingface",
|
97 |
+
)
|
98 |
+
interFace.launch()
|
99 |
+
|
100 |
+
|
101 |
+
if __name__ == "__main__":
|
102 |
+
main()
|