awacke1 commited on
Commit
c962072
ยท
1 Parent(s): eb4de0e

Create new file

Browse files
Files changed (1) hide show
  1. app.py +102 -0
app.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
4
+
5
+
6
+ class TwitterEmotionClassifier:
7
+ def __init__(self, model_name: str, model_type: str):
8
+ self.is_gpu = False
9
+ self.model_type = model_type
10
+ device = torch.device("cuda") if self.is_gpu else torch.device("cpu")
11
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
12
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
13
+ model.to(device)
14
+ model.eval()
15
+ self.bertweet = pipeline(
16
+ "text-classification",
17
+ model=model,
18
+ tokenizer=tokenizer,
19
+ device=self.is_gpu - 1,
20
+ )
21
+ self.deberta = None
22
+ self.emotions = {
23
+ "LABEL_0": "sadness",
24
+ "LABEL_1": "joy",
25
+ "LABEL_2": "love",
26
+ "LABEL_3": "anger",
27
+ "LABEL_4": "fear",
28
+ "LABEL_5": "surprise",
29
+ }
30
+
31
+ def get_model(self, model_type: str):
32
+ if self.model_type == "bertweet" and model_type == self.model_type:
33
+ return self.bertweet
34
+ elif model_type == "deberta":
35
+ if self.deberta:
36
+ return self.deberta
37
+ model = AutoModelForSequenceClassification.from_pretrained(
38
+ "Emanuel/twitter-emotion-deberta-v3-base"
39
+ )
40
+ tokenizer = AutoTokenizer.from_pretrained(
41
+ "Emanuel/twitter-emotion-deberta-v3-base"
42
+ )
43
+ self.deberta = pipeline(
44
+ "text-classification",
45
+ model=model,
46
+ tokenizer=tokenizer,
47
+ device=self.is_gpu - 1,
48
+ )
49
+ return self.deberta
50
+
51
+ def predict(self, twitter: str, model_type: str):
52
+ classifier = self.get_model(model_type)
53
+ preds = classifier(twitter, return_all_scores=True)
54
+ if preds:
55
+ pred = preds[0]
56
+ res = {
57
+ "Sadness ๐Ÿ˜ข": pred[0]["score"],
58
+ "Joy ๐Ÿ˜‚": pred[1]["score"],
59
+ "Love ๐Ÿ’›": pred[2]["score"],
60
+ "Anger ๐Ÿ˜ ": pred[3]["score"],
61
+ "Fear ๐Ÿ˜ฑ": pred[4]["score"],
62
+ "Surprise ๐Ÿ˜ฎ": pred[5]["score"],
63
+ }
64
+ return res
65
+ return None
66
+
67
+
68
+ def main():
69
+
70
+ model = TwitterEmotionClassifier("Emanuel/bertweet-emotion-base", "bertweet")
71
+ interFace = gr.Interface(
72
+ fn=model.predict,
73
+ inputs=[
74
+ gr.inputs.Textbox(
75
+ placeholder="What's happenning?", label="Tweet content", lines=5
76
+ ),
77
+ gr.inputs.Radio(["bertweet", "deberta"], label="Model"),
78
+ ],
79
+ outputs=gr.outputs.Label(num_top_classes=6, label="Emotions of this tweet is "),
80
+ verbose=True,
81
+ examples=[
82
+ ["This GOT show just remember LOTR times!", "bertweet"],
83
+ [
84
+ "Man, can't believe that my 30 days of training just got a NaN loss",
85
+ "bertweet",
86
+ ],
87
+ ["I couldn't see 3 Tom Hollands coming...", "bertweet"],
88
+ [
89
+ "There is nothing better than a soul-warming coffee in the morning",
90
+ "bertweet",
91
+ ],
92
+ ["I fear the vanishing gradient", "deberta"],
93
+ ],
94
+ title="Emotion classification ๐Ÿค–",
95
+ description="",
96
+ theme="huggingface",
97
+ )
98
+ interFace.launch()
99
+
100
+
101
+ if __name__ == "__main__":
102
+ main()