import base64 import cv2 import openai from dotenv import load_dotenv from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain.schema.messages import SystemMessage from langchain_community.chat_message_histories import ChatMessageHistory from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables.history import RunnableWithMessageHistory from langchain_openai import ChatOpenAI import streamlit as st load_dotenv() class VideoStream: def __init__(self): self.cap = cv2.VideoCapture(0) def get_frame(self): ret, frame = self.cap.read() encoded_image = cv2.imencode('.jpg', frame)[1].tobytes() return encoded_image class Assistant: # ... (Same code as before for the Assistant class) def main(): st.title("AI Assistant App") video_stream = VideoStream() # model = ChatGoogleGenerativeAI(model="gemini-1.5-flash-latest") model = ChatOpenAI(model="gpt-4o") # Using OpenAI's GPT-4 model assistant = Assistant(model) if st.button("Start"): while True: frame = video_stream.get_frame() st.image(frame, channels="BGR") # Add code to capture audio input and process the response here # ... if __name__ == "__main__": main()