File size: 4,061 Bytes
941ae85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34239ff
 
 
 
 
941ae85
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import streamlit as st
import spacy
import wikipediaapi
import wikipedia
from wikipedia.exceptions import DisambiguationError
from transformers import TFAutoModel, AutoTokenizer
import numpy as np
import pandas as pd
import faiss

try:
    nlp = spacy.load("en_core_web_sm")
except:
    spacy.cli.download("en_core_web_sm")
    nlp = spacy.load("en_core_web_sm")

wh_words = ['what', 'who', 'how', 'when', 'which']

def get_concepts(text):
    text = text.lower()
    doc = nlp(text)
    concepts = []
    for chunk in doc.noun_chunks:
        if chunk.text not in wh_words:
            concepts.append(chunk.text)
    return concepts

def get_passages(text, k=100):
    doc = nlp(text)
    passages = []
    passage_len = 0
    passage = ""
    sents = list(doc.sents)
    for i in range(len(sents)):
        sen = sents[i]
        passage_len += len(sen)
        if passage_len >= k:
            passages.append(passage)
            passage = sen.text
            passage_len = len(sen)
            continue
        elif i == (len(sents) - 1):
            passage += " " + sen.text
            passages.append(passage)
            passage = ""
            passage_len = 0
            continue
        passage += " " + sen.text
    return passages

def get_dicts_for_dpr(concepts, n_results=20, k=100):
    dicts = []
    for concept in concepts:
        wikis = wikipedia.search(concept, results=n_results)
        st.write(f"{concept} No of Wikis: {len(wikis)}")
        for wiki in wikis:
            try:
                html_page = wikipedia.page(title=wiki, auto_suggest=False)
            except DisambiguationError:
                continue
            htmlResults = html_page.content
            passages = get_passages(htmlResults, k=k)
            for passage in passages:
                i_dicts = {}
                i_dicts['text'] = passage
                i_dicts['title'] = wiki
                dicts.append(i_dicts)
    return dicts

passage_encoder = TFAutoModel.from_pretrained("nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2")
query_encoder = TFAutoModel.from_pretrained("nlpconnect/dpr-question_encoder_bert_uncased_L-2_H-128_A-2")
p_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2")
q_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/dpr-question_encoder_bert_uncased_L-2_H-128_A-2")

def get_title_text_combined(passage_dicts):
    res = []
    for p in passage_dicts:
        res.append(tuple((p['title'], p['text'])))
    return res

def extracted_passage_embeddings(processed_passages, max_length=156):
    passage_inputs = p_tokenizer.batch_encode_plus(
                    processed_passages,
                    add_special_tokens=True,
                    truncation=True,
                    padding="max_length",
                    max_length=max_length,
                    return_token_type_ids=True
                )
    passage_embeddings = passage_encoder.predict([np.array(passage_inputs['input_ids']), np.array(passage_inputs['attention_mask']), 
                                            np.array(passage_inputs['token_type_ids'])], 
                                            batch_size=64, 
                                            verbose=1)
    return passage_embeddings

def extracted_query_embeddings(queries, max_length=64):
    query_inputs = q_tokenizer.batch_encode_plus(
        queries,
        add_special_tokens=True,
        truncation=True,
        padding="max_length",
        max_length=max_length,
        return_token_type_ids=True
    )
    
    query_embeddings = query_encoder.predict([np.array(query_inputs['input_ids']),
        np.array(query_inputs['attention_mask']),
        np.array(query_inputs['token_type_ids'])],
        batch_size=1,
        verbose=1)
    return query_embeddings

#Wikipedia API:

def get_pagetext(page):
    s = str(page).replace("/t","")
    return s

def get_wiki_summary(search):
    wiki_wiki = wikipediaapi.Wikipedia('en')
    page = wiki_wiki.page(search)