import streamlit as st import transformers import numpy as np # Load the pre-trained model model = transformers.pipeline("text2text-generation", model="mrm8488/t5-base-finetuned-topic-modeling") # Define the Streamlit app def main(): st.title("Topic Modeling with Hugging Face") text = st.text_area("Enter some text to generate topics", height=200) if st.button("Generate Topics"): # Generate topics topics = model(text, max_length=50, do_sample=True, num_beams=5, temperature=0.7) # Print topics st.write("Top 5 topics:") for i in range(5): st.write(f"{i+1}. {topics[i]['generated_text']}") if __name__ == "__main__": main()