awacke1's picture
Update app.py
c26b9b0 verified
raw
history blame
19.8 kB
#!/usr/bin/env python3
import os
import base64
import streamlit as st
import csv
import time
from dataclasses import dataclass
import zipfile
import logging
import cv2
from PIL import Image
import numpy as np
# Logging setup
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
log_records = []
class LogCaptureHandler(logging.Handler):
def emit(self, record):
log_records.append(record)
logger.addHandler(LogCaptureHandler())
st.set_page_config(page_title="SFT Tiny Titans 🚀", page_icon="🤖", layout="wide", initial_sidebar_state="expanded")
# Model Configurations
@dataclass
class ModelConfig:
name: str
base_model: str
model_type: str = "causal_lm"
@property
def model_path(self):
return f"models/{self.name}"
@dataclass
class DiffusionConfig:
name: str
base_model: str
@property
def model_path(self):
return f"diffusion_models/{self.name}"
# Lazy-loaded Builders
class ModelBuilder:
def __init__(self):
self.config = None
self.model = None
self.tokenizer = None
def load_model(self, model_path: str, config: ModelConfig):
try:
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
logger.info(f"Loading NLP model: {model_path}")
self.model = AutoModelForCausalLM.from_pretrained(model_path)
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
self.config = config
self.model.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
logger.info("NLP model loaded successfully")
except Exception as e:
logger.error(f"Error loading NLP model: {str(e)}")
raise
def fine_tune(self, csv_path):
try:
from torch.utils.data import Dataset, DataLoader
import torch
logger.info(f"Starting NLP fine-tuning with {csv_path}")
class SFTDataset(Dataset):
def __init__(self, data, tokenizer):
self.data = data
self.tokenizer = tokenizer
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
prompt = self.data[idx]["prompt"]
response = self.data[idx]["response"]
inputs = self.tokenizer(f"{prompt} {response}", return_tensors="pt", padding="max_length", max_length=128, truncation=True)
labels = inputs["input_ids"].clone()
labels[0, :len(self.tokenizer(prompt)["input_ids"][0])] = -100
return {"input_ids": inputs["input_ids"][0], "attention_mask": inputs["attention_mask"][0], "labels": labels[0]}
data = []
with open(csv_path, "r") as f:
reader = csv.DictReader(f)
for row in reader:
data.append({"prompt": row["prompt"], "response": row["response"]})
dataset = SFTDataset(data, self.tokenizer)
dataloader = DataLoader(dataset, batch_size=2)
optimizer = torch.optim.AdamW(self.model.parameters(), lr=2e-5)
self.model.train()
for _ in range(1):
for batch in dataloader:
optimizer.zero_grad()
outputs = self.model(**{k: v.to(self.model.device) for k, v in batch.items()})
outputs.loss.backward()
optimizer.step()
logger.info("NLP fine-tuning completed")
except Exception as e:
logger.error(f"Error in NLP fine-tuning: {str(e)}")
raise
def evaluate(self, prompt: str):
try:
import torch
logger.info(f"Evaluating NLP with prompt: {prompt}")
self.model.eval()
with torch.no_grad():
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device)
outputs = self.model.generate(**inputs, max_new_tokens=50)
result = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
logger.info(f"NLP evaluation result: {result}")
return result
except Exception as e:
logger.error(f"Error in NLP evaluation: {str(e)}")
raise
class DiffusionBuilder:
def __init__(self):
self.config = None
self.pipeline = None
def load_model(self, model_path: str, config: DiffusionConfig):
try:
from diffusers import StableDiffusionPipeline
import torch
logger.info(f"Loading diffusion model: {model_path}")
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path)
self.pipeline.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
self.config = config
logger.info("Diffusion model loaded successfully")
except Exception as e:
logger.error(f"Error loading diffusion model: {str(e)}")
raise
def fine_tune(self, images, texts):
try:
import torch
from PIL import Image
import numpy as np
logger.info("Starting diffusion fine-tuning")
optimizer = torch.optim.AdamW(self.pipeline.unet.parameters(), lr=1e-5)
self.pipeline.unet.train()
for _ in range(1):
for img, text in zip(images, texts):
optimizer.zero_grad()
img_tensor = torch.tensor(np.array(img)).permute(2, 0, 1).unsqueeze(0).float().to(self.pipeline.device) / 255.0
latents = self.pipeline.vae.encode(img_tensor).latent_dist.sample()
noise = torch.randn_like(latents)
timesteps = torch.randint(0, self.pipeline.scheduler.num_train_timesteps, (1,), device=latents.device)
noisy_latents = self.pipeline.scheduler.add_noise(latents, noise, timesteps)
text_emb = self.pipeline.text_encoder(self.pipeline.tokenizer(text, return_tensors="pt").input_ids.to(self.pipeline.device))[0]
pred_noise = self.pipeline.unet(noisy_latents, timesteps, encoder_hidden_states=text_emb).sample
loss = torch.nn.functional.mse_loss(pred_noise, noise)
loss.backward()
optimizer.step()
logger.info("Diffusion fine-tuning completed")
except Exception as e:
logger.error(f"Error in diffusion fine-tuning: {str(e)}")
raise
def generate(self, prompt: str):
try:
logger.info(f"Generating image with prompt: {prompt}")
img = self.pipeline(prompt, num_inference_steps=20).images[0]
logger.info("Image generated successfully")
return img
except Exception as e:
logger.error(f"Error in image generation: {str(e)}")
raise
# Utilities
def get_download_link(file_path, mime_type="text/plain", label="Download"):
with open(file_path, 'rb') as f:
data = f.read()
b64 = base64.b64encode(data).decode()
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label} 📥</a>'
def generate_filename(sequence, ext="png"):
from datetime import datetime
import pytz
central = pytz.timezone('US/Central')
timestamp = datetime.now(central).strftime("%d%m%Y%H%M%S%p")
return f"{sequence}{timestamp}.{ext}"
def get_gallery_files(file_types):
import glob
return sorted([f for ext in file_types for f in glob.glob(f"*.{ext}")])
def zip_files(files, zip_name):
with zipfile.ZipFile(zip_name, 'w', zipfile.ZIP_DEFLATED) as zipf:
for file in files:
zipf.write(file, os.path.basename(file))
return zip_name
# Main App
st.title("SFT Tiny Titans 🚀 (Dual Cam Action!)")
# Sidebar Galleries
st.sidebar.header("Captured Media 🎨")
gallery_container = st.sidebar.empty()
def update_gallery():
media_files = get_gallery_files(["png", "mp4"])
with gallery_container:
if media_files:
cols = st.columns(2)
for idx, file in enumerate(media_files[:4]):
with cols[idx % 2]:
if file.endswith(".png"):
st.image(Image.open(file), caption=file.split('/')[-1], use_container_width=True)
elif file.endswith(".mp4"):
st.video(file)
# Sidebar Model Management
st.sidebar.subheader("Model Hub 🗂️")
model_type = st.sidebar.selectbox("Model Type", ["NLP (Causal LM)", "CV (Diffusion)"])
model_options = {
"NLP (Causal LM)": "HuggingFaceTB/SmolLM-135M",
"CV (Diffusion)": ["CompVis/stable-diffusion-v1-4", "stabilityai/stable-diffusion-2-base", "runwayml/stable-diffusion-v1-5"]
}
selected_model = st.sidebar.selectbox("Select Model", ["None"] + ([model_options[model_type]] if "NLP" in model_type else model_options[model_type]))
if selected_model != "None" and st.sidebar.button("Load Model 📂"):
builder = ModelBuilder() if "NLP" in model_type else DiffusionBuilder()
config = (ModelConfig if "NLP" in model_type else DiffusionConfig)(name=f"titan_{int(time.time())}", base_model=selected_model)
with st.spinner("Loading... ⏳"):
try:
builder.load_model(selected_model, config)
st.session_state['builder'] = builder
st.session_state['model_loaded'] = True
st.success("Model loaded! 🎉")
except Exception as e:
st.error(f"Load failed: {str(e)}")
# Tabs
tab1, tab2, tab3, tab4 = st.tabs(["Build Titan 🌱", "Camera Snap 📷", "Fine-Tune Titans 🔧", "Test Titans 🧪"])
with tab1:
st.header("Build Titan 🌱 (Quick Start!)")
model_type = st.selectbox("Model Type", ["NLP (Causal LM)", "CV (Diffusion)"], key="build_type")
base_model = st.selectbox("Select Model", model_options[model_type], key="build_model")
if st.button("Download Model ⬇️"):
config = (ModelConfig if "NLP" in model_type else DiffusionConfig)(name=f"titan_{int(time.time())}", base_model=base_model)
builder = ModelBuilder() if "NLP" in model_type else DiffusionBuilder()
with st.spinner("Fetching... ⏳"):
try:
builder.load_model(base_model, config)
st.session_state['builder'] = builder
st.session_state['model_loaded'] = True
st.success("Titan up! 🎉")
except Exception as e:
st.error(f"Download failed: {str(e)}")
with tab2:
st.header("Camera Snap 📷 (Dual Live Feed!)")
caps = {0: cv2.VideoCapture(0), 1: cv2.VideoCapture(1)}
cols = st.columns(2)
for i in range(2):
with cols[i]:
st.subheader(f"Camera {i}")
if caps[i].isOpened():
ret, frame = caps[i].read()
if ret:
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
st.image(frame_rgb, caption=f"Live Feed Cam {i}", use_container_width=True)
else:
st.warning(f"Camera {i} failed to read frame!")
logger.error(f"Failed to read frame from Camera {i}")
else:
st.warning(f"Camera {i} not detected!")
logger.error(f"Camera {i} not opened")
if st.button(f"Capture Frame 📸 Cam {i}", key=f"snap_{i}"):
logger.info(f"Capturing frame from Camera {i}")
try:
ret, frame = caps[i].read()
if ret:
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img = Image.fromarray(frame_rgb)
filename = generate_filename(i)
img.save(filename)
st.image(img, caption=filename, use_container_width=True)
logger.info(f"Saved snapshot: {filename}")
if 'captured_images' not in st.session_state:
st.session_state['captured_images'] = []
st.session_state['captured_images'].append(filename)
update_gallery()
else:
st.error("Failed to capture frame!")
logger.error(f"No frame captured from Camera {i}")
except Exception as e:
st.error(f"Frame capture failed: {str(e)}")
logger.error(f"Error capturing frame: {str(e)}")
if st.button(f"Capture Video 🎥 Cam {i}", key=f"rec_{i}"):
logger.info(f"Capturing 10s video from Camera {i}")
try:
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
mp4_filename = generate_filename(i, "mp4")
out = cv2.VideoWriter(mp4_filename, fourcc, 30.0, (int(caps[i].get(3)), int(caps[i].get(4))))
frames = []
start_time = time.time()
while time.time() - start_time < 10:
ret, frame = caps[i].read()
if ret:
frames.append(frame)
out.write(frame)
time.sleep(0.033) # ~30 FPS
out.release()
st.video(mp4_filename)
logger.info(f"Saved video: {mp4_filename}")
# Slice into 10 frames
sliced_images = []
step = max(1, len(frames) // 10)
for j in range(0, len(frames), step):
if len(sliced_images) < 10:
frame_rgb = cv2.cvtColor(frames[j], cv2.COLOR_BGR2RGB)
img = Image.fromarray(frame_rgb)
img_filename = generate_filename(f"{i}_{len(sliced_images)}")
img.save(img_filename)
sliced_images.append(img_filename)
st.image(img, caption=img_filename, use_container_width=True)
st.session_state['captured_images'] = st.session_state.get('captured_images', []) + sliced_images
logger.info(f"Sliced video into {len(sliced_images)} images")
update_gallery()
except Exception as e:
st.error(f"Video capture failed: {str(e)}")
logger.error(f"Error capturing video: {str(e)}")
# Release cameras after use
for cap in caps.values():
cap.release()
with tab3:
st.header("Fine-Tune Titans 🔧 (Tune Fast!)")
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
st.warning("Load a Titan first! ⚠️")
else:
if isinstance(st.session_state['builder'], ModelBuilder):
st.subheader("NLP Tune 🧠")
uploaded_csv = st.file_uploader("Upload CSV", type="csv", key="nlp_csv")
if uploaded_csv and st.button("Tune NLP 🔄"):
logger.info("Initiating NLP fine-tune")
try:
with open("temp.csv", "wb") as f:
f.write(uploaded_csv.read())
st.session_state['builder'].fine_tune("temp.csv")
st.success("NLP sharpened! 🎉")
except Exception as e:
st.error(f"NLP fine-tune failed: {str(e)}")
elif isinstance(st.session_state['builder'], DiffusionBuilder):
st.subheader("CV Tune 🎨")
captured_images = get_gallery_files(["png"])
if len(captured_images) >= 2:
texts = ["Superhero Neon", "Hero Glow", "Cape Spark"][:len(captured_images)]
if st.button("Tune CV 🔄"):
logger.info("Initiating CV fine-tune")
try:
images = [Image.open(img) for img in captured_images]
st.session_state['builder'].fine_tune(images, texts)
st.success("CV polished! 🎉")
except Exception as e:
st.error(f"CV fine-tune failed: {str(e)}")
else:
st.warning("Capture at least 2 images first! ⚠️")
with tab4:
st.header("Test Titans 🧪 (Image Agent Demo!)")
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
st.warning("Load a Titan first! ⚠️")
else:
if isinstance(st.session_state['builder'], ModelBuilder):
st.subheader("NLP Test 🧠")
prompt = st.text_area("Prompt", "What’s a superhero?", key="nlp_test")
if st.button("Test NLP ▶️"):
logger.info("Running NLP test")
try:
result = st.session_state['builder'].evaluate(prompt)
st.write(f"**Answer**: {result}")
except Exception as e:
st.error(f"NLP test failed: {str(e)}")
elif isinstance(st.session_state['builder'], DiffusionBuilder):
st.subheader("CV Test 🎨 (Image Set Demo)")
captured_images = get_gallery_files(["png"])
if len(captured_images) >= 2:
if st.button("Run CV Demo ▶️"):
logger.info("Running CV image set demo")
try:
images = [Image.open(img) for img in captured_images[:10]]
prompts = ["Neon " + os.path.basename(img).split('.')[0] for img in captured_images[:10]]
generated_images = []
for prompt in prompts:
img = st.session_state['builder'].generate(prompt)
generated_images.append(img)
cols = st.columns(2)
for idx, (orig, gen) in enumerate(zip(images, generated_images)):
with cols[idx % 2]:
st.image(orig, caption=f"Original: {captured_images[idx]}", use_container_width=True)
st.image(gen, caption=f"Generated: {prompts[idx]}", use_container_width=True)
md_content = "# Image Set Demo\n\nScript of filenames and descriptions:\n"
for i, (img, prompt) in enumerate(zip(captured_images[:10], prompts)):
md_content += f"{i+1}. `{img}` - {prompt}\n"
md_filename = f"demo_metadata_{int(time.time())}.md"
with open(md_filename, "w") as f:
f.write(md_content)
st.markdown(get_download_link(md_filename, "text/markdown", "Download Metadata .md"), unsafe_allow_html=True)
logger.info("CV demo completed with metadata")
except Exception as e:
st.error(f"CV demo failed: {str(e)}")
logger.error(f"Error in CV demo: {str(e)}")
else:
st.warning("Capture at least 2 images first! ⚠️")
# Display Logs
st.sidebar.subheader("Action Logs 📜")
log_container = st.sidebar.empty()
with log_container:
for record in log_records:
st.write(f"{record.asctime} - {record.levelname} - {record.message}")
update_gallery() # Initial gallery update