|
import aiofiles |
|
import asyncio |
|
import base64 |
|
import cv2 |
|
import fitz |
|
import glob |
|
import io |
|
import json |
|
import logging |
|
import math |
|
import mistune |
|
import os |
|
import pandas as pd |
|
import pytz |
|
import random |
|
import re |
|
import requests |
|
import shutil |
|
import streamlit as st |
|
import streamlit.components.v1 as components |
|
import sys |
|
import textract |
|
import time |
|
import torch |
|
import zipfile |
|
|
|
from audio_recorder_streamlit import audio_recorder |
|
from bs4 import BeautifulSoup |
|
from collections import deque |
|
from contextlib import redirect_stdout |
|
from dataclasses import dataclass |
|
from datetime import datetime |
|
from diffusers import StableDiffusionPipeline |
|
from dotenv import load_dotenv |
|
from gradio_client import Client, handle_file |
|
from huggingface_hub import InferenceClient |
|
from io import BytesIO |
|
from moviepy import VideoFileClip |
|
from openai import OpenAI |
|
from PIL import Image |
|
from PyPDF2 import PdfReader |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel |
|
from typing import Optional |
|
from urllib.parse import quote |
|
from xml.etree import ElementTree as ET |
|
|
|
|
|
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID')) |
|
|
|
|
|
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") |
|
logger = logging.getLogger(__name__) |
|
log_records = [] |
|
class LogCaptureHandler(logging.Handler): |
|
def emit(self, record): |
|
log_records.append(record) |
|
logger.addHandler(LogCaptureHandler()) |
|
|
|
|
|
st.set_page_config( |
|
page_title="AI Multimodal Titan 🚀", |
|
page_icon="🤖", |
|
layout="wide", |
|
initial_sidebar_state="expanded", |
|
menu_items={ |
|
'Get Help': 'https://huggingface.co/awacke1', |
|
'Report a Bug': 'https://huggingface.co/spaces/awacke1', |
|
'About': "AI Multimodal Titan: PDFs, OCR, Image Gen, Audio/Video, Code Execution, and More! 🌌" |
|
} |
|
) |
|
|
|
|
|
for key in ['history', 'messages', 'processing', 'asset_checkboxes', 'downloaded_pdfs', 'unique_counter', 'search_queries']: |
|
st.session_state.setdefault(key, [] if key in ['history', 'messages', 'search_queries'] else {} if key in ['asset_checkboxes', 'downloaded_pdfs', 'processing'] else 0 if key == 'unique_counter' else None) |
|
st.session_state.setdefault('builder', None) |
|
st.session_state.setdefault('model_loaded', False) |
|
st.session_state.setdefault('selected_model_type', "Causal LM") |
|
st.session_state.setdefault('selected_model', "None") |
|
st.session_state.setdefault('gallery_size', 2) |
|
st.session_state.setdefault('asset_gallery_container', st.sidebar.empty()) |
|
st.session_state.setdefault('cam0_file', None) |
|
st.session_state.setdefault('cam1_file', None) |
|
st.session_state.setdefault('openai_model', "gpt-4o-2024-05-13") |
|
|
|
|
|
@dataclass |
|
class ModelConfig: |
|
name: str |
|
base_model: str |
|
size: str |
|
domain: Optional[str] = None |
|
model_type: str = "causal_lm" |
|
@property |
|
def model_path(self): |
|
return f"models/{self.name}" |
|
|
|
@dataclass |
|
class DiffusionConfig: |
|
name: str |
|
base_model: str |
|
size: str |
|
domain: Optional[str] = None |
|
@property |
|
def model_path(self): |
|
return f"diffusion_models/{self.name}" |
|
|
|
class ModelBuilder: |
|
def __init__(self): |
|
self.config = None |
|
self.model = None |
|
self.tokenizer = None |
|
self.jokes = [ |
|
"Why did the AI go to therapy? Too many layers to unpack! 😂", |
|
"Training complete! Time for a binary coffee break. ☕", |
|
"I told my neural network a joke; it couldn't stop dropping bits! 🤖", |
|
"I asked the AI for a pun, and it said, 'I'm punning on parallel processing!' 😄", |
|
"Debugging my code is like a stand-up routine—always a series of exceptions! 😆" |
|
] |
|
def load_model(self, model_path: str, config: Optional[ModelConfig] = None): |
|
with st.spinner(f"Loading {model_path}... ⏳"): |
|
self.model = AutoModelForCausalLM.from_pretrained(model_path) |
|
self.tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
if self.tokenizer.pad_token is None: |
|
self.tokenizer.pad_token = self.tokenizer.eos_token |
|
if config: |
|
self.config = config |
|
self.model.to("cuda" if torch.cuda.is_available() else "cpu") |
|
st.success(f"Model loaded! 🎉 {random.choice(self.jokes)}") |
|
return self |
|
def save_model(self, path: str): |
|
with st.spinner("Saving model... 💾"): |
|
os.makedirs(os.path.dirname(path), exist_ok=True) |
|
self.model.save_pretrained(path) |
|
self.tokenizer.save_pretrained(path) |
|
st.success(f"Model saved at {path}! ✅") |
|
|
|
class DiffusionBuilder: |
|
def __init__(self): |
|
self.config = None |
|
self.pipeline = None |
|
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None): |
|
with st.spinner(f"Loading diffusion model {model_path}... ⏳"): |
|
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cpu") |
|
if config: |
|
self.config = config |
|
st.success("Diffusion model loaded! 🎨") |
|
return self |
|
def save_model(self, path: str): |
|
with st.spinner("Saving diffusion model... 💾"): |
|
os.makedirs(os.path.dirname(path), exist_ok=True) |
|
self.pipeline.save_pretrained(path) |
|
st.success(f"Diffusion model saved at {path}! ✅") |
|
def generate(self, prompt: str): |
|
return self.pipeline(prompt, num_inference_steps=20).images[0] |
|
|
|
|
|
def generate_filename(sequence, ext="png", prompt=None): |
|
central = pytz.timezone('US/Central') |
|
safe_date_time = datetime.now(central).strftime("%m%d_%H%M") |
|
if prompt: |
|
safe_prompt = re.sub(r'[<>:"/\\|?*\n]', '_', prompt)[:240] |
|
return f"{safe_date_time}_{safe_prompt}.{ext}" |
|
return f"{sequence}_{time.strftime('%d%m%Y%H%M%S')}.{ext}" |
|
|
|
def pdf_url_to_filename(url): |
|
return re.sub(r'[<>:"/\\|?*]', '_', url) + ".pdf" |
|
|
|
def get_download_link(file_path, mime_type="application/pdf", label="Download"): |
|
with open(file_path, "rb") as f: |
|
data = base64.b64encode(f.read()).decode() |
|
return f'<a href="data:{mime_type};base64,{data}" download="{os.path.basename(file_path)}">{label}</a>' |
|
|
|
def zip_directory(directory_path, zip_path): |
|
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf: |
|
for root, _, files in os.walk(directory_path): |
|
for file in files: |
|
zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path))) |
|
|
|
def get_model_files(model_type="causal_lm"): |
|
return [d for d in glob.glob("models/*" if model_type == "causal_lm" else "diffusion_models/*") if os.path.isdir(d)] or ["None"] |
|
|
|
def get_gallery_files(file_types=["png", "pdf", "md", "wav", "mp4"]): |
|
return sorted(list({f for ext in file_types for f in glob.glob(f"*.{ext}")})) |
|
|
|
def get_pdf_files(): |
|
return sorted(glob.glob("*.pdf")) |
|
|
|
def download_pdf(url, output_path): |
|
try: |
|
response = requests.get(url, stream=True, timeout=10) |
|
if response.status_code == 200: |
|
with open(output_path, "wb") as f: |
|
for chunk in response.iter_content(chunk_size=8192): |
|
f.write(chunk) |
|
return True |
|
except requests.RequestException as e: |
|
logger.error(f"Failed to download {url}: {e}") |
|
return False |
|
|
|
|
|
async def process_pdf_snapshot(pdf_path, mode="single"): |
|
start_time = time.time() |
|
status = st.empty() |
|
status.text(f"Processing PDF Snapshot ({mode})... (0s)") |
|
try: |
|
doc = fitz.open(pdf_path) |
|
output_files = [] |
|
if mode == "single": |
|
page = doc[0] |
|
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) |
|
output_file = generate_filename("single", "png") |
|
pix.save(output_file) |
|
output_files.append(output_file) |
|
elif mode == "twopage": |
|
if len(doc) >= 2: |
|
pix1 = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) |
|
pix2 = doc[1].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) |
|
img1 = Image.frombytes("RGB", [pix1.width, pix1.height], pix1.samples) |
|
img2 = Image.frombytes("RGB", [pix2.width, pix2.height], pix2.samples) |
|
combined_img = Image.new("RGB", (pix1.width + pix2.width, max(pix1.height, pix2.height))) |
|
combined_img.paste(img1, (0, 0)) |
|
combined_img.paste(img2, (pix1.width, 0)) |
|
output_file = generate_filename("twopage", "png") |
|
combined_img.save(output_file) |
|
output_files.append(output_file) |
|
else: |
|
page = doc[0] |
|
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) |
|
output_file = generate_filename("single", "png") |
|
pix.save(output_file) |
|
output_files.append(output_file) |
|
elif mode == "allpages": |
|
for i in range(len(doc)): |
|
page = doc[i] |
|
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) |
|
output_file = generate_filename(f"page_{i}", "png") |
|
pix.save(output_file) |
|
output_files.append(output_file) |
|
doc.close() |
|
elapsed = int(time.time() - start_time) |
|
status.text(f"PDF Snapshot ({mode}) completed in {elapsed}s!") |
|
return output_files |
|
except Exception as e: |
|
status.error(f"Failed to process PDF: {str(e)}") |
|
return [] |
|
|
|
async def process_ocr(image, output_file): |
|
start_time = time.time() |
|
status = st.empty() |
|
status.text("Processing GOT-OCR2_0... (0s)") |
|
tokenizer = AutoTokenizer.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True) |
|
model = AutoModel.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval() |
|
temp_file = generate_filename("temp", "png") |
|
image.save(temp_file) |
|
result = model.chat(tokenizer, temp_file, ocr_type='ocr') |
|
os.remove(temp_file) |
|
elapsed = int(time.time() - start_time) |
|
status.text(f"GOT-OCR2_0 completed in {elapsed}s!") |
|
async with aiofiles.open(output_file, "w") as f: |
|
await f.write(result) |
|
return result |
|
|
|
async def process_image_gen(prompt, output_file): |
|
start_time = time.time() |
|
status = st.empty() |
|
status.text("Processing Image Gen... (0s)") |
|
pipeline = (st.session_state['builder'].pipeline if st.session_state.get('builder') and isinstance(st.session_state['builder'], DiffusionBuilder) and st.session_state['builder'].pipeline else StableDiffusionPipeline.from_pretrained("OFA-Sys/small-stable-diffusion-v0", torch_dtype=torch.float32).to("cpu")) |
|
gen_image = pipeline(prompt, num_inference_steps=20).images[0] |
|
elapsed = int(time.time() - start_time) |
|
status.text(f"Image Gen completed in {elapsed}s!") |
|
gen_image.save(output_file) |
|
return gen_image |
|
|
|
def process_image_with_prompt(image, prompt, model="gpt-4o-mini", detail="auto"): |
|
buffered = BytesIO() |
|
image.save(buffered, format="PNG") |
|
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") |
|
messages = [{"role": "user", "content": [{"type": "text", "text": prompt}, {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{img_str}", "detail": detail}}]}] |
|
try: |
|
response = client.chat.completions.create(model=model, messages=messages, max_tokens=300) |
|
return response.choices[0].message.content |
|
except Exception as e: |
|
return f"Error processing image with GPT: {str(e)}" |
|
|
|
def process_text_with_prompt(text, prompt, model="gpt-4o-mini"): |
|
messages = [{"role": "user", "content": f"{prompt}\n\n{text}"}] |
|
try: |
|
response = client.chat.completions.create(model=model, messages=messages, max_tokens=300) |
|
return response.choices[0].message.content |
|
except Exception as e: |
|
return f"Error processing text with GPT: {str(e)}" |
|
|
|
def process_text(text_input): |
|
if text_input: |
|
st.session_state.messages.append({"role": "user", "content": text_input}) |
|
with st.chat_message("user"): |
|
st.markdown(text_input) |
|
with st.chat_message("assistant"): |
|
completion = client.chat.completions.create(model=st.session_state["openai_model"], messages=[{"role": m["role"], "content": m["content"]} for m in st.session_state.messages], stream=False) |
|
return_text = completion.choices[0].message.content |
|
st.write("Assistant: " + return_text) |
|
filename = generate_filename(text_input, "md") |
|
with open(filename, "w", encoding="utf-8") as f: |
|
f.write(text_input + "\n\n" + return_text) |
|
st.session_state.messages.append({"role": "assistant", "content": return_text}) |
|
return return_text |
|
|
|
def process_audio(audio_input, text_input=''): |
|
if isinstance(audio_input, str): |
|
with open(audio_input, "rb") as file: |
|
audio_input = file.read() |
|
transcription = client.audio.transcriptions.create(model="whisper-1", file=audio_input) |
|
st.session_state.messages.append({"role": "user", "content": transcription.text}) |
|
with st.chat_message("assistant"): |
|
st.markdown(transcription.text) |
|
SpeechSynthesis(transcription.text) |
|
filename = generate_filename(transcription.text, "wav") |
|
create_audio_file(filename, audio_input, True) |
|
filename = generate_filename(transcription.text, "md") |
|
with open(filename, "w", encoding="utf-8") as f: |
|
f.write(transcription.text + "\n\n" + transcription.text) |
|
return transcription.text |
|
|
|
def process_video(video_path, user_prompt): |
|
base64Frames, audio_path = process_video_frames(video_path) |
|
with open(video_path, "rb") as file: |
|
transcription = client.audio.transcriptions.create(model="whisper-1", file=file) |
|
response = client.chat.completions.create( |
|
model=st.session_state["openai_model"], |
|
messages=[ |
|
{"role": "system", "content": "You are generating a video summary. Create a summary of the provided video and its transcript. Respond in Markdown"}, |
|
{"role": "user", "content": [ |
|
"These are the frames from the video.", |
|
*map(lambda x: {"type": "image_url", "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames), |
|
{"type": "text", "text": f"The audio transcription is: {transcription.text}\n\n{user_prompt}"} |
|
]} |
|
], |
|
temperature=0, |
|
) |
|
video_response = response.choices[0].message.content |
|
filename_md = generate_filename(video_path + '- ' + video_response, "md") |
|
with open(filename_md, "w", encoding="utf-8") as f: |
|
f.write(video_response) |
|
return video_response |
|
|
|
def process_video_frames(video_path, seconds_per_frame=2): |
|
base64Frames = [] |
|
base_video_path, _ = os.path.splitext(video_path) |
|
video = cv2.VideoCapture(video_path) |
|
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) |
|
fps = video.get(cv2.CAP_PROP_FPS) |
|
frames_to_skip = int(fps * seconds_per_frame) |
|
curr_frame = 0 |
|
while curr_frame < total_frames - 1: |
|
video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame) |
|
success, frame = video.read() |
|
if not success: |
|
break |
|
_, buffer = cv2.imencode(".jpg", frame) |
|
base64Frames.append(base64.b64encode(buffer).decode("utf-8")) |
|
curr_frame += frames_to_skip |
|
video.release() |
|
audio_path = f"{base_video_path}.mp3" |
|
try: |
|
clip = VideoFileClip(video_path) |
|
clip.audio.write_audiofile(audio_path, bitrate="32k") |
|
clip.audio.close() |
|
clip.close() |
|
except: |
|
logger.info("No audio track found in video.") |
|
return base64Frames, audio_path |
|
|
|
def execute_code(code): |
|
buffer = io.StringIO() |
|
try: |
|
with redirect_stdout(buffer): |
|
exec(code, {}, {}) |
|
return buffer.getvalue(), None |
|
except Exception as e: |
|
return None, str(e) |
|
finally: |
|
buffer.close() |
|
|
|
def extract_python_code(markdown_text): |
|
pattern = r"```python\s*(.*?)\s*```" |
|
matches = re.findall(pattern, markdown_text, re.DOTALL) |
|
return matches |
|
|
|
def SpeechSynthesis(result): |
|
documentHTML5 = f''' |
|
<!DOCTYPE html> |
|
<html> |
|
<head> |
|
<title>Read It Aloud</title> |
|
<script type="text/javascript"> |
|
function readAloud() {{ |
|
const text = document.getElementById("textArea").value; |
|
const speech = new SpeechSynthesisUtterance(text); |
|
window.speechSynthesis.speak(speech); |
|
}} |
|
</script> |
|
</head> |
|
<body> |
|
<h1>🔊 Read It Aloud</h1> |
|
<textarea id="textArea" rows="10" cols="80">{result}</textarea> |
|
<br> |
|
<button onclick="readAloud()">🔊 Read Aloud</button> |
|
</body> |
|
</html> |
|
''' |
|
components.html(documentHTML5, width=1280, height=300) |
|
|
|
def search_arxiv(query): |
|
start_time = time.strftime("%Y-%m-%d %H:%M:%S") |
|
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") |
|
response1 = client.predict(message="Hello!!", llm_results_use=5, database_choice="Semantic Search", llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2", api_name="/update_with_rag_md") |
|
Question = f'### 🔎 {query}\r\n' |
|
References = response1[0] |
|
References2 = response1[1] |
|
filename = generate_filename(query, "md") |
|
with open(filename, "w", encoding="utf-8") as f: |
|
f.write(Question + References + References2) |
|
st.session_state.messages.append({"role": "assistant", "content": References + References2}) |
|
response2 = client.predict(query, "mistralai/Mixtral-8x7B-Instruct-v0.1", True, api_name="/ask_llm") |
|
if len(response2) > 10: |
|
Answer = response2 |
|
SpeechSynthesis(Answer) |
|
results = Question + '\r\n' + Answer + '\r\n' + References + '\r\n' + References2 |
|
return results |
|
return References + References2 |
|
|
|
roleplaying_glossary = { |
|
"🤖 AI Concepts": { |
|
"MoE (Mixture of Experts) 🧠": [ |
|
"As a leading AI health researcher, provide an overview of MoE, MAS, memory, and mirroring in healthcare applications.", |
|
"Explain how MoE and MAS can be leveraged to create AGI and AMI systems for healthcare, as an AI architect." |
|
], |
|
"Multi Agent Systems (MAS) 🤝": [ |
|
"As a renowned MAS researcher, describe the key characteristics of distributed, autonomous, and cooperative MAS.", |
|
"Discuss how MAS is applied in robotics, simulations, and decentralized problem-solving, as an AI engineer." |
|
] |
|
} |
|
} |
|
|
|
def display_glossary_grid(roleplaying_glossary): |
|
search_urls = { |
|
"🚀🌌ArXiv": lambda k: f"/?q={quote(k)}", |
|
"📖": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}", |
|
"🔍": lambda k: f"https://www.google.com/search?q={quote(k)}" |
|
} |
|
for category, details in roleplaying_glossary.items(): |
|
st.write(f"### {category}") |
|
cols = st.columns(len(details)) |
|
for idx, (game, terms) in enumerate(details.items()): |
|
with cols[idx]: |
|
st.markdown(f"#### {game}") |
|
for term in terms: |
|
links_md = ' '.join([f"[{emoji}]({url(term)})" for emoji, url in search_urls.items()]) |
|
st.markdown(f"**{term}** <small>{links_md}</small>", unsafe_allow_html=True) |
|
|
|
def create_zip_of_files(files): |
|
zip_name = "assets.zip" |
|
with zipfile.ZipFile(zip_name, 'w') as zipf: |
|
for file in files: |
|
zipf.write(file) |
|
return zip_name |
|
|
|
def get_zip_download_link(zip_file): |
|
with open(zip_file, 'rb') as f: |
|
data = f.read() |
|
b64 = base64.b64encode(data).decode() |
|
return f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>' |
|
|
|
def FileSidebar(): |
|
all_files = glob.glob("*.md") |
|
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 10] |
|
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) |
|
Files1, Files2 = st.sidebar.columns(2) |
|
with Files1: |
|
if st.button("🗑 Delete All"): |
|
for file in all_files: |
|
os.remove(file) |
|
st.rerun() |
|
with Files2: |
|
if st.button("⬇️ Download"): |
|
zip_file = create_zip_of_files(all_files) |
|
st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True) |
|
file_contents = '' |
|
file_name = '' |
|
next_action = '' |
|
for file in all_files: |
|
col1, col2, col3, col4, col5 = st.sidebar.columns([1, 6, 1, 1, 1]) |
|
with col1: |
|
if st.button("🌐", key=f"md_{file}"): |
|
with open(file, "r", encoding='utf-8') as f: |
|
file_contents = f.read() |
|
file_name = file |
|
next_action = 'md' |
|
st.session_state['next_action'] = next_action |
|
with col2: |
|
st.markdown(get_download_link(file, "text/markdown", file)) |
|
with col3: |
|
if st.button("📂", key=f"open_{file}"): |
|
with open(file, "r", encoding='utf-8') as f: |
|
file_contents = f.read() |
|
file_name = file |
|
next_action = 'open' |
|
st.session_state['lastfilename'] = file |
|
st.session_state['filename'] = file |
|
st.session_state['filetext'] = file_contents |
|
st.session_state['next_action'] = next_action |
|
with col4: |
|
if st.button("▶️", key=f"read_{file}"): |
|
with open(file, "r", encoding='utf-8') as f: |
|
file_contents = f.read() |
|
file_name = file |
|
next_action = 'search' |
|
st.session_state['next_action'] = next_action |
|
with col5: |
|
if st.button("🗑", key=f"delete_{file}"): |
|
os.remove(file) |
|
file_name = file |
|
st.rerun() |
|
next_action = 'delete' |
|
st.session_state['next_action'] = next_action |
|
if len(file_contents) > 0: |
|
if next_action == 'open': |
|
if 'lastfilename' not in st.session_state: |
|
st.session_state['lastfilename'] = '' |
|
if 'filename' not in st.session_state: |
|
st.session_state['filename'] = '' |
|
if 'filetext' not in st.session_state: |
|
st.session_state['filetext'] = '' |
|
open1, open2 = st.columns([.8, .2]) |
|
with open1: |
|
file_name_input = st.text_input(key='file_name_input', label="File Name:", value=file_name) |
|
file_content_area = st.text_area(key='file_content_area', label="File Contents:", value=file_contents, height=300) |
|
if file_name_input != file_name: |
|
os.rename(file_name, file_name_input) |
|
st.markdown(f'Renamed file {file_name} to {file_name_input}.') |
|
if file_content_area != file_contents: |
|
with open(file_name_input, 'w', encoding='utf-8') as f: |
|
f.write(file_content_area) |
|
st.markdown(f'Saved {file_name_input}.') |
|
if next_action == 'search': |
|
st.text_area("File Contents:", file_contents, height=500) |
|
filesearch = "Create a streamlit python user app with full code listing: " + file_contents |
|
st.markdown(filesearch) |
|
if st.button(key='rerun', label='🔍Re-Code'): |
|
result = search_arxiv(filesearch) |
|
st.markdown(result) |
|
if next_action == 'md': |
|
st.markdown(file_contents) |
|
SpeechSynthesis(file_contents) |
|
|
|
FileSidebar() |
|
|
|
|
|
tabs = st.tabs(["Camera 📷", "Download 📥", "OCR 🔍", "Build 🌱", "Image Gen 🎨", "PDF 📄", "Image 🖼️", "Audio 🎵", "Video 🎥", "Code 🧑💻", "Gallery 📚", "Search 🔎"]) |
|
(tab_camera, tab_download, tab_ocr, tab_build, tab_imggen, tab_pdf, tab_image, tab_audio, tab_video, tab_code, tab_gallery, tab_search) = tabs |
|
|
|
with tab_camera: |
|
st.header("Camera Snap 📷") |
|
cols = st.columns(2) |
|
for i, cam_key in enumerate(["cam0", "cam1"]): |
|
with cols[i]: |
|
cam_img = st.camera_input(f"Take a picture - Cam {i}", key=cam_key) |
|
if cam_img: |
|
filename = generate_filename(f"cam{i}", "png") |
|
if st.session_state[f'cam{i}_file'] and os.path.exists(st.session_state[f'cam{i}_file']): |
|
os.remove(st.session_state[f'cam{i}_file']) |
|
with open(filename, "wb") as f: |
|
f.write(cam_img.getvalue()) |
|
st.session_state[f'cam{i}_file'] = filename |
|
st.session_state['history'].append(f"Snapshot from Cam {i}: {filename}") |
|
st.image(Image.open(filename), caption=f"Camera {i}", use_container_width=True) |
|
|
|
with tab_download: |
|
st.header("Download PDFs 📥") |
|
if st.button("Examples 📚"): |
|
example_urls = ["https://arxiv.org/pdf/2308.03892", "https://arxiv.org/pdf/1912.01703"] |
|
st.session_state['pdf_urls'] = "\n".join(example_urls) |
|
url_input = st.text_area("Enter PDF URLs (one per line)", value=st.session_state.get('pdf_urls', ""), height=200) |
|
if st.button("Robo-Download 🤖"): |
|
urls = url_input.strip().split("\n") |
|
progress_bar = st.progress(0) |
|
for idx, url in enumerate(urls): |
|
if url: |
|
output_path = pdf_url_to_filename(url) |
|
if download_pdf(url, output_path): |
|
st.session_state['downloaded_pdfs'][url] = output_path |
|
st.session_state['history'].append(f"Downloaded PDF: {output_path}") |
|
st.session_state['asset_checkboxes'][output_path] = True |
|
progress_bar.progress((idx + 1) / len(urls)) |
|
|
|
with tab_ocr: |
|
st.header("Test OCR 🔍") |
|
all_files = get_gallery_files() |
|
if all_files: |
|
|
|
ocr_files = [f for f in all_files if f.endswith(('.png', '.pdf'))] |
|
if st.button("OCR All Assets 🚀"): |
|
full_text = "# OCR Results\n\n" |
|
for file in ocr_files: |
|
if file.endswith('.png'): |
|
image = Image.open(file) |
|
else: |
|
try: |
|
doc = fitz.open(file) |
|
pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) |
|
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) |
|
doc.close() |
|
except Exception as e: |
|
st.error(f"Failed to process {file}: {str(e)}") |
|
continue |
|
output_file = generate_filename(f"ocr_{os.path.basename(file)}", "txt") |
|
result = asyncio.run(process_ocr(image, output_file)) |
|
full_text += f"## {os.path.basename(file)}\n\n{result}\n\n" |
|
st.session_state['history'].append(f"OCR Test: {file} -> {output_file}") |
|
md_output_file = generate_filename("full_ocr", "md") |
|
with open(md_output_file, "w") as f: |
|
f.write(full_text) |
|
st.success(f"Full OCR saved to {md_output_file}") |
|
st.markdown(get_download_link(md_output_file, "text/markdown", "Download Full OCR Markdown"), unsafe_allow_html=True) |
|
selected_file = st.selectbox("Select Image or PDF", ocr_files, key="ocr_select") |
|
if selected_file: |
|
if selected_file.endswith('.png'): |
|
image = Image.open(selected_file) |
|
else: |
|
try: |
|
doc = fitz.open(selected_file) |
|
pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) |
|
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) |
|
doc.close() |
|
except Exception as e: |
|
st.error(f"Cannot process {selected_file}: {str(e)}. Please select a PNG or PDF file.") |
|
image = None |
|
if image: |
|
st.image(image, caption="Input Image", use_container_width=True) |
|
if st.button("Run OCR 🚀", key="ocr_run"): |
|
output_file = generate_filename("ocr_output", "txt") |
|
result = asyncio.run(process_ocr(image, output_file)) |
|
st.text_area("OCR Result", result, height=200) |
|
st.session_state['history'].append(f"OCR Test: {selected_file} -> {output_file}") |
|
else: |
|
st.warning("No assets in gallery yet. Use Camera Snap or Download PDFs!") |
|
|
|
with tab_build: |
|
st.header("Build Titan 🌱") |
|
model_type = st.selectbox("Model Type", ["Causal LM", "Diffusion"], key="build_type") |
|
base_model = st.selectbox("Select Model", ["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"] if model_type == "Causal LM" else ["OFA-Sys/small-stable-diffusion-v0", "stabilityai/stable-diffusion-2-base"]) |
|
model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}") |
|
if st.button("Download Model ⬇️"): |
|
config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=model_name, base_model=base_model, size="small") |
|
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder() |
|
builder.load_model(base_model, config) |
|
builder.save_model(config.model_path) |
|
st.session_state['builder'] = builder |
|
st.session_state['model_loaded'] = True |
|
|
|
with tab_imggen: |
|
st.header("Test Image Gen 🎨") |
|
prompt = st.text_area("Prompt", "Generate a futuristic cityscape") |
|
if st.button("Run Image Gen 🚀"): |
|
output_file = generate_filename("gen_output", "png", prompt=prompt) |
|
result = asyncio.run(process_image_gen(prompt, output_file)) |
|
st.image(result, caption="Generated Image", use_container_width=True) |
|
st.session_state['history'].append(f"Image Gen Test: {prompt} -> {output_file}") |
|
|
|
with tab_pdf: |
|
st.header("PDF Process 📄") |
|
uploaded_pdfs = st.file_uploader("Upload PDFs", type=["pdf"], accept_multiple_files=True) |
|
view_mode = st.selectbox("View Mode", ["Single Page", "Two Pages"], key="pdf_view_mode") |
|
if st.button("Process PDFs"): |
|
for pdf_file in uploaded_pdfs: |
|
pdf_path = generate_filename(pdf_file.name, "pdf") |
|
with open(pdf_path, "wb") as f: |
|
f.write(pdf_file.read()) |
|
snapshots = asyncio.run(process_pdf_snapshot(pdf_path, "twopage" if view_mode == "Two Pages" else "single")) |
|
for snapshot in snapshots: |
|
st.image(Image.open(snapshot), caption=snapshot) |
|
text = process_image_with_prompt(Image.open(snapshot), "Extract the electronic text from image") |
|
st.text_area(f"Extracted Text from {snapshot}", text) |
|
code_prompt = f"Generate Python code based on this text:\n\n{text}" |
|
code = process_text_with_prompt(text, code_prompt) |
|
st.code(code, language="python") |
|
if st.button(f"Execute Code from {snapshot}"): |
|
output, error = execute_code(code) |
|
if error: |
|
st.error(f"Error: {error}") |
|
else: |
|
st.success(f"Output: {output or 'No output'}") |
|
|
|
with tab_image: |
|
st.header("Image Process 🖼️") |
|
uploaded_images = st.file_uploader("Upload Images", type=["png", "jpg"], accept_multiple_files=True) |
|
prompt = st.text_input("Prompt", "Extract the electronic text from image") |
|
if st.button("Process Images"): |
|
for img_file in uploaded_images: |
|
img = Image.open(img_file) |
|
st.image(img, caption=img_file.name) |
|
result = process_image_with_prompt(img, prompt) |
|
st.text_area(f"Result for {img_file.name}", result) |
|
|
|
with tab_audio: |
|
st.header("Audio Process 🎵") |
|
audio_bytes = audio_recorder() |
|
if audio_bytes: |
|
filename = generate_filename("recording", "wav") |
|
with open(filename, "wb") as f: |
|
f.write(audio_bytes) |
|
st.audio(filename) |
|
process_audio(filename) |
|
|
|
with tab_video: |
|
st.header("Video Process 🎥") |
|
video_input = st.file_uploader("Upload Video", type=["mp4"]) |
|
if video_input: |
|
video_path = generate_filename(video_input.name, "mp4") |
|
with open(video_path, "wb") as f: |
|
f.write(video_input.read()) |
|
st.video(video_path) |
|
result = process_video(video_path, "Summarize this video in markdown") |
|
st.markdown(result) |
|
|
|
with tab_code: |
|
st.header("Code Executor 🧑💻") |
|
uploaded_file = st.file_uploader("📤 Upload a Python (.py) or Markdown (.md) file", type=['py', 'md']) |
|
if 'code' not in st.session_state: |
|
st.session_state.code = '''import streamlit as st\nst.write("Hello, World!")''' |
|
if uploaded_file: |
|
content = uploaded_file.getvalue().decode() |
|
if uploaded_file.type == "text/markdown": |
|
code_blocks = extract_python_code(content) |
|
code_input = code_blocks[0] if code_blocks else "" |
|
else: |
|
code_input = content |
|
else: |
|
code_input = st.text_area("Python Code", value=st.session_state.code, height=400) |
|
col1, col2 = st.columns([1, 1]) |
|
with col1: |
|
if st.button("▶️ Run Code"): |
|
output, error = execute_code(code_input) |
|
if error: |
|
st.error(f"Error: {error}") |
|
else: |
|
st.success(f"Output: {output or 'No output'}") |
|
with col2: |
|
if st.button("🗑️ Clear Code"): |
|
st.session_state.code = "" |
|
st.rerun() |
|
|
|
with tab_gallery: |
|
st.header("Gallery 📚") |
|
all_files = get_gallery_files() |
|
for file in all_files: |
|
if file.endswith('.png'): |
|
st.image(Image.open(file), caption=file) |
|
elif file.endswith('.pdf'): |
|
doc = fitz.open(file) |
|
pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5)) |
|
st.image(Image.frombytes("RGB", [pix.width, pix.height], pix.samples), caption=file) |
|
doc.close() |
|
elif file.endswith('.md'): |
|
with open(file, "r") as f: |
|
st.markdown(f.read()) |
|
elif file.endswith('.wav'): |
|
st.audio(file) |
|
elif file.endswith('.mp4'): |
|
st.video(file) |
|
|
|
with tab_search: |
|
st.header("ArXiv Search 🔎") |
|
query = st.text_input("Search ArXiv", "") |
|
if query: |
|
result = search_arxiv(query) |
|
st.markdown(result) |
|
|
|
|
|
st.sidebar.subheader("Gallery Settings") |
|
st.session_state['gallery_size'] = st.sidebar.slider("Gallery Size", 1, 10, st.session_state['gallery_size'], key="gallery_size_slider") |
|
st.sidebar.subheader("Action Logs 📜") |
|
for record in log_records: |
|
st.sidebar.write(f"{record.asctime} - {record.levelname} - {record.message}") |
|
st.sidebar.subheader("History 📜") |
|
for entry in st.session_state.get("history", []): |
|
if entry: |
|
st.sidebar.write(entry) |
|
|
|
def update_gallery(): |
|
container = st.session_state['asset_gallery_container'] |
|
container.empty() |
|
all_files = get_gallery_files() |
|
if all_files: |
|
container.markdown("### Asset Gallery 📸📖") |
|
cols = container.columns(2) |
|
for idx, file in enumerate(all_files[:st.session_state['gallery_size']]): |
|
with cols[idx % 2]: |
|
if file.endswith('.png'): |
|
st.image(Image.open(file), caption=os.path.basename(file)) |
|
elif file.endswith('.pdf'): |
|
doc = fitz.open(file) |
|
pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5)) |
|
st.image(Image.frombytes("RGB", [pix.width, pix.height], pix.samples), caption=os.path.basename(file)) |
|
doc.close() |
|
st.checkbox("Select", key=f"asset_{file}", value=st.session_state['asset_checkboxes'].get(file, False)) |
|
st.markdown(get_download_link(file, "application/octet-stream", "Download"), unsafe_allow_html=True) |
|
if st.button("Delete", key=f"delete_{file}"): |
|
os.remove(file) |
|
st.session_state['asset_checkboxes'].pop(file, None) |
|
st.experimental_rerun() |
|
|
|
update_gallery() |
|
|
|
|
|
if prompt := st.chat_input("GPT-4o Multimodal ChatBot - What can I help you with?"): |
|
st.session_state.messages.append({"role": "user", "content": prompt}) |
|
with st.chat_message("user"): |
|
st.markdown(prompt) |
|
with st.chat_message("assistant"): |
|
completion = client.chat.completions.create(model=st.session_state["openai_model"], messages=st.session_state.messages, stream=True) |
|
response = "" |
|
for chunk in completion: |
|
if chunk.choices[0].delta.content: |
|
response += chunk.choices[0].delta.content |
|
st.write(response) |
|
st.session_state.messages.append({"role": "assistant", "content": response}) |