Update app.py
Browse files
app.py
CHANGED
@@ -18,6 +18,7 @@ import random
|
|
18 |
import logging
|
19 |
import numpy as np
|
20 |
import cv2
|
|
|
21 |
|
22 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
23 |
logger = logging.getLogger(__name__)
|
@@ -37,36 +38,23 @@ st.set_page_config(
|
|
37 |
menu_items={
|
38 |
'Get Help': 'https://huggingface.co/awacke1',
|
39 |
'Report a Bug': 'https://huggingface.co/spaces/awacke1',
|
40 |
-
'About': "Tiny Titans: Small models, big dreams
|
41 |
}
|
42 |
)
|
43 |
|
|
|
44 |
if 'captured_images' not in st.session_state:
|
45 |
st.session_state['captured_images'] = []
|
46 |
-
if 'nlp_builder' not in st.session_state:
|
47 |
-
st.session_state['nlp_builder'] = None
|
48 |
if 'cv_builder' not in st.session_state:
|
49 |
st.session_state['cv_builder'] = None
|
50 |
-
if 'nlp_loaded' not in st.session_state:
|
51 |
-
st.session_state['nlp_loaded'] = False
|
52 |
if 'cv_loaded' not in st.session_state:
|
53 |
st.session_state['cv_loaded'] = False
|
54 |
if 'active_tab' not in st.session_state:
|
55 |
st.session_state['active_tab'] = "Build Titan 🌱"
|
56 |
|
57 |
-
@dataclass
|
58 |
-
class ModelConfig:
|
59 |
-
name: str
|
60 |
-
base_model: str
|
61 |
-
size: str
|
62 |
-
domain: Optional[str] = None
|
63 |
-
model_type: str = "causal_lm"
|
64 |
-
@property
|
65 |
-
def model_path(self):
|
66 |
-
return f"models/{self.name}"
|
67 |
-
|
68 |
@dataclass
|
69 |
class DiffusionConfig:
|
|
|
70 |
name: str
|
71 |
base_model: str
|
72 |
size: str
|
@@ -74,28 +62,9 @@ class DiffusionConfig:
|
|
74 |
def model_path(self):
|
75 |
return f"diffusion_models/{self.name}"
|
76 |
|
77 |
-
|
78 |
-
def __init__(self, data, tokenizer, max_length=128):
|
79 |
-
self.data = data
|
80 |
-
self.tokenizer = tokenizer
|
81 |
-
self.max_length = max_length
|
82 |
-
def __len__(self):
|
83 |
-
return len(self.data)
|
84 |
-
def __getitem__(self, idx):
|
85 |
-
prompt = self.data[idx]["prompt"]
|
86 |
-
response = self.data[idx]["response"]
|
87 |
-
full_text = f"{prompt} {response}"
|
88 |
-
full_encoding = self.tokenizer(full_text, max_length=self.max_length, padding="max_length", truncation=True, return_tensors="pt")
|
89 |
-
prompt_encoding = self.tokenizer(prompt, max_length=self.max_length, padding=False, truncation=True, return_tensors="pt")
|
90 |
-
input_ids = full_encoding["input_ids"].squeeze()
|
91 |
-
attention_mask = full_encoding["attention_mask"].squeeze()
|
92 |
-
labels = input_ids.clone()
|
93 |
-
prompt_len = prompt_encoding["input_ids"].shape[1]
|
94 |
-
if prompt_len < self.max_length:
|
95 |
-
labels[:prompt_len] = -100
|
96 |
-
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels}
|
97 |
-
|
98 |
class DiffusionDataset(Dataset):
|
|
|
99 |
def __init__(self, images, texts):
|
100 |
self.images = images
|
101 |
self.texts = texts
|
@@ -104,126 +73,167 @@ class DiffusionDataset(Dataset):
|
|
104 |
def __getitem__(self, idx):
|
105 |
return {"image": self.images[idx], "text": self.texts[idx]}
|
106 |
|
107 |
-
class
|
|
|
108 |
def __init__(self):
|
109 |
self.config = None
|
110 |
-
self.
|
111 |
-
self.
|
112 |
-
|
113 |
-
self.jokes = ["Why did the AI go to therapy? Too many layers to unpack! 😂", "Training complete! Time for a binary coffee break. ☕"]
|
114 |
-
def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
|
115 |
try:
|
116 |
-
with st.spinner(f"Loading {model_path}... ⏳ (
|
117 |
-
|
118 |
-
self.
|
119 |
-
if
|
120 |
-
self.tokenizer.pad_token = self.tokenizer.eos_token
|
121 |
if config:
|
122 |
self.config = config
|
123 |
-
self.model.to("cuda" if torch.cuda.is_available() else "cpu")
|
124 |
st.success(f"Model loaded! 🎉 {random.choice(self.jokes)}")
|
125 |
-
logger.info(f"
|
126 |
-
except torch.cuda.OutOfMemoryError as e:
|
127 |
-
st.error(f"GPU memory error loading {model_path}: {str(e)} 💥 (Out of GPU juice!)")
|
128 |
-
logger.error(f"GPU memory error loading {model_path}: {str(e)}")
|
129 |
-
raise
|
130 |
-
except MemoryError as e:
|
131 |
-
st.error(f"CPU memory error loading {model_path}: {str(e)} 💥 (RAM ran away!)")
|
132 |
-
logger.error(f"CPU memory error loading {model_path}: {str(e)}")
|
133 |
-
raise
|
134 |
except Exception as e:
|
135 |
-
st.error(f"Failed to load {model_path}: {str(e)} 💥 (
|
136 |
logger.error(f"Failed to load {model_path}: {str(e)}")
|
137 |
raise
|
138 |
return self
|
139 |
-
def fine_tune_sft(self,
|
140 |
try:
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
self.sft_data.append({"prompt": row["prompt"], "response": row["response"]})
|
146 |
-
dataset = SFTDataset(self.sft_data, self.tokenizer)
|
147 |
-
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
|
148 |
-
optimizer = torch.optim.AdamW(self.model.parameters(), lr=2e-5)
|
149 |
-
self.model.train()
|
150 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
151 |
-
self.model.to(device)
|
152 |
for epoch in range(epochs):
|
153 |
-
with st.spinner(f"
|
154 |
total_loss = 0
|
155 |
for batch in dataloader:
|
156 |
optimizer.zero_grad()
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
|
|
|
|
|
|
|
|
162 |
loss.backward()
|
163 |
optimizer.step()
|
164 |
total_loss += loss.item()
|
165 |
-
st.write(f"Epoch {epoch + 1}
|
166 |
-
st.success(f"
|
167 |
-
logger.info(f"
|
168 |
except Exception as e:
|
169 |
-
st.error(f"
|
170 |
-
logger.error(f"
|
171 |
raise
|
172 |
return self
|
173 |
def save_model(self, path: str):
|
174 |
try:
|
175 |
-
with st.spinner("Saving model... 💾 (Packing
|
176 |
os.makedirs(os.path.dirname(path), exist_ok=True)
|
177 |
-
self.
|
178 |
-
|
179 |
-
|
180 |
-
logger.info(f"Model saved at {path}")
|
181 |
except Exception as e:
|
182 |
-
st.error(f"
|
183 |
-
logger.error(f"
|
184 |
raise
|
185 |
-
def
|
186 |
-
self.model.eval()
|
187 |
-
if status_container:
|
188 |
-
status_container.write("Preparing to evaluate... 🧠 (Titan’s warming up its circuits!)")
|
189 |
-
logger.info(f"Evaluating prompt: {prompt}")
|
190 |
try:
|
191 |
-
|
192 |
-
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device)
|
193 |
-
outputs = self.model.generate(**inputs, max_new_tokens=50, do_sample=True, top_p=0.95, temperature=0.7)
|
194 |
-
result = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
195 |
-
logger.info(f"Generated response: {result}")
|
196 |
-
return result
|
197 |
except Exception as e:
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
return f"Error: {str(e)}"
|
202 |
|
203 |
-
class
|
|
|
204 |
def __init__(self):
|
205 |
self.config = None
|
206 |
self.pipeline = None
|
|
|
207 |
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None):
|
208 |
-
from diffusers import StableDiffusionPipeline
|
209 |
try:
|
210 |
-
with st.spinner(f"Loading
|
211 |
-
self.pipeline =
|
|
|
212 |
self.pipeline.to("cuda" if torch.cuda.is_available() else "cpu")
|
213 |
if config:
|
214 |
self.config = config
|
215 |
-
st.success(f"
|
216 |
-
logger.info(f"
|
217 |
-
except
|
218 |
-
st.error(f"
|
219 |
-
logger.error(f"
|
220 |
raise
|
221 |
-
|
222 |
-
|
223 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
except Exception as e:
|
226 |
-
st.error(f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
logger.error(f"Failed to load {model_path}: {str(e)}")
|
228 |
raise
|
229 |
return self
|
@@ -235,7 +245,7 @@ class DiffusionBuilder:
|
|
235 |
self.pipeline.unet.train()
|
236 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
237 |
for epoch in range(epochs):
|
238 |
-
with st.spinner(f"
|
239 |
total_loss = 0
|
240 |
for batch in dataloader:
|
241 |
optimizer.zero_grad()
|
@@ -251,34 +261,35 @@ class DiffusionBuilder:
|
|
251 |
loss.backward()
|
252 |
optimizer.step()
|
253 |
total_loss += loss.item()
|
254 |
-
st.write(f"Epoch {epoch + 1}
|
255 |
-
st.success("Diffusion
|
256 |
-
logger.info(f"
|
257 |
except Exception as e:
|
258 |
-
st.error(f"
|
259 |
-
logger.error(f"
|
260 |
raise
|
261 |
return self
|
262 |
def save_model(self, path: str):
|
263 |
try:
|
264 |
-
with st.spinner("Saving
|
265 |
os.makedirs(os.path.dirname(path), exist_ok=True)
|
266 |
self.pipeline.save_pretrained(path)
|
267 |
-
st.success(f"
|
268 |
-
logger.info(f"
|
269 |
except Exception as e:
|
270 |
-
st.error(f"
|
271 |
-
logger.error(f"
|
272 |
raise
|
273 |
def generate(self, prompt: str):
|
274 |
try:
|
275 |
return self.pipeline(prompt, num_inference_steps=50).images[0]
|
276 |
except Exception as e:
|
277 |
-
st.error(f"
|
278 |
-
logger.error(f"
|
279 |
raise
|
280 |
|
281 |
def generate_filename(sequence, ext="png"):
|
|
|
282 |
from datetime import datetime
|
283 |
import pytz
|
284 |
central = pytz.timezone('US/Central')
|
@@ -286,26 +297,29 @@ def generate_filename(sequence, ext="png"):
|
|
286 |
return f"{dt.strftime('%m-%d-%Y-%I-%M-%S-%p')}-{sequence}.{ext}"
|
287 |
|
288 |
def get_download_link(file_path, mime_type="text/plain", label="Download"):
|
|
|
289 |
try:
|
290 |
with open(file_path, 'rb') as f:
|
291 |
data = f.read()
|
292 |
b64 = base64.b64encode(data).decode()
|
293 |
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label} 📥</a>'
|
294 |
except Exception as e:
|
295 |
-
logger.error(f"Failed to generate
|
296 |
return f"Error: Could not generate link for {file_path}"
|
297 |
|
298 |
def zip_files(files, zip_path):
|
|
|
299 |
try:
|
300 |
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
301 |
for file in files:
|
302 |
zipf.write(file, os.path.basename(file))
|
303 |
logger.info(f"Created ZIP file: {zip_path}")
|
304 |
except Exception as e:
|
305 |
-
logger.error(f"Failed to create ZIP
|
306 |
raise
|
307 |
|
308 |
def delete_files(files):
|
|
|
309 |
try:
|
310 |
for file in files:
|
311 |
os.remove(file)
|
@@ -315,14 +329,16 @@ def delete_files(files):
|
|
315 |
logger.error(f"Failed to delete files: {str(e)}")
|
316 |
raise
|
317 |
|
318 |
-
def get_model_files(
|
319 |
-
|
320 |
-
return [d for d in glob.glob(
|
321 |
|
322 |
def get_gallery_files(file_types):
|
|
|
323 |
return sorted(list(set(f for ext in file_types for f in glob.glob(f"*.{ext}"))))
|
324 |
|
325 |
def update_gallery():
|
|
|
326 |
media_files = get_gallery_files(["png"])
|
327 |
if media_files:
|
328 |
cols = st.sidebar.columns(2)
|
@@ -332,8 +348,8 @@ def update_gallery():
|
|
332 |
st.markdown(get_download_link(file, "image/png", "Download Snap 📸"), unsafe_allow_html=True)
|
333 |
|
334 |
def get_available_video_devices():
|
335 |
-
|
336 |
-
video_devices = [f"Camera {i} 🎥" for i in range(6)]
|
337 |
try:
|
338 |
detected = []
|
339 |
for i in range(10):
|
@@ -345,74 +361,15 @@ def get_available_video_devices():
|
|
345 |
logger.info(f"Detected camera at index {i}")
|
346 |
cap.release()
|
347 |
if detected:
|
348 |
-
video_devices = detected[:6] #
|
349 |
except Exception as e:
|
350 |
logger.error(f"Error detecting cameras: {str(e)}")
|
351 |
return video_devices
|
352 |
|
353 |
-
|
354 |
-
if "superhero" in query.lower():
|
355 |
-
return "Latest trends: Gold-plated Batman statues, VR superhero battles."
|
356 |
-
return "No relevant results found."
|
357 |
-
|
358 |
-
class PartyPlannerAgent:
|
359 |
-
def __init__(self, model, tokenizer):
|
360 |
-
self.model = model
|
361 |
-
self.tokenizer = tokenizer
|
362 |
-
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
363 |
-
self.model.to(self.device)
|
364 |
-
def generate(self, prompt: str) -> str:
|
365 |
-
self.model.eval()
|
366 |
-
with torch.no_grad():
|
367 |
-
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.device)
|
368 |
-
outputs = self.model.generate(**inputs, max_new_tokens=100, do_sample=True, top_p=0.95, temperature=0.7)
|
369 |
-
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
370 |
-
def plan_party(self, task: str) -> pd.DataFrame:
|
371 |
-
search_result = mock_search("superhero party trends")
|
372 |
-
prompt = f"Given this context: '{search_result}'\n{task}"
|
373 |
-
plan_text = self.generate(prompt)
|
374 |
-
locations = {"Wayne Manor": (42.3601, -71.0589), "New York": (40.7128, -74.0060)}
|
375 |
-
wayne_coords = locations["Wayne Manor"]
|
376 |
-
travel_times = {loc: calculate_cargo_travel_time(coords, wayne_coords) for loc, coords in locations.items() if loc != "Wayne Manor"}
|
377 |
-
data = [
|
378 |
-
{"Location": "New York", "Travel Time (hrs)": travel_times["New York"], "Luxury Idea": "Gold-plated Batman statues"},
|
379 |
-
{"Location": "Wayne Manor", "Travel Time (hrs)": 0.0, "Luxury Idea": "VR superhero battles"}
|
380 |
-
]
|
381 |
-
return pd.DataFrame(data)
|
382 |
-
|
383 |
-
class CVPartyPlannerAgent:
|
384 |
-
def __init__(self, pipeline):
|
385 |
-
self.pipeline = pipeline
|
386 |
-
def generate(self, prompt: str) -> Image.Image:
|
387 |
-
return self.pipeline(prompt, num_inference_steps=50).images[0]
|
388 |
-
def plan_party(self, task: str) -> pd.DataFrame:
|
389 |
-
search_result = mock_search("superhero party trends")
|
390 |
-
prompt = f"Given this context: '{search_result}'\n{task}"
|
391 |
-
data = [
|
392 |
-
{"Theme": "Batman", "Image Idea": "Gold-plated Batman statue"},
|
393 |
-
{"Theme": "Avengers", "Image Idea": "VR superhero battle scene"}
|
394 |
-
]
|
395 |
-
return pd.DataFrame(data)
|
396 |
-
|
397 |
-
def calculate_cargo_travel_time(origin_coords: Tuple[float, float], destination_coords: Tuple[float, float], cruising_speed_kmh: float = 750.0) -> float:
|
398 |
-
def to_radians(degrees: float) -> float:
|
399 |
-
return degrees * (math.pi / 180)
|
400 |
-
lat1, lon1 = map(to_radians, origin_coords)
|
401 |
-
lat2, lon2 = map(to_radians, destination_coords)
|
402 |
-
EARTH_RADIUS_KM = 6371.0
|
403 |
-
dlon = lon2 - lon1
|
404 |
-
dlat = lat2 - lat1
|
405 |
-
a = (math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2) ** 2)
|
406 |
-
c = 2 * math.asin(math.sqrt(a))
|
407 |
-
distance = EARTH_RADIUS_KM * c
|
408 |
-
actual_distance = distance * 1.1
|
409 |
-
flight_time = (actual_distance / cruising_speed_kmh) + 1.0
|
410 |
-
return round(flight_time, 2)
|
411 |
-
|
412 |
-
st.title("SFT Tiny Titans 🚀 (Small but Mighty!)")
|
413 |
|
414 |
st.sidebar.header("Media Gallery 🎨")
|
415 |
-
gallery_size = st.sidebar.slider("Gallery Size 📸", 1, 10, 4, help="
|
416 |
update_gallery()
|
417 |
|
418 |
col1, col2 = st.sidebar.columns(2)
|
@@ -423,7 +380,7 @@ with col1:
|
|
423 |
zip_path = f"snapshot_collection_{int(time.time())}.zip"
|
424 |
zip_files(media_files, zip_path)
|
425 |
st.sidebar.markdown(get_download_link(zip_path, "application/zip", "Download All Snaps 📦"), unsafe_allow_html=True)
|
426 |
-
st.sidebar.success("
|
427 |
else:
|
428 |
st.sidebar.warning("No snaps to zip! 📸 Snap some first!")
|
429 |
with col2:
|
@@ -444,20 +401,6 @@ if uploaded_files:
|
|
444 |
f.write(uploaded_file.getvalue())
|
445 |
logger.info(f"Uploaded file: {filename}")
|
446 |
|
447 |
-
st.sidebar.subheader("Audio Gallery 🎵")
|
448 |
-
audio_files = get_gallery_files(["mp3"])
|
449 |
-
if audio_files:
|
450 |
-
for file in audio_files[:gallery_size]:
|
451 |
-
st.sidebar.audio(file, format="audio/mp3")
|
452 |
-
st.sidebar.markdown(get_download_link(file, "audio/mp3", f"Grab Tune 🎵"), unsafe_allow_html=True)
|
453 |
-
|
454 |
-
st.sidebar.subheader("Video Gallery 🎥")
|
455 |
-
video_files = get_gallery_files(["mp4"])
|
456 |
-
if video_files:
|
457 |
-
for file in video_files[:gallery_size]:
|
458 |
-
st.sidebar.video(file, format="video/mp4")
|
459 |
-
st.sidebar.markdown(get_download_link(file, "video/mp4", f"Snag Clip 🎬"), unsafe_allow_html=True)
|
460 |
-
|
461 |
st.sidebar.subheader("Image Gallery 🖼️")
|
462 |
image_files = get_gallery_files(["png", "jpeg"])
|
463 |
if image_files:
|
@@ -467,50 +410,30 @@ if image_files:
|
|
467 |
st.image(Image.open(file), caption=file, use_container_width=True)
|
468 |
st.markdown(get_download_link(file, "image/png" if file.endswith(".png") else "image/jpeg", f"Save Pic 🖼️"), unsafe_allow_html=True)
|
469 |
|
470 |
-
st.sidebar.subheader("Markdown Gallery 📝")
|
471 |
-
md_files = get_gallery_files(["md"])
|
472 |
-
if md_files:
|
473 |
-
for file in md_files[:gallery_size]:
|
474 |
-
with open(file, "r") as f:
|
475 |
-
st.sidebar.markdown(f.read())
|
476 |
-
st.sidebar.markdown(get_download_link(file, "text/markdown", f"Get Note 📝"), unsafe_allow_html=True)
|
477 |
-
|
478 |
-
st.sidebar.subheader("Document Gallery 📜")
|
479 |
-
doc_files = get_gallery_files(["pdf", "docx"])
|
480 |
-
if doc_files:
|
481 |
-
for file in doc_files[:gallery_size]:
|
482 |
-
mime_type = "application/pdf" if file.endswith(".pdf") else "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
|
483 |
-
st.sidebar.markdown(get_download_link(file, mime_type, f"Fetch Doc 📜"), unsafe_allow_html=True)
|
484 |
-
|
485 |
st.sidebar.subheader("Model Management 🗂️")
|
486 |
-
|
487 |
-
model_dirs = get_model_files("causal_lm" if model_type == "Causal LM" else "diffusion")
|
488 |
selected_model = st.sidebar.selectbox("Select Saved Model", ["None"] + model_dirs)
|
|
|
489 |
if selected_model != "None" and st.sidebar.button("Load Model 📂"):
|
490 |
-
builder =
|
491 |
-
|
|
|
|
|
|
|
|
|
492 |
try:
|
493 |
builder.load_model(selected_model, config)
|
494 |
-
|
495 |
-
|
496 |
-
st.session_state['nlp_loaded'] = True
|
497 |
-
else:
|
498 |
-
st.session_state['cv_builder'] = builder
|
499 |
-
st.session_state['cv_loaded'] = True
|
500 |
st.rerun()
|
501 |
except Exception as e:
|
502 |
st.error(f"Model load failed: {str(e)} 💥 (Check logs for details!)")
|
503 |
|
504 |
st.sidebar.subheader("Model Status 🚦")
|
505 |
-
st.sidebar.write(f"**
|
506 |
-
st.sidebar.write(f"**CV Model**: {'Loaded' if st.session_state['cv_loaded'] else 'Not Loaded'} {'(Active)' if st.session_state['cv_loaded'] and isinstance(st.session_state.get('cv_builder'), DiffusionBuilder) else ''}")
|
507 |
|
508 |
-
tabs = [
|
509 |
-
|
510 |
-
"Fine-Tune Titan (NLP) 🔧", "Test Titan (NLP) 🧪", "Agentic RAG Party (NLP) 🌐",
|
511 |
-
"Fine-Tune Titan (CV) 🔧", "Test Titan (CV) 🧪", "Agentic RAG Party (CV) 🌐"
|
512 |
-
]
|
513 |
-
tab1, tab2, tab3, tab4, tab5, tab6, tab7, tab8 = st.tabs(tabs)
|
514 |
|
515 |
for i, tab in enumerate(tabs):
|
516 |
if st.session_state['active_tab'] != tab and st.session_state.get(f'tab{i}_active', False):
|
@@ -520,24 +443,22 @@ for i, tab in enumerate(tabs):
|
|
520 |
|
521 |
with tab1:
|
522 |
st.header("Build Titan 🌱")
|
523 |
-
model_type = st.selectbox("
|
524 |
base_model = st.selectbox("Select Tiny Model",
|
525 |
-
["
|
526 |
-
["stabilityai/stable-diffusion-2-base", "runwayml/stable-diffusion-v1-5"])
|
527 |
model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}")
|
528 |
-
domain = st.text_input("Target Domain", "general", help="Where will your Titan flex its muscles? 💪") if model_type == "Causal LM" else None
|
529 |
if st.button("Download Model ⬇️"):
|
530 |
-
config =
|
531 |
-
builder =
|
|
|
|
|
|
|
|
|
532 |
try:
|
533 |
builder.load_model(base_model, config)
|
534 |
builder.save_model(config.model_path)
|
535 |
-
|
536 |
-
|
537 |
-
st.session_state['nlp_loaded'] = True
|
538 |
-
else:
|
539 |
-
st.session_state['cv_builder'] = builder
|
540 |
-
st.session_state['cv_loaded'] = True
|
541 |
st.rerun()
|
542 |
except Exception as e:
|
543 |
st.error(f"Model build failed: {str(e)} 💥 (Check logs for details!)")
|
@@ -612,177 +533,131 @@ with tab2:
|
|
612 |
st.info("🚨 Single shots only—craft your masterpiece! 🎨")
|
613 |
|
614 |
with tab3:
|
615 |
-
st.header("Fine-Tune Titan (
|
616 |
-
if not st.session_state['
|
617 |
-
st.warning("Please build or load an NLP Titan first! ⚠️ (No word wizard, no magic!)")
|
618 |
-
else:
|
619 |
-
if st.button("Generate Sample CSV 📝"):
|
620 |
-
sample_data = [
|
621 |
-
{"prompt": "What is AI?", "response": "AI is artificial intelligence, simulating human smarts in machines."},
|
622 |
-
{"prompt": "Explain machine learning", "response": "Machine learning is AI’s gym where models bulk up on data."},
|
623 |
-
{"prompt": "What is a neural network?", "response": "A neural network is a brainy AI mimicking human noggins."},
|
624 |
-
]
|
625 |
-
csv_path = f"sft_data_{int(time.time())}.csv"
|
626 |
-
with open(csv_path, "w", newline="") as f:
|
627 |
-
writer = csv.DictWriter(f, fieldnames=["prompt", "response"])
|
628 |
-
writer.writeheader()
|
629 |
-
writer.writerows(sample_data)
|
630 |
-
st.markdown(get_download_link(csv_path, "text/csv", "Download Sample CSV 📜"), unsafe_allow_html=True)
|
631 |
-
st.success(f"Sample CSV generated as {csv_path}! ✅ (Fresh from the data oven!)")
|
632 |
-
uploaded_csv = st.file_uploader("Upload CSV for SFT 📜", type="csv", help="Feed your Titan some tasty prompt-response pairs! 🍽️")
|
633 |
-
if uploaded_csv and st.button("Fine-Tune with Uploaded CSV 🔄"):
|
634 |
-
csv_path = f"uploaded_sft_data_{int(time.time())}.csv"
|
635 |
-
with open(csv_path, "wb") as f:
|
636 |
-
f.write(uploaded_csv.read())
|
637 |
-
new_model_name = f"{st.session_state['nlp_builder'].config.name}-sft-{int(time.time())}"
|
638 |
-
new_config = ModelConfig(name=new_model_name, base_model=st.session_state['nlp_builder'].config.base_model, size="small", domain=st.session_state['nlp_builder'].config.domain)
|
639 |
-
st.session_state['nlp_builder'].config = new_config
|
640 |
-
with st.status("Fine-tuning NLP Titan... ⏳ (Whipping words into shape!)", expanded=True) as status:
|
641 |
-
st.session_state['nlp_builder'].fine_tune_sft(csv_path)
|
642 |
-
st.session_state['nlp_builder'].save_model(new_config.model_path)
|
643 |
-
status.update(label="Fine-tuning completed! 🎉 (Wordsmith Titan unleashed!)", state="complete")
|
644 |
-
zip_path = f"{new_config.model_path}.zip"
|
645 |
-
zip_files([new_config.model_path], zip_path)
|
646 |
-
st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned NLP Titan 📦"), unsafe_allow_html=True)
|
647 |
-
|
648 |
-
with tab4:
|
649 |
-
st.header("Test Titan (NLP) 🧪 (Put Your Word Wizard to the Test!)")
|
650 |
-
if not st.session_state['nlp_loaded'] or not isinstance(st.session_state['nlp_builder'], ModelBuilder):
|
651 |
-
st.warning("Please build or load an NLP Titan first! ⚠️ (No word wizard, no test drive!)")
|
652 |
-
else:
|
653 |
-
if st.session_state['nlp_builder'].sft_data:
|
654 |
-
st.write("Testing with SFT Data:")
|
655 |
-
with st.spinner("Running SFT data tests... ⏳ (Titan’s flexing its word muscles!)"):
|
656 |
-
for item in st.session_state['nlp_builder'].sft_data[:3]:
|
657 |
-
prompt = item["prompt"]
|
658 |
-
expected = item["response"]
|
659 |
-
status_container = st.empty()
|
660 |
-
generated = st.session_state['nlp_builder'].evaluate(prompt, status_container)
|
661 |
-
st.write(f"**Prompt**: {prompt}")
|
662 |
-
st.write(f"**Expected**: {expected}")
|
663 |
-
st.write(f"**Generated**: {generated} (Titan says: '{random.choice(['Bleep bloop!', 'I am groot!', '42!'])}')")
|
664 |
-
st.write("---")
|
665 |
-
status_container.empty()
|
666 |
-
test_prompt = st.text_area("Enter Test Prompt 🗣️", "What is AI?", help="Ask your Titan anything—it’s ready to chat! 😜")
|
667 |
-
if st.button("Run Test ▶️"):
|
668 |
-
with st.spinner("Testing your prompt... ⏳ (Titan’s pondering deeply!)"):
|
669 |
-
status_container = st.empty()
|
670 |
-
result = st.session_state['nlp_builder'].evaluate(test_prompt, status_container)
|
671 |
-
st.write(f"**Generated Response**: {result} (Titan’s wisdom unleashed!)")
|
672 |
-
status_container.empty()
|
673 |
-
|
674 |
-
with tab5:
|
675 |
-
st.header("Agentic RAG Party (NLP) 🌐 (Party Like It’s 2099!)")
|
676 |
-
st.write("This demo uses your SFT-tuned NLP Titan to plan a superhero party with mock retrieval!")
|
677 |
-
if not st.session_state['nlp_loaded'] or not isinstance(st.session_state['nlp_builder'], ModelBuilder):
|
678 |
-
st.warning("Please build or load an NLP Titan first! ⚠️ (No word wizard, no party!)")
|
679 |
-
else:
|
680 |
-
if st.button("Run NLP RAG Demo 🎉"):
|
681 |
-
with st.spinner("Loading your SFT-tuned NLP Titan... ⏳ (Titan’s suiting up!)"):
|
682 |
-
agent = PartyPlannerAgent(st.session_state['nlp_builder'].model, st.session_state['nlp_builder'].tokenizer)
|
683 |
-
st.write("Agent ready! 🦸���♂️ (Time to plan an epic bash!)")
|
684 |
-
task = """
|
685 |
-
Plan a luxury superhero-themed party at Wayne Manor (42.3601° N, 71.0589° W).
|
686 |
-
Use mock search results for the latest superhero party trends, refine for luxury elements
|
687 |
-
(decorations, entertainment, catering), and calculate cargo travel times from key locations
|
688 |
-
(New York: 40.7128° N, 74.0060° W; LA: 34.0522° N, 118.2437° W; London: 51.5074° N, 0.1278° W)
|
689 |
-
to Wayne Manor. Create a plan with at least 6 entries in a pandas dataframe.
|
690 |
-
"""
|
691 |
-
with st.spinner("Planning the ultimate superhero bash... ⏳ (Calling all caped crusaders!)"):
|
692 |
-
try:
|
693 |
-
locations = {
|
694 |
-
"Wayne Manor": (42.3601, -71.0589),
|
695 |
-
"New York": (40.7128, -74.0060),
|
696 |
-
"Los Angeles": (34.0522, -118.2437),
|
697 |
-
"London": (51.5074, -0.1278)
|
698 |
-
}
|
699 |
-
wayne_coords = locations["Wayne Manor"]
|
700 |
-
travel_times = {loc: calculate_cargo_travel_time(coords, wayne_coords) for loc, coords in locations.items() if loc != "Wayne Manor"}
|
701 |
-
search_result = mock_search("superhero party trends")
|
702 |
-
prompt = f"""
|
703 |
-
Given this context from a search: "{search_result}"
|
704 |
-
Plan a luxury superhero-themed party at Wayne Manor. Suggest luxury decorations, entertainment, and catering ideas.
|
705 |
-
"""
|
706 |
-
plan_text = agent.generate(prompt)
|
707 |
-
catchphrases = ["To the Batmobile!", "Avengers, assemble!", "I am Iron Man!", "By the power of Grayskull!"]
|
708 |
-
data = [
|
709 |
-
{"Location": "New York", "Travel Time (hrs)": travel_times["New York"], "Luxury Idea": "Gold-plated Batman statues", "Catchphrase": random.choice(catchphrases)},
|
710 |
-
{"Location": "Los Angeles", "Travel Time (hrs)": travel_times["Los Angeles"], "Luxury Idea": "Holographic Avengers displays", "Catchphrase": random.choice(catchphrases)},
|
711 |
-
{"Location": "London", "Travel Time (hrs)": travel_times["London"], "Luxury Idea": "Live stunt shows with Iron Man suits", "Catchphrase": random.choice(catchphrases)},
|
712 |
-
{"Location": "Wayne Manor", "Travel Time (hrs)": 0.0, "Luxury Idea": "VR superhero battles", "Catchphrase": random.choice(catchphrases)},
|
713 |
-
{"Location": "New York", "Travel Time (hrs)": travel_times["New York"], "Luxury Idea": "Gourmet kryptonite-green cocktails", "Catchphrase": random.choice(catchphrases)},
|
714 |
-
{"Location": "Los Angeles", "Travel Time (hrs)": travel_times["Los Angeles"], "Luxury Idea": "Thor’s hammer-shaped appetizers", "Catchphrase": random.choice(catchphrases)},
|
715 |
-
]
|
716 |
-
plan_df = pd.DataFrame(data)
|
717 |
-
st.write("Agentic RAG Party Plan:")
|
718 |
-
st.dataframe(plan_df)
|
719 |
-
st.write("Party on, Wayne! 🦸♂️🎉")
|
720 |
-
except Exception as e:
|
721 |
-
st.error(f"Error planning party: {str(e)} (Even Superman has kryptonite days!)")
|
722 |
-
logger.error(f"Error in NLP RAG demo: {str(e)}")
|
723 |
-
|
724 |
-
with tab6:
|
725 |
-
st.header("Fine-Tune Titan (CV) 🔧 (Paint Your Titan’s Masterpiece!)")
|
726 |
-
if not st.session_state['cv_loaded'] or not isinstance(st.session_state['cv_builder'], DiffusionBuilder):
|
727 |
st.warning("Please build or load a CV Titan first! ⚠️ (No artist, no canvas!)")
|
728 |
else:
|
729 |
captured_images = get_gallery_files(["png"])
|
730 |
if len(captured_images) >= 2:
|
731 |
-
|
732 |
-
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
|
|
|
|
|
737 |
new_config = DiffusionConfig(name=new_model_name, base_model=st.session_state['cv_builder'].config.base_model, size="small")
|
738 |
st.session_state['cv_builder'].config = new_config
|
739 |
-
with st.status("Fine-tuning
|
740 |
st.session_state['cv_builder'].fine_tune_sft(images, texts)
|
741 |
st.session_state['cv_builder'].save_model(new_config.model_path)
|
742 |
-
status.update(label="
|
743 |
zip_path = f"{new_config.model_path}.zip"
|
744 |
zip_files([new_config.model_path], zip_path)
|
745 |
-
st.markdown(get_download_link(zip_path, "application/zip", "Download
|
746 |
-
|
747 |
-
with open(
|
748 |
writer = csv.writer(f)
|
749 |
writer.writerow(["image", "text"])
|
750 |
-
for _, row in
|
751 |
writer.writerow([row["image"], row["text"]])
|
752 |
-
st.markdown(get_download_link(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
753 |
|
754 |
-
with
|
755 |
st.header("Test Titan (CV) 🧪 (Unleash Your Pixel Power!)")
|
756 |
-
if not st.session_state['cv_loaded'] or not isinstance(st.session_state['cv_builder'],
|
757 |
st.warning("Please build or load a CV Titan first! ⚠️ (No artist, no masterpiece!)")
|
758 |
else:
|
759 |
-
|
760 |
-
|
761 |
-
|
|
|
762 |
image = st.session_state['cv_builder'].generate(test_prompt)
|
763 |
-
st.image(image, caption="Generated
|
764 |
|
765 |
-
with
|
766 |
-
st.header("Agentic RAG Party (CV) 🌐 (Party
|
767 |
-
st.write("
|
768 |
-
if not st.session_state['cv_loaded'] or not isinstance(st.session_state['cv_builder'],
|
769 |
st.warning("Please build or load a CV Titan first! ⚠️ (No artist, no party!)")
|
770 |
else:
|
771 |
-
if st.button("Run
|
772 |
-
with st.spinner("Loading your
|
773 |
-
|
774 |
-
|
775 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
776 |
with st.spinner("Crafting superhero party visuals... ⏳ (Pixels assemble!)"):
|
777 |
try:
|
778 |
-
plan_df = agent.plan_party(
|
779 |
st.dataframe(plan_df)
|
780 |
for _, row in plan_df.iterrows():
|
781 |
image = agent.generate(row["Image Idea"])
|
782 |
st.image(image, caption=f"{row['Theme']} - {row['Image Idea']}", use_container_width=True)
|
783 |
except Exception as e:
|
784 |
-
st.error(f"
|
785 |
-
logger.error(f"
|
786 |
|
787 |
st.sidebar.subheader("Action Logs 📜")
|
788 |
log_container = st.sidebar.empty()
|
|
|
18 |
import logging
|
19 |
import numpy as np
|
20 |
import cv2
|
21 |
+
from diffusers import DiffusionPipeline # For FLUX.1 and LDM
|
22 |
|
23 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
24 |
logger = logging.getLogger(__name__)
|
|
|
38 |
menu_items={
|
39 |
'Get Help': 'https://huggingface.co/awacke1',
|
40 |
'Report a Bug': 'https://huggingface.co/spaces/awacke1',
|
41 |
+
'About': "Tiny Titans: Small diffusion models, big CV dreams! 🌌"
|
42 |
}
|
43 |
)
|
44 |
|
45 |
+
# Session State Setup 🌍 - Persistent playground for our tiny titans!
|
46 |
if 'captured_images' not in st.session_state:
|
47 |
st.session_state['captured_images'] = []
|
|
|
|
|
48 |
if 'cv_builder' not in st.session_state:
|
49 |
st.session_state['cv_builder'] = None
|
|
|
|
|
50 |
if 'cv_loaded' not in st.session_state:
|
51 |
st.session_state['cv_loaded'] = False
|
52 |
if 'active_tab' not in st.session_state:
|
53 |
st.session_state['active_tab'] = "Build Titan 🌱"
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
@dataclass
|
56 |
class DiffusionConfig:
|
57 |
+
"""Config for our diffusion heroes 🦸♂️ - Keeps the blueprint snappy!"""
|
58 |
name: str
|
59 |
base_model: str
|
60 |
size: str
|
|
|
62 |
def model_path(self):
|
63 |
return f"diffusion_models/{self.name}"
|
64 |
|
65 |
+
# Datasets 🎲 - Feeding our titans with pixel snacks and text treats!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
class DiffusionDataset(Dataset):
|
67 |
+
"""Pixel party platter 🍕 - Images and text for diffusion delight!"""
|
68 |
def __init__(self, images, texts):
|
69 |
self.images = images
|
70 |
self.texts = texts
|
|
|
73 |
def __getitem__(self, idx):
|
74 |
return {"image": self.images[idx], "text": self.texts[idx]}
|
75 |
|
76 |
+
class MicroDiffusionBuilder:
|
77 |
+
"""Tiny titan of diffusion 🐣 - Small but mighty for quick demos!"""
|
78 |
def __init__(self):
|
79 |
self.config = None
|
80 |
+
self.pipeline = None
|
81 |
+
self.jokes = ["Micro but mighty! 💪", "Small pixels, big dreams! 🌟"]
|
82 |
+
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None):
|
|
|
|
|
83 |
try:
|
84 |
+
with st.spinner(f"Loading {model_path}... ⏳ (Tiny titan powering up!)"):
|
85 |
+
# Micro Diffusion isn’t on HF yet; use a small U-Net placeholder from diffusers
|
86 |
+
self.pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", custom_pipeline="small_diffusion")
|
87 |
+
self.pipeline.to("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
88 |
if config:
|
89 |
self.config = config
|
|
|
90 |
st.success(f"Model loaded! 🎉 {random.choice(self.jokes)}")
|
91 |
+
logger.info(f"Loaded Micro Diffusion: {model_path}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
except Exception as e:
|
93 |
+
st.error(f"Failed to load {model_path}: {str(e)} 💥 (Tiny titan tripped!)")
|
94 |
logger.error(f"Failed to load {model_path}: {str(e)}")
|
95 |
raise
|
96 |
return self
|
97 |
+
def fine_tune_sft(self, images, texts, epochs=3):
|
98 |
try:
|
99 |
+
dataset = DiffusionDataset(images, texts)
|
100 |
+
dataloader = DataLoader(dataset, batch_size=1, shuffle=True)
|
101 |
+
optimizer = torch.optim.AdamW(self.pipeline.unet.parameters(), lr=1e-5)
|
102 |
+
self.pipeline.unet.train()
|
|
|
|
|
|
|
|
|
|
|
103 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
104 |
for epoch in range(epochs):
|
105 |
+
with st.spinner(f"Epoch {epoch + 1}/{epochs}... ⚙️ (Micro titan flexing!)"):
|
106 |
total_loss = 0
|
107 |
for batch in dataloader:
|
108 |
optimizer.zero_grad()
|
109 |
+
image = batch["image"][0].to(device)
|
110 |
+
text = batch["text"][0]
|
111 |
+
latents = self.pipeline.vae.encode(torch.tensor(np.array(image)).permute(2, 0, 1).unsqueeze(0).float().to(device)).latent_dist.sample()
|
112 |
+
noise = torch.randn_like(latents)
|
113 |
+
timesteps = torch.randint(0, self.pipeline.scheduler.num_train_timesteps, (latents.shape[0],), device=latents.device)
|
114 |
+
noisy_latents = self.pipeline.scheduler.add_noise(latents, noise, timesteps)
|
115 |
+
text_embeddings = self.pipeline.text_encoder(self.pipeline.tokenizer(text, return_tensors="pt").input_ids.to(device))[0]
|
116 |
+
pred_noise = self.pipeline.unet(noisy_latents, timesteps, encoder_hidden_states=text_embeddings).sample
|
117 |
+
loss = torch.nn.functional.mse_loss(pred_noise, noise)
|
118 |
loss.backward()
|
119 |
optimizer.step()
|
120 |
total_loss += loss.item()
|
121 |
+
st.write(f"Epoch {epoch + 1} done! Loss: {total_loss / len(dataloader):.4f}")
|
122 |
+
st.success(f"Micro Diffusion tuned! 🎉 {random.choice(self.jokes)}")
|
123 |
+
logger.info(f"Fine-tuned Micro Diffusion: {self.config.name}")
|
124 |
except Exception as e:
|
125 |
+
st.error(f"Tuning failed: {str(e)} 💥 (Micro snag!)")
|
126 |
+
logger.error(f"Tuning failed: {str(e)}")
|
127 |
raise
|
128 |
return self
|
129 |
def save_model(self, path: str):
|
130 |
try:
|
131 |
+
with st.spinner("Saving model... 💾 (Packing tiny pixels!)"):
|
132 |
os.makedirs(os.path.dirname(path), exist_ok=True)
|
133 |
+
self.pipeline.save_pretrained(path)
|
134 |
+
st.success(f"Saved at {path}! ✅ Tiny titan secured!")
|
135 |
+
logger.info(f"Saved at {path}")
|
|
|
136 |
except Exception as e:
|
137 |
+
st.error(f"Save failed: {str(e)} 💥 (Packing mishap!)")
|
138 |
+
logger.error(f"Save failed: {str(e)}")
|
139 |
raise
|
140 |
+
def generate(self, prompt: str):
|
|
|
|
|
|
|
|
|
141 |
try:
|
142 |
+
return self.pipeline(prompt, num_inference_steps=20).images[0]
|
|
|
|
|
|
|
|
|
|
|
143 |
except Exception as e:
|
144 |
+
st.error(f"Generation failed: {str(e)} 💥 (Pixel oopsie!)")
|
145 |
+
logger.error(f"Generation failed: {str(e)}")
|
146 |
+
raise
|
|
|
147 |
|
148 |
+
class LatentDiffusionBuilder:
|
149 |
+
"""Scaled-down dreamer 🌙 - Latent magic for efficient artistry!"""
|
150 |
def __init__(self):
|
151 |
self.config = None
|
152 |
self.pipeline = None
|
153 |
+
self.jokes = ["Latent vibes only! 🌀", "Small scale, big style! 🎨"]
|
154 |
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None):
|
|
|
155 |
try:
|
156 |
+
with st.spinner(f"Loading {model_path}... ⏳ (Latent titan rising!)"):
|
157 |
+
self.pipeline = DiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float16)
|
158 |
+
self.pipeline.unet = torch.nn.Sequential(*list(self.pipeline.unet.children())[:2]) # Scale down U-Net
|
159 |
self.pipeline.to("cuda" if torch.cuda.is_available() else "cpu")
|
160 |
if config:
|
161 |
self.config = config
|
162 |
+
st.success(f"Model loaded! 🎉 {random.choice(self.jokes)}")
|
163 |
+
logger.info(f"Loaded Latent Diffusion: {model_path}")
|
164 |
+
except Exception as e:
|
165 |
+
st.error(f"Failed to load {model_path}: {str(e)} 💥 (Latent hiccup!)")
|
166 |
+
logger.error(f"Failed to load {model_path}: {str(e)}")
|
167 |
raise
|
168 |
+
return self
|
169 |
+
def fine_tune_sft(self, images, texts, epochs=3):
|
170 |
+
try:
|
171 |
+
dataset = DiffusionDataset(images, texts)
|
172 |
+
dataloader = DataLoader(dataset, batch_size=1, shuffle=True)
|
173 |
+
optimizer = torch.optim.AdamW(self.pipeline.unet.parameters(), lr=1e-5)
|
174 |
+
self.pipeline.unet.train()
|
175 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
176 |
+
for epoch in range(epochs):
|
177 |
+
with st.spinner(f"Epoch {epoch + 1}/{epochs}... ⚙️ (Latent titan shaping up!)"):
|
178 |
+
total_loss = 0
|
179 |
+
for batch in dataloader:
|
180 |
+
optimizer.zero_grad()
|
181 |
+
image = batch["image"][0].to(device)
|
182 |
+
text = batch["text"][0]
|
183 |
+
latents = self.pipeline.vae.encode(torch.tensor(np.array(image)).permute(2, 0, 1).unsqueeze(0).float().to(device)).latent_dist.sample()
|
184 |
+
noise = torch.randn_like(latents)
|
185 |
+
timesteps = torch.randint(0, self.pipeline.scheduler.num_train_timesteps, (latents.shape[0],), device=latents.device)
|
186 |
+
noisy_latents = self.pipeline.scheduler.add_noise(latents, noise, timesteps)
|
187 |
+
text_embeddings = self.pipeline.text_encoder(self.pipeline.tokenizer(text, return_tensors="pt").input_ids.to(device))[0]
|
188 |
+
pred_noise = self.pipeline.unet(noisy_latents, timesteps, encoder_hidden_states=text_embeddings).sample
|
189 |
+
loss = torch.nn.functional.mse_loss(pred_noise, noise)
|
190 |
+
loss.backward()
|
191 |
+
optimizer.step()
|
192 |
+
total_loss += loss.item()
|
193 |
+
st.write(f"Epoch {epoch + 1} done! Loss: {total_loss / len(dataloader):.4f}")
|
194 |
+
st.success(f"Latent Diffusion tuned! 🎉 {random.choice(self.jokes)}")
|
195 |
+
logger.info(f"Fine-tuned Latent Diffusion: {self.config.name}")
|
196 |
+
except Exception as e:
|
197 |
+
st.error(f"Tuning failed: {str(e)} 💥 (Latent snag!)")
|
198 |
+
logger.error(f"Tuning failed: {str(e)}")
|
199 |
raise
|
200 |
+
return self
|
201 |
+
def save_model(self, path: str):
|
202 |
+
try:
|
203 |
+
with st.spinner("Saving model... 💾 (Packing latent dreams!)"):
|
204 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
205 |
+
self.pipeline.save_pretrained(path)
|
206 |
+
st.success(f"Saved at {path}! ✅ Latent titan stashed!")
|
207 |
+
logger.info(f"Saved at {path}")
|
208 |
except Exception as e:
|
209 |
+
st.error(f"Save failed: {str(e)} 💥 (Dreamy mishap!)")
|
210 |
+
logger.error(f"Save failed: {str(e)}")
|
211 |
+
raise
|
212 |
+
def generate(self, prompt: str):
|
213 |
+
try:
|
214 |
+
return self.pipeline(prompt, num_inference_steps=30).images[0]
|
215 |
+
except Exception as e:
|
216 |
+
st.error(f"Generation failed: {str(e)} 💥 (Latent oopsie!)")
|
217 |
+
logger.error(f"Generation failed: {str(e)}")
|
218 |
+
raise
|
219 |
+
|
220 |
+
class FluxDiffusionBuilder:
|
221 |
+
"""Distilled dynamo ⚡ - High-quality pixels in a small package!"""
|
222 |
+
def __init__(self):
|
223 |
+
self.config = None
|
224 |
+
self.pipeline = None
|
225 |
+
self.jokes = ["Flux-tastic! ✨", "Small size, big wow! 🎇"]
|
226 |
+
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None):
|
227 |
+
try:
|
228 |
+
with st.spinner(f"Loading {model_path}... ⏳ (Flux titan charging!)"):
|
229 |
+
self.pipeline = DiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float16)
|
230 |
+
self.pipeline.to("cuda" if torch.cuda.is_available() else "cpu")
|
231 |
+
if config:
|
232 |
+
self.config = config
|
233 |
+
st.success(f"Model loaded! 🎉 {random.choice(self.jokes)}")
|
234 |
+
logger.info(f"Loaded FLUX.1 Distilled: {model_path}")
|
235 |
+
except Exception as e:
|
236 |
+
st.error(f"Failed to load {model_path}: {str(e)} 💥 (Flux fizzle!)")
|
237 |
logger.error(f"Failed to load {model_path}: {str(e)}")
|
238 |
raise
|
239 |
return self
|
|
|
245 |
self.pipeline.unet.train()
|
246 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
247 |
for epoch in range(epochs):
|
248 |
+
with st.spinner(f"Epoch {epoch + 1}/{epochs}... ⚙️ (Flux titan powering up!)"):
|
249 |
total_loss = 0
|
250 |
for batch in dataloader:
|
251 |
optimizer.zero_grad()
|
|
|
261 |
loss.backward()
|
262 |
optimizer.step()
|
263 |
total_loss += loss.item()
|
264 |
+
st.write(f"Epoch {epoch + 1} done! Loss: {total_loss / len(dataloader):.4f}")
|
265 |
+
st.success(f"FLUX Diffusion tuned! 🎉 {random.choice(self.jokes)}")
|
266 |
+
logger.info(f"Fine-tuned FLUX.1 Distilled: {self.config.name}")
|
267 |
except Exception as e:
|
268 |
+
st.error(f"Tuning failed: {str(e)} 💥 (Flux snag!)")
|
269 |
+
logger.error(f"Tuning failed: {str(e)}")
|
270 |
raise
|
271 |
return self
|
272 |
def save_model(self, path: str):
|
273 |
try:
|
274 |
+
with st.spinner("Saving model... 💾 (Packing flux magic!)"):
|
275 |
os.makedirs(os.path.dirname(path), exist_ok=True)
|
276 |
self.pipeline.save_pretrained(path)
|
277 |
+
st.success(f"Saved at {path}! ✅ Flux titan secured!")
|
278 |
+
logger.info(f"Saved at {path}")
|
279 |
except Exception as e:
|
280 |
+
st.error(f"Save failed: {str(e)} 💥 (Fluxy mishap!)")
|
281 |
+
logger.error(f"Save failed: {str(e)}")
|
282 |
raise
|
283 |
def generate(self, prompt: str):
|
284 |
try:
|
285 |
return self.pipeline(prompt, num_inference_steps=50).images[0]
|
286 |
except Exception as e:
|
287 |
+
st.error(f"Generation failed: {str(e)} 💥 (Flux oopsie!)")
|
288 |
+
logger.error(f"Generation failed: {str(e)}")
|
289 |
raise
|
290 |
|
291 |
def generate_filename(sequence, ext="png"):
|
292 |
+
"""Time-stamped snapshots ⏰ - Keeps our pics organized with cam flair!"""
|
293 |
from datetime import datetime
|
294 |
import pytz
|
295 |
central = pytz.timezone('US/Central')
|
|
|
297 |
return f"{dt.strftime('%m-%d-%Y-%I-%M-%S-%p')}-{sequence}.{ext}"
|
298 |
|
299 |
def get_download_link(file_path, mime_type="text/plain", label="Download"):
|
300 |
+
"""Magic link maker 🔗 - Snag your files with a click!"""
|
301 |
try:
|
302 |
with open(file_path, 'rb') as f:
|
303 |
data = f.read()
|
304 |
b64 = base64.b64encode(data).decode()
|
305 |
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label} 📥</a>'
|
306 |
except Exception as e:
|
307 |
+
logger.error(f"Failed to generate link for {file_path}: {str(e)}")
|
308 |
return f"Error: Could not generate link for {file_path}"
|
309 |
|
310 |
def zip_files(files, zip_path):
|
311 |
+
"""Zip zap zoo 🎒 - Bundle up your goodies!"""
|
312 |
try:
|
313 |
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
314 |
for file in files:
|
315 |
zipf.write(file, os.path.basename(file))
|
316 |
logger.info(f"Created ZIP file: {zip_path}")
|
317 |
except Exception as e:
|
318 |
+
logger.error(f"Failed to create ZIP {zip_path}: {str(e)}")
|
319 |
raise
|
320 |
|
321 |
def delete_files(files):
|
322 |
+
"""Trash titan 🗑️ - Clear the stage for new stars!"""
|
323 |
try:
|
324 |
for file in files:
|
325 |
os.remove(file)
|
|
|
329 |
logger.error(f"Failed to delete files: {str(e)}")
|
330 |
raise
|
331 |
|
332 |
+
def get_model_files():
|
333 |
+
"""Model treasure hunt 🗺️ - Find our diffusion gems!"""
|
334 |
+
return [d for d in glob.glob("diffusion_models/*") if os.path.isdir(d)]
|
335 |
|
336 |
def get_gallery_files(file_types):
|
337 |
+
"""Gallery curator 🖼️ - Showcase our pixel masterpieces!"""
|
338 |
return sorted(list(set(f for ext in file_types for f in glob.glob(f"*.{ext}"))))
|
339 |
|
340 |
def update_gallery():
|
341 |
+
"""Gallery refresh 🌟 - Keep the art flowing!"""
|
342 |
media_files = get_gallery_files(["png"])
|
343 |
if media_files:
|
344 |
cols = st.sidebar.columns(2)
|
|
|
348 |
st.markdown(get_download_link(file, "image/png", "Download Snap 📸"), unsafe_allow_html=True)
|
349 |
|
350 |
def get_available_video_devices():
|
351 |
+
"""Camera roll call 🎥 - Who’s ready to shine?"""
|
352 |
+
video_devices = [f"Camera {i} 🎥" for i in range(6)] # 6 cams as per your setup
|
353 |
try:
|
354 |
detected = []
|
355 |
for i in range(10):
|
|
|
361 |
logger.info(f"Detected camera at index {i}")
|
362 |
cap.release()
|
363 |
if detected:
|
364 |
+
video_devices = detected[:6] # Cap at 6
|
365 |
except Exception as e:
|
366 |
logger.error(f"Error detecting cameras: {str(e)}")
|
367 |
return video_devices
|
368 |
|
369 |
+
st.title("SFT Tiny Titans 🚀 (Small Diffusion Delight!)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
370 |
|
371 |
st.sidebar.header("Media Gallery 🎨")
|
372 |
+
gallery_size = st.sidebar.slider("Gallery Size 📸", 1, 10, 4, help="How many snaps to flaunt? 🌟")
|
373 |
update_gallery()
|
374 |
|
375 |
col1, col2 = st.sidebar.columns(2)
|
|
|
380 |
zip_path = f"snapshot_collection_{int(time.time())}.zip"
|
381 |
zip_files(media_files, zip_path)
|
382 |
st.sidebar.markdown(get_download_link(zip_path, "application/zip", "Download All Snaps 📦"), unsafe_allow_html=True)
|
383 |
+
st.sidebar.success("Snaps zipped! 🎉 Grab your loot!")
|
384 |
else:
|
385 |
st.sidebar.warning("No snaps to zip! 📸 Snap some first!")
|
386 |
with col2:
|
|
|
401 |
f.write(uploaded_file.getvalue())
|
402 |
logger.info(f"Uploaded file: {filename}")
|
403 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
404 |
st.sidebar.subheader("Image Gallery 🖼️")
|
405 |
image_files = get_gallery_files(["png", "jpeg"])
|
406 |
if image_files:
|
|
|
410 |
st.image(Image.open(file), caption=file, use_container_width=True)
|
411 |
st.markdown(get_download_link(file, "image/png" if file.endswith(".png") else "image/jpeg", f"Save Pic 🖼️"), unsafe_allow_html=True)
|
412 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
413 |
st.sidebar.subheader("Model Management 🗂️")
|
414 |
+
model_dirs = get_model_files()
|
|
|
415 |
selected_model = st.sidebar.selectbox("Select Saved Model", ["None"] + model_dirs)
|
416 |
+
model_type = st.sidebar.selectbox("Diffusion Type", ["Micro Diffusion", "Latent Diffusion", "FLUX.1 Distilled"])
|
417 |
if selected_model != "None" and st.sidebar.button("Load Model 📂"):
|
418 |
+
builder = {
|
419 |
+
"Micro Diffusion": MicroDiffusionBuilder,
|
420 |
+
"Latent Diffusion": LatentDiffusionBuilder,
|
421 |
+
"FLUX.1 Distilled": FluxDiffusionBuilder
|
422 |
+
}[model_type]()
|
423 |
+
config = DiffusionConfig(name=os.path.basename(selected_model), base_model="unknown", size="small")
|
424 |
try:
|
425 |
builder.load_model(selected_model, config)
|
426 |
+
st.session_state['cv_builder'] = builder
|
427 |
+
st.session_state['cv_loaded'] = True
|
|
|
|
|
|
|
|
|
428 |
st.rerun()
|
429 |
except Exception as e:
|
430 |
st.error(f"Model load failed: {str(e)} 💥 (Check logs for details!)")
|
431 |
|
432 |
st.sidebar.subheader("Model Status 🚦")
|
433 |
+
st.sidebar.write(f"**CV Model**: {'Loaded' if st.session_state['cv_loaded'] else 'Not Loaded'} {'(Active)' if st.session_state['cv_loaded'] and isinstance(st.session_state.get('cv_builder'), (MicroDiffusionBuilder, LatentDiffusionBuilder, FluxDiffusionBuilder)) else ''}")
|
|
|
434 |
|
435 |
+
tabs = ["Build Titan 🌱", "Camera Snap 📷", "Fine-Tune Titan (CV) 🔧", "Test Titan (CV) 🧪", "Agentic RAG Party (CV) 🌐"]
|
436 |
+
tab1, tab2, tab3, tab4, tab5 = st.tabs(tabs)
|
|
|
|
|
|
|
|
|
437 |
|
438 |
for i, tab in enumerate(tabs):
|
439 |
if st.session_state['active_tab'] != tab and st.session_state.get(f'tab{i}_active', False):
|
|
|
443 |
|
444 |
with tab1:
|
445 |
st.header("Build Titan 🌱")
|
446 |
+
model_type = st.selectbox("Diffusion Type", ["Micro Diffusion", "Latent Diffusion", "FLUX.1 Distilled"], key="build_type")
|
447 |
base_model = st.selectbox("Select Tiny Model",
|
448 |
+
["sony/micro-diffusion" if model_type == "Micro Diffusion" else "runwayml/stable-diffusion-v1-5" if model_type == "Latent Diffusion" else "black-forest-labs/flux.1-distilled"])
|
|
|
449 |
model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}")
|
|
|
450 |
if st.button("Download Model ⬇️"):
|
451 |
+
config = DiffusionConfig(name=model_name, base_model=base_model, size="small")
|
452 |
+
builder = {
|
453 |
+
"Micro Diffusion": MicroDiffusionBuilder,
|
454 |
+
"Latent Diffusion": LatentDiffusionBuilder,
|
455 |
+
"FLUX.1 Distilled": FluxDiffusionBuilder
|
456 |
+
}[model_type]()
|
457 |
try:
|
458 |
builder.load_model(base_model, config)
|
459 |
builder.save_model(config.model_path)
|
460 |
+
st.session_state['cv_builder'] = builder
|
461 |
+
st.session_state['cv_loaded'] = True
|
|
|
|
|
|
|
|
|
462 |
st.rerun()
|
463 |
except Exception as e:
|
464 |
st.error(f"Model build failed: {str(e)} 💥 (Check logs for details!)")
|
|
|
533 |
st.info("🚨 Single shots only—craft your masterpiece! 🎨")
|
534 |
|
535 |
with tab3:
|
536 |
+
st.header("Fine-Tune Titan (CV) 🔧 (Sculpt Your Pixel Prodigy!)")
|
537 |
+
if not st.session_state['cv_loaded'] or not isinstance(st.session_state['cv_builder'], (MicroDiffusionBuilder, LatentDiffusionBuilder, FluxDiffusionBuilder)):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
538 |
st.warning("Please build or load a CV Titan first! ⚠️ (No artist, no canvas!)")
|
539 |
else:
|
540 |
captured_images = get_gallery_files(["png"])
|
541 |
if len(captured_images) >= 2:
|
542 |
+
# Use Case 1: Denoising (Micro Diffusion)
|
543 |
+
st.subheader("Use Case 1: Denoise Snapshots 🌟")
|
544 |
+
denoising_data = [{"image": img, "text": f"Denoised {os.path.basename(img).split('-')[4]} snap"} for img in captured_images[:min(len(captured_images), 10)]]
|
545 |
+
denoising_edited = st.data_editor(pd.DataFrame(denoising_data), num_rows="dynamic", help="Craft denoising pairs! 🌟")
|
546 |
+
if st.button("Fine-Tune Denoising 🔄"):
|
547 |
+
images = [Image.open(row["image"]) for _, row in denoising_edited.iterrows()]
|
548 |
+
texts = [row["text"] for _, row in denoising_edited.iterrows()]
|
549 |
+
new_model_name = f"{st.session_state['cv_builder'].config.name}-denoise-{int(time.time())}"
|
550 |
new_config = DiffusionConfig(name=new_model_name, base_model=st.session_state['cv_builder'].config.base_model, size="small")
|
551 |
st.session_state['cv_builder'].config = new_config
|
552 |
+
with st.status("Fine-tuning for denoising... ⏳ (Polishing pixels!)", expanded=True) as status:
|
553 |
st.session_state['cv_builder'].fine_tune_sft(images, texts)
|
554 |
st.session_state['cv_builder'].save_model(new_config.model_path)
|
555 |
+
status.update(label="Denoising tuned! 🎉 (Pixel shine unleashed!)", state="complete")
|
556 |
zip_path = f"{new_config.model_path}.zip"
|
557 |
zip_files([new_config.model_path], zip_path)
|
558 |
+
st.markdown(get_download_link(zip_path, "application/zip", "Download Denoised Titan 📦"), unsafe_allow_html=True)
|
559 |
+
denoising_csv = f"denoise_dataset_{int(time.time())}.csv"
|
560 |
+
with open(denoising_csv, "w", newline="") as f:
|
561 |
writer = csv.writer(f)
|
562 |
writer.writerow(["image", "text"])
|
563 |
+
for _, row in denoising_edited.iterrows():
|
564 |
writer.writerow([row["image"], row["text"]])
|
565 |
+
st.markdown(get_download_link(denoising_csv, "text/csv", "Download Denoising CSV 📜"), unsafe_allow_html=True)
|
566 |
+
|
567 |
+
# Use Case 2: Stylization (Latent Diffusion)
|
568 |
+
st.subheader("Use Case 2: Stylize Snapshots 🎨")
|
569 |
+
stylize_data = [{"image": img, "text": f"Neon {os.path.basename(img).split('-')[4]} style"} for img in captured_images[:min(len(captured_images), 10)]]
|
570 |
+
stylize_edited = st.data_editor(pd.DataFrame(stylize_data), num_rows="dynamic", help="Craft stylized pairs! 🎨")
|
571 |
+
if st.button("Fine-Tune Stylization 🔄"):
|
572 |
+
images = [Image.open(row["image"]) for _, row in stylize_edited.iterrows()]
|
573 |
+
texts = [row["text"] for _, row in stylize_edited.iterrows()]
|
574 |
+
new_model_name = f"{st.session_state['cv_builder'].config.name}-stylize-{int(time.time())}"
|
575 |
+
new_config = DiffusionConfig(name=new_model_name, base_model=st.session_state['cv_builder'].config.base_model, size="small")
|
576 |
+
st.session_state['cv_builder'].config = new_config
|
577 |
+
with st.status("Fine-tuning for stylization... ⏳ (Painting pixels!)", expanded=True) as status:
|
578 |
+
st.session_state['cv_builder'].fine_tune_sft(images, texts)
|
579 |
+
st.session_state['cv_builder'].save_model(new_config.model_path)
|
580 |
+
status.update(label="Stylization tuned! 🎉 (Pixel art unleashed!)", state="complete")
|
581 |
+
zip_path = f"{new_config.model_path}.zip"
|
582 |
+
zip_files([new_config.model_path], zip_path)
|
583 |
+
st.markdown(get_download_link(zip_path, "application/zip", "Download Stylized Titan 📦"), unsafe_allow_html=True)
|
584 |
+
stylize_md = f"stylize_dataset_{int(time.time())}.md"
|
585 |
+
with open(stylize_md, "w") as f:
|
586 |
+
f.write("# Stylization Dataset\n\n")
|
587 |
+
for _, row in stylize_edited.iterrows():
|
588 |
+
f.write(f"- `{row['image']}`: {row['text']}\n")
|
589 |
+
st.markdown(get_download_link(stylize_md, "text/markdown", "Download Stylization MD 📝"), unsafe_allow_html=True)
|
590 |
+
|
591 |
+
# Use Case 3: Multi-Angle Generation (FLUX.1)
|
592 |
+
st.subheader("Use Case 3: Multi-Angle Snapshots 🌐")
|
593 |
+
multiangle_data = [{"image": img, "text": f"View from {os.path.basename(img).split('-')[4]}"} for img in captured_images[:min(len(captured_images), 10)]]
|
594 |
+
multiangle_edited = st.data_editor(pd.DataFrame(multiangle_data), num_rows="dynamic", help="Craft multi-angle pairs! 🌐")
|
595 |
+
if st.button("Fine-Tune Multi-Angle 🔄"):
|
596 |
+
images = [Image.open(row["image"]) for _, row in multiangle_edited.iterrows()]
|
597 |
+
texts = [row["text"] for _, row in multiangle_edited.iterrows()]
|
598 |
+
new_model_name = f"{st.session_state['cv_builder'].config.name}-multiangle-{int(time.time())}"
|
599 |
+
new_config = DiffusionConfig(name=new_model_name, base_model=st.session_state['cv_builder'].config.base_model, size="small")
|
600 |
+
st.session_state['cv_builder'].config = new_config
|
601 |
+
with st.status("Fine-tuning for multi-angle... ⏳ (Spinning pixels!)", expanded=True) as status:
|
602 |
+
st.session_state['cv_builder'].fine_tune_sft(images, texts)
|
603 |
+
st.session_state['cv_builder'].save_model(new_config.model_path)
|
604 |
+
status.update(label="Multi-angle tuned! 🎉 (Pixel views unleashed!)", state="complete")
|
605 |
+
zip_path = f"{new_config.model_path}.zip"
|
606 |
+
zip_files([new_config.model_path], zip_path)
|
607 |
+
st.markdown(get_download_link(zip_path, "application/zip", "Download Multi-Angle Titan 📦"), unsafe_allow_html=True)
|
608 |
+
multiangle_csv = f"multiangle_dataset_{int(time.time())}.csv"
|
609 |
+
with open(multiangle_csv, "w", newline="") as f:
|
610 |
+
writer = csv.writer(f)
|
611 |
+
writer.writerow(["image", "text"])
|
612 |
+
for _, row in multiangle_edited.iterrows():
|
613 |
+
writer.writerow([row["image"], row["text"]])
|
614 |
+
st.markdown(get_download_link(multiangle_csv, "text/csv", "Download Multi-Angle CSV 📜"), unsafe_allow_html=True)
|
615 |
|
616 |
+
with tab4:
|
617 |
st.header("Test Titan (CV) 🧪 (Unleash Your Pixel Power!)")
|
618 |
+
if not st.session_state['cv_loaded'] or not isinstance(st.session_state['cv_builder'], (MicroDiffusionBuilder, LatentDiffusionBuilder, FluxDiffusionBuilder)):
|
619 |
st.warning("Please build or load a CV Titan first! ⚠️ (No artist, no masterpiece!)")
|
620 |
else:
|
621 |
+
st.subheader("Test Your Titan 🎨")
|
622 |
+
test_prompt = st.text_area("Prompt 🎤", "Neon glow from cam0", help="Dream up a wild image—your Titan’s ready to paint! 🖌️")
|
623 |
+
if st.button("Generate ▶️"):
|
624 |
+
with st.spinner("Crafting your masterpiece... ⏳ (Titan’s mixing pixels!)"):
|
625 |
image = st.session_state['cv_builder'].generate(test_prompt)
|
626 |
+
st.image(image, caption=f"Generated: {test_prompt}", use_container_width=True)
|
627 |
|
628 |
+
with tab5:
|
629 |
+
st.header("Agentic RAG Party (CV) 🌐 (Pixel Party Extravaganza!)")
|
630 |
+
st.write("Generate superhero party vibes from your tuned Titan! 🎉")
|
631 |
+
if not st.session_state['cv_loaded'] or not isinstance(st.session_state['cv_builder'], (MicroDiffusionBuilder, LatentDiffusionBuilder, FluxDiffusionBuilder)):
|
632 |
st.warning("Please build or load a CV Titan first! ⚠️ (No artist, no party!)")
|
633 |
else:
|
634 |
+
if st.button("Run RAG Demo 🎉"):
|
635 |
+
with st.spinner("Loading your pixel party titan... ⏳ (Titan’s grabbing its brush!)"):
|
636 |
+
class CVPartyAgent:
|
637 |
+
def __init__(self, pipeline):
|
638 |
+
self.pipeline = pipeline
|
639 |
+
def generate(self, prompt: str) -> Image.Image:
|
640 |
+
return self.pipeline(prompt, num_inference_steps=50).images[0]
|
641 |
+
def plan_party(self):
|
642 |
+
prompts = [
|
643 |
+
"Gold-plated Batman statue from cam0",
|
644 |
+
"VR superhero battle scene from cam1",
|
645 |
+
"Neon-lit Avengers tower from cam2"
|
646 |
+
]
|
647 |
+
data = [{"Theme": f"Scene {i+1}", "Image Idea": prompt} for i, prompt in enumerate(prompts)]
|
648 |
+
return pd.DataFrame(data)
|
649 |
+
agent = CVPartyAgent(st.session_state['cv_builder'].pipeline)
|
650 |
+
st.write("Party agent ready! 🎨 (Time to paint an epic bash!)")
|
651 |
with st.spinner("Crafting superhero party visuals... ⏳ (Pixels assemble!)"):
|
652 |
try:
|
653 |
+
plan_df = agent.plan_party()
|
654 |
st.dataframe(plan_df)
|
655 |
for _, row in plan_df.iterrows():
|
656 |
image = agent.generate(row["Image Idea"])
|
657 |
st.image(image, caption=f"{row['Theme']} - {row['Image Idea']}", use_container_width=True)
|
658 |
except Exception as e:
|
659 |
+
st.error(f"Party crashed: {str(e)} 💥 (Pixel oopsie!)")
|
660 |
+
logger.error(f"RAG demo failed: {str(e)}")
|
661 |
|
662 |
st.sidebar.subheader("Action Logs 📜")
|
663 |
log_container = st.sidebar.empty()
|