File size: 9,422 Bytes
f0c19c8
 
 
 
0daf532
 
 
 
f0c19c8
0daf532
 
f0c19c8
0daf532
f0c19c8
 
 
 
 
 
 
 
 
 
26f4cb2
f0c19c8
0daf532
f0c19c8
 
 
0daf532
f0c19c8
 
26f4cb2
f0c19c8
 
 
26f4cb2
f0c19c8
 
 
 
26f4cb2
 
f0c19c8
 
26f4cb2
f0c19c8
 
 
 
 
 
 
 
26f4cb2
0daf532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26f4cb2
 
0daf532
26f4cb2
0daf532
 
26f4cb2
f0c19c8
 
0daf532
 
 
 
 
f0c19c8
49639b7
0daf532
f0c19c8
 
0daf532
26f4cb2
f0c19c8
 
26f4cb2
 
400ee5c
26f4cb2
49639b7
 
 
 
 
 
 
26f4cb2
 
 
 
 
 
49639b7
 
 
 
 
 
 
26f4cb2
 
 
f0c19c8
26f4cb2
 
400ee5c
26f4cb2
49639b7
 
 
 
 
 
 
26f4cb2
 
 
 
 
 
49639b7
 
 
 
 
 
 
26f4cb2
 
 
f0c19c8
26f4cb2
0daf532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26f4cb2
 
0daf532
 
 
 
 
 
 
 
 
 
 
f0c19c8
49639b7
0daf532
 
 
 
 
 
 
 
 
 
f0c19c8
26f4cb2
f0c19c8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#!/usr/bin/env python3
import os
import streamlit as st
from PIL import Image
import torch
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration, AutoTokenizer, AutoModel
from diffusers import StableDiffusionPipeline
import cv2
import numpy as np
import logging
from io import BytesIO

# Logging setup
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
log_records = []

class LogCaptureHandler(logging.Handler):
    def emit(self, record):
        log_records.append(record)

logger.addHandler(LogCaptureHandler())

# Page Configuration
st.set_page_config(
    page_title="AI Vision Titans 🚀",
    page_icon="🤖",
    layout="wide",
    initial_sidebar_state="expanded",
    menu_items={'About': "AI Vision Titans: OCR, Image Gen, Line Drawings on CPU! 🌌"}
)

# Initialize st.session_state
if 'captured_images' not in st.session_state:
    st.session_state['captured_images'] = []

# Utility Functions
def generate_filename(sequence, ext="png"):
    from datetime import datetime
    import pytz
    central = pytz.timezone('US/Central')
    timestamp = datetime.now(central).strftime("%d%m%Y%H%M%S%p")
    return f"{sequence}{timestamp}.{ext}"

def get_gallery_files(file_types):
    return sorted([f for ext in file_types for f in glob.glob(f"*.{ext}")])

def update_gallery():
    media_files = get_gallery_files(["png"])
    if media_files:
        cols = st.sidebar.columns(2)
        for idx, file in enumerate(media_files[:gallery_size * 2]):
            with cols[idx % 2]:
                st.image(Image.open(file), caption=file, use_container_width=True)

# Model Loaders (Simplified, CPU-focused)
def load_ocr_qwen2vl():
    model_id = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
    processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
    model = Qwen2VLForConditionalGeneration.from_pretrained(model_id, trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval()
    return processor, model

def load_ocr_got():
    model_id = "ucaslcl/GOT-OCR2_0"
    tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
    model = AutoModel.from_pretrained(model_id, trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval()
    return tokenizer, model

def load_image_gen():
    model_id = "OFA-Sys/small-stable-diffusion-v0"  # Small, CPU-friendly
    pipeline = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32).to("cpu")
    return pipeline

def load_line_drawer():
    # Simplified from your Torch Space (assuming a UNet-like model for edge detection)
    # Placeholder: Using OpenCV edge detection as a minimal CPU example
    def edge_detection(image):
        img_np = np.array(image.convert("RGB"))
        gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY)
        edges = cv2.Canny(gray, 100, 200)
        return Image.fromarray(edges)
    return edge_detection

# Main App
st.title("AI Vision Titans 🚀 (OCR, Gen, Drawings!)")

# Sidebar Gallery
st.sidebar.header("Captured Images 🎨")
gallery_size = st.sidebar.slider("Gallery Size", 1, 10, 4)
update_gallery()

st.sidebar.subheader("Action Logs 📜")
log_container = st.sidebar.empty()
with log_container:
    for record in log_records:
        st.write(f"{record.asctime} - {record.levelname} - {record.message}")

# Tabs
tab1, tab2, tab3, tab4 = st.tabs(["Camera Snap 📷", "Test OCR 🔍", "Test Image Gen 🎨", "Test Line Drawings ✏️"])

with tab1:
    st.header("Camera Snap 📷")
    slice_count = st.number_input("Image Slice Count", min_value=1, max_value=20, value=10)
    cols = st.columns(2)
    with cols[0]:
        st.subheader("Camera 0")
        cam0_img = st.camera_input("Take a picture - Cam 0", key="cam0")
        if cam0_img:
            filename = generate_filename(0)
            if filename not in st.session_state['captured_images']:
                with open(filename, "wb") as f:
                    f.write(cam0_img.getvalue())
                st.image(Image.open(filename), caption=filename, use_container_width=True)
                logger.info(f"Saved snapshot from Camera 0: {filename}")
                st.session_state['captured_images'].append(filename)
                update_gallery()
        if st.button(f"Capture {slice_count} Frames - Cam 0 📸"):
            st.session_state['cam0_frames'] = []
            for i in range(slice_count):
                img = st.camera_input(f"Frame {i} - Cam 0", key=f"cam0_frame_{i}_{time.time()}")
                if img:
                    filename = generate_filename(f"0_{i}")
                    if filename not in st.session_state['captured_images']:
                        with open(filename, "wb") as f:
                            f.write(img.getvalue())
                        st.session_state['cam0_frames'].append(filename)
                        logger.info(f"Saved frame {i} from Camera 0: {filename}")
                        time.sleep(1.0 / slice_count)
            st.session_state['captured_images'].extend([f for f in st.session_state['cam0_frames'] if f not in st.session_state['captured_images']])
            update_gallery()
            for frame in st.session_state['cam0_frames']:
                st.image(Image.open(frame), caption=frame, use_container_width=True)
    with cols[1]:
        st.subheader("Camera 1")
        cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1")
        if cam1_img:
            filename = generate_filename(1)
            if filename not in st.session_state['captured_images']:
                with open(filename, "wb") as f:
                    f.write(cam1_img.getvalue())
                st.image(Image.open(filename), caption=filename, use_container_width=True)
                logger.info(f"Saved snapshot from Camera 1: {filename}")
                st.session_state['captured_images'].append(filename)
                update_gallery()
        if st.button(f"Capture {slice_count} Frames - Cam 1 📸"):
            st.session_state['cam1_frames'] = []
            for i in range(slice_count):
                img = st.camera_input(f"Frame {i} - Cam 1", key=f"cam1_frame_{i}_{time.time()}")
                if img:
                    filename = generate_filename(f"1_{i}")
                    if filename not in st.session_state['captured_images']:
                        with open(filename, "wb") as f:
                            f.write(img.getvalue())
                        st.session_state['cam1_frames'].append(filename)
                        logger.info(f"Saved frame {i} from Camera 1: {filename}")
                        time.sleep(1.0 / slice_count)
            st.session_state['captured_images'].extend([f for f in st.session_state['cam1_frames'] if f not in st.session_state['captured_images']])
            update_gallery()
            for frame in st.session_state['cam1_frames']:
                st.image(Image.open(frame), caption=frame, use_container_width=True)

with tab2:
    st.header("Test OCR 🔍")
    captured_images = get_gallery_files(["png"])
    if captured_images:
        selected_image = st.selectbox("Select Image", captured_images)
        image = Image.open(selected_image)
        st.image(image, caption="Input Image", use_container_width=True)
        ocr_model = st.selectbox("Select OCR Model", ["Qwen2-VL-OCR-2B", "GOT-OCR2_0"])
        prompt = st.text_area("Prompt", "Extract text from the image")
        if st.button("Run OCR 🚀"):
            if ocr_model == "Qwen2-VL-OCR-2B":
                processor, model = load_ocr_qwen2vl()
                inputs = processor(text=[prompt], images=[image], return_tensors="pt").to("cpu")
                outputs = model.generate(**inputs, max_new_tokens=1024)
                text = processor.decode(outputs[0], skip_special_tokens=True)
            else:  # GOT-OCR2_0
                tokenizer, model = load_ocr_got()
                with open(selected_image, "rb") as f:
                    img_bytes = f.read()
                img = Image.open(BytesIO(img_bytes))
                text = model.chat(tokenizer, img, ocr_type='ocr')
            st.text_area("OCR Result", text, height=200)

with tab3:
    st.header("Test Image Gen 🎨")
    captured_images = get_gallery_files(["png"])
    if captured_images:
        selected_image = st.selectbox("Select Image", captured_images)
        image = Image.open(selected_image)
        st.image(image, caption="Reference Image", use_container_width=True)
        prompt = st.text_area("Prompt", "Generate a similar superhero image")
        if st.button("Run Image Gen 🚀"):
            pipeline = load_image_gen()
            gen_image = pipeline(prompt, num_inference_steps=50).images[0]
            st.image(gen_image, caption="Generated Image", use_container_width=True)

with tab4:
    st.header("Test Line Drawings ✏️")
    captured_images = get_gallery_files(["png"])
    if captured_images:
        selected_image = st.selectbox("Select Image", captured_images)
        image = Image.open(selected_image)
        st.image(image, caption="Input Image", use_container_width=True)
        if st.button("Run Line Drawing 🚀"):
            edge_fn = load_line_drawer()
            line_drawing = edge_fn(image)
            st.image(line_drawing, caption="Line Drawing", use_container_width=True)

# Initial Gallery Update
update_gallery()