File size: 22,027 Bytes
6893dd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
import aiofiles
import asyncio
import base64
import cv2
import fitz
import glob
import io
import json
import logging
import os
import pandas as pd
import pytz
import random
import re
import requests
import shutil
import streamlit as st
import sys
import time
import torch
import zipfile

from audio_recorder_streamlit import audio_recorder
from contextlib import redirect_stdout
from dataclasses import dataclass
from datetime import datetime
from diffusers import StableDiffusionPipeline
from io import BytesIO
from moviepy.editor import VideoFileClip
from openai import OpenAI
from PIL import Image
from PyPDF2 import PdfReader
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel
from typing import Optional

# Initialize OpenAI client
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID'))

# Logging setup
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
log_records = []
class LogCaptureHandler(logging.Handler):
    def emit(self, record):
        log_records.append(record)
logger.addHandler(LogCaptureHandler())

# Streamlit configuration
st.set_page_config(
    page_title="AI Multimodal Titan ๐Ÿš€",
    page_icon="๐Ÿค–",
    layout="wide",
    initial_sidebar_state="expanded",
    menu_items={
        'Get Help': 'https://huggingface.co/awacke1',
        'Report a Bug': 'https://huggingface.co/spaces/awacke1',
        'About': "AI Multimodal Titan: PDFs, OCR, Image Gen, Audio/Video Processing, Code Execution, and More! ๐ŸŒŒ"
    }
)

# Session state initialization
for key in ['history', 'builder', 'model_loaded', 'processing', 'asset_checkboxes', 'downloaded_pdfs', 'unique_counter', 'messages']:
    st.session_state.setdefault(key, [] if key in ['history', 'messages'] else {} if key in ['asset_checkboxes', 'downloaded_pdfs', 'processing'] else None if key == 'builder' else 0 if key == 'unique_counter' else False)
st.session_state.setdefault('selected_model_type', "Causal LM")
st.session_state.setdefault('selected_model', "None")
st.session_state.setdefault('gallery_size', 2)
st.session_state.setdefault('asset_gallery_container', st.sidebar.empty())

@dataclass
class ModelConfig:
    name: str
    base_model: str
    size: str
    domain: Optional[str] = None
    model_type: str = "causal_lm"
    @property
    def model_path(self): 
        return f"models/{self.name}"

@dataclass
class DiffusionConfig:
    name: str
    base_model: str
    size: str
    domain: Optional[str] = None
    @property
    def model_path(self):
        return f"diffusion_models/{self.name}"

class ModelBuilder:
    def __init__(self):
        self.config = None
        self.model = None
        self.tokenizer = None
    def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
        with st.spinner(f"Loading {model_path}... โณ"):
            self.model = AutoModelForCausalLM.from_pretrained(model_path)
            self.tokenizer = AutoTokenizer.from_pretrained(model_path)
            if self.tokenizer.pad_token is None:
                self.tokenizer.pad_token = self.tokenizer.eos_token
            if config:
                self.config = config
            self.model.to("cuda" if torch.cuda.is_available() else "cpu")
        st.success(f"Model loaded! ๐ŸŽ‰")
        return self
    def save_model(self, path: str):
        with st.spinner("Saving model... ๐Ÿ’พ"):
            os.makedirs(os.path.dirname(path), exist_ok=True)
            self.model.save_pretrained(path)
            self.tokenizer.save_pretrained(path)
        st.success(f"Model saved at {path}! โœ…")

class DiffusionBuilder:
    def __init__(self):
        self.config = None
        self.pipeline = None
    def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None):
        with st.spinner(f"Loading diffusion model {model_path}... โณ"):
            self.pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cpu")
            if config:
                self.config = config
        st.success("Diffusion model loaded! ๐ŸŽจ")
        return self
    def save_model(self, path: str):
        with st.spinner("Saving diffusion model... ๐Ÿ’พ"):
            os.makedirs(os.path.dirname(path), exist_ok=True)
            self.pipeline.save_pretrained(path)
        st.success(f"Diffusion model saved at {path}! โœ…")
    def generate(self, prompt: str):
        return self.pipeline(prompt, num_inference_steps=20).images[0]

def generate_filename(prompt, ext="png"):
    central = pytz.timezone('US/Central')
    safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
    safe_prompt = re.sub(r'[<>:"/\\|?*]', '_', prompt)[:240]
    return f"{safe_date_time}_{safe_prompt}.{ext}"

def get_download_link(file_path, mime_type="application/pdf", label="Download"):
    with open(file_path, "rb") as f:
        data = base64.b64encode(f.read()).decode()
    return f'<a href="data:{mime_type};base64,{data}" download="{os.path.basename(file_path)}">{label}</a>'

def zip_directory(directory_path, zip_path):
    with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
        for root, _, files in os.walk(directory_path):
            for file in files:
                zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path)))

def get_gallery_files(file_types=["png", "pdf", "md", "wav", "mp4"]):
    return sorted(list({f for ext in file_types for f in glob.glob(f"*.{ext}")}))

def download_pdf(url, output_path):
    try:
        response = requests.get(url, stream=True, timeout=10)
        if response.status_code == 200:
            with open(output_path, "wb") as f:
                for chunk in response.iter_content(chunk_size=8192):
                    f.write(chunk)
            return True
    except requests.RequestException as e:
        logger.error(f"Failed to download {url}: {e}")
        return False

async def process_pdf_snapshot(pdf_path, mode="single"):
    start_time = time.time()
    status = st.empty()
    status.text(f"Processing PDF Snapshot ({mode})... (0s)")
    try:
        doc = fitz.open(pdf_path)
        output_files = []
        if mode == "single":
            page = doc[0]
            pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
            output_file = generate_filename("single", "png")
            pix.save(output_file)
            output_files.append(output_file)
        elif mode == "double":
            if len(doc) >= 2:
                pix1 = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
                pix2 = doc[1].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
                img1 = Image.frombytes("RGB", [pix1.width, pix1.height], pix1.samples)
                img2 = Image.frombytes("RGB", [pix2.width, pix2.height], pix2.samples)
                combined_img = Image.new("RGB", (pix1.width + pix2.width, max(pix1.height, pix2.height)))
                combined_img.paste(img1, (0, 0))
                combined_img.paste(img2, (pix1.width, 0))
                output_file = generate_filename("double", "png")
                combined_img.save(output_file)
                output_files.append(output_file)
        elif mode == "allpages":
            for i in range(len(doc)):
                page = doc[i]
                pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
                output_file = generate_filename(f"page_{i}", "png")
                pix.save(output_file)
                output_files.append(output_file)
        doc.close()
        elapsed = int(time.time() - start_time)
        status.text(f"PDF Snapshot ({mode}) completed in {elapsed}s!")
        return output_files
    except Exception as e:
        status.error(f"Failed to process PDF: {str(e)}")
        return []

async def process_ocr(image, output_file):
    start_time = time.time()
    status = st.empty()
    status.text("Processing GOT-OCR2_0... (0s)")
    tokenizer = AutoTokenizer.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True)
    model = AutoModel.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval()
    temp_file = generate_filename("temp", "png")
    image.save(temp_file)
    result = model.chat(tokenizer, temp_file, ocr_type='ocr')
    os.remove(temp_file)
    elapsed = int(time.time() - start_time)
    status.text(f"GOT-OCR2_0 completed in {elapsed}s!")
    async with aiofiles.open(output_file, "w") as f:
        await f.write(result)
    return result

async def process_image_gen(prompt, output_file):
    start_time = time.time()
    status = st.empty()
    status.text("Processing Image Gen... (0s)")
    pipeline = st.session_state['builder'].pipeline if st.session_state.get('builder') and isinstance(st.session_state['builder'], DiffusionBuilder) else StableDiffusionPipeline.from_pretrained("OFA-Sys/small-stable-diffusion-v0", torch_dtype=torch.float32).to("cpu")
    gen_image = pipeline(prompt, num_inference_steps=20).images[0]
    elapsed = int(time.time() - start_time)
    status.text(f"Image Gen completed in {elapsed}s!")
    gen_image.save(output_file)
    return gen_image

def process_image_with_prompt(image, prompt, model="gpt-4o-mini", detail="auto"):
    buffered = BytesIO()
    image.save(buffered, format="PNG")
    img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
    messages = [{"role": "user", "content": [{"type": "text", "text": prompt}, {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{img_str}", "detail": detail}}]}]
    try:
        response = client.chat.completions.create(model=model, messages=messages, max_tokens=300)
        return response.choices[0].message.content
    except Exception as e:
        return f"Error processing image with GPT: {str(e)}"

def process_text_with_prompt(text, prompt, model="gpt-4o-mini"):
    messages = [{"role": "user", "content": f"{prompt}\n\n{text}"}]
    try:
        response = client.chat.completions.create(model=model, messages=messages, max_tokens=300)
        return response.choices[0].message.content
    except Exception as e:
        return f"Error processing text with GPT: {str(e)}"

def process_audio(audio_input, prompt):
    with open(audio_input, "rb") as file:
        transcription = client.audio.transcriptions.create(model="whisper-1", file=file)
    response = client.chat.completions.create(model="gpt-4o-mini", messages=[{"role": "user", "content": f"{prompt}\n\n{transcription.text}"}])
    return transcription.text, response.choices[0].message.content

def process_video(video_path, prompt):
    base64Frames, audio_path = process_video_frames(video_path)
    with open(video_path, "rb") as file:
        transcription = client.audio.transcriptions.create(model="whisper-1", file=file)
    messages = [{"role": "user", "content": ["These are the frames from the video.", *map(lambda x: {"type": "image_url", "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames), {"type": "text", "text": f"The audio transcription is: {transcription.text}\n\n{prompt}"}]}]
    response = client.chat.completions.create(model="gpt-4o-mini", messages=messages)
    return response.choices[0].message.content

def process_video_frames(video_path, seconds_per_frame=2):
    base64Frames = []
    base_video_path, _ = os.path.splitext(video_path)
    video = cv2.VideoCapture(video_path)
    total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = video.get(cv2.CAP_PROP_FPS)
    frames_to_skip = int(fps * seconds_per_frame)
    curr_frame = 0
    while curr_frame < total_frames - 1:
        video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame)
        success, frame = video.read()
        if not success:
            break
        _, buffer = cv2.imencode(".jpg", frame)
        base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
        curr_frame += frames_to_skip
    video.release()
    audio_path = f"{base_video_path}.mp3"
    try:
        clip = VideoFileClip(video_path)
        clip.audio.write_audiofile(audio_path, bitrate="32k")
        clip.audio.close()
        clip.close()
    except:
        logger.info("No audio track found in video.")
    return base64Frames, audio_path

def execute_code(code):
    buffer = io.StringIO()
    try:
        with redirect_stdout(buffer):
            exec(code, {}, {})
        return buffer.getvalue(), None
    except Exception as e:
        return None, str(e)
    finally:
        buffer.close()

# Sidebar
st.sidebar.subheader("Gallery Settings")
st.session_state['gallery_size'] = st.sidebar.slider("Gallery Size", 1, 10, st.session_state['gallery_size'], key="gallery_size_slider")

# Tabs
tabs = st.tabs(["Camera ๐Ÿ“ท", "Download ๐Ÿ“ฅ", "OCR ๐Ÿ”", "Build ๐ŸŒฑ", "Image Gen ๐ŸŽจ", "PDF ๐Ÿ“„", "Image ๐Ÿ–ผ๏ธ", "Audio ๐ŸŽต", "Video ๐ŸŽฅ", "Code ๐Ÿง‘โ€๐Ÿ’ป", "Gallery ๐Ÿ“š"])
(tab_camera, tab_download, tab_ocr, tab_build, tab_imggen, tab_pdf, tab_image, tab_audio, tab_video, tab_code, tab_gallery) = tabs

with tab_camera:
    st.header("Camera Snap ๐Ÿ“ท")
    cols = st.columns(2)
    for i, cam_key in enumerate(["cam0", "cam1"]):
        with cols[i]:
            cam_img = st.camera_input(f"Take a picture - Cam {i}", key=cam_key)
            if cam_img:
                filename = generate_filename(f"cam{i}")
                with open(filename, "wb") as f:
                    f.write(cam_img.getvalue())
                st.session_state[f'cam{i}_file'] = filename
                st.session_state['history'].append(f"Snapshot from Cam {i}: {filename}")
                st.image(Image.open(filename), caption=f"Camera {i}", use_container_width=True)

with tab_download:
    st.header("Download PDFs ๐Ÿ“ฅ")
    url_input = st.text_area("Enter PDF URLs (one per line)", height=200)
    if st.button("Download ๐Ÿค–"):
        urls = url_input.strip().split("\n")
        progress_bar = st.progress(0)
        for idx, url in enumerate(urls):
            if url:
                output_path = generate_filename(url, "pdf")
                if download_pdf(url, output_path):
                    st.session_state['downloaded_pdfs'][url] = output_path
                    st.session_state['history'].append(f"Downloaded PDF: {output_path}")
                    st.session_state['asset_checkboxes'][output_path] = True
                progress_bar.progress((idx + 1) / len(urls))

with tab_ocr:
    st.header("Test OCR ๐Ÿ”")
    all_files = get_gallery_files()
    if all_files:
        selected_file = st.selectbox("Select File", all_files, key="ocr_select")
        if selected_file and st.button("Run OCR ๐Ÿš€"):
            if selected_file.endswith('.png'):
                image = Image.open(selected_file)
            else:
                doc = fitz.open(selected_file)
                pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
                image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
                doc.close()
            output_file = generate_filename("ocr_output", "txt")
            result = asyncio.run(process_ocr(image, output_file))
            st.text_area("OCR Result", result, height=200)
            st.session_state['history'].append(f"OCR Test: {selected_file} -> {output_file}")

with tab_build:
    st.header("Build Titan ๐ŸŒฑ")
    model_type = st.selectbox("Model Type", ["Causal LM", "Diffusion"], key="build_type")
    base_model = st.selectbox("Select Model", ["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"] if model_type == "Causal LM" else ["OFA-Sys/small-stable-diffusion-v0", "stabilityai/stable-diffusion-2-base"])
    model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}")
    if st.button("Download Model โฌ‡๏ธ"):
        config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=model_name, base_model=base_model, size="small")
        builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
        builder.load_model(base_model, config)
        builder.save_model(config.model_path)
        st.session_state['builder'] = builder
        st.session_state['model_loaded'] = True

with tab_imggen:
    st.header("Test Image Gen ๐ŸŽจ")
    prompt = st.text_area("Prompt", "Generate a futuristic cityscape")
    if st.button("Run Image Gen ๐Ÿš€"):
        output_file = generate_filename("gen_output", "png")
        result = asyncio.run(process_image_gen(prompt, output_file))
        st.image(result, caption="Generated Image", use_container_width=True)
        st.session_state['history'].append(f"Image Gen Test: {prompt} -> {output_file}")

with tab_pdf:
    st.header("PDF Process ๐Ÿ“„")
    uploaded_pdfs = st.file_uploader("Upload PDFs", type=["pdf"], accept_multiple_files=True)
    view_mode = st.selectbox("View Mode", ["Single Page", "Double Page"], key="pdf_view_mode")
    if st.button("Process PDFs"):
        for pdf_file in uploaded_pdfs:
            pdf_path = generate_filename(pdf_file.name, "pdf")
            with open(pdf_path, "wb") as f:
                f.write(pdf_file.read())
            snapshots = asyncio.run(process_pdf_snapshot(pdf_path, "double" if view_mode == "Double Page" else "single"))
            for snapshot in snapshots:
                st.image(Image.open(snapshot), caption=snapshot)
                text = process_image_with_prompt(Image.open(snapshot), "Extract the electronic text from image")
                st.text_area(f"Extracted Text from {snapshot}", text)
                code_prompt = f"Generate Python code based on this text:\n\n{text}"
                code = process_text_with_prompt(text, code_prompt)
                st.code(code, language="python")
                if st.button(f"Execute Code from {snapshot}"):
                    output, error = execute_code(code)
                    if error:
                        st.error(f"Error: {error}")
                    else:
                        st.success(f"Output: {output or 'No output'}")

with tab_image:
    st.header("Image Process ๐Ÿ–ผ๏ธ")
    uploaded_images = st.file_uploader("Upload Images", type=["png", "jpg"], accept_multiple_files=True)
    prompt = st.text_input("Prompt", "Extract the electronic text from image")
    if st.button("Process Images"):
        for img_file in uploaded_images:
            img = Image.open(img_file)
            st.image(img, caption=img_file.name)
            result = process_image_with_prompt(img, prompt)
            st.text_area(f"Result for {img_file.name}", result)

with tab_audio:
    st.header("Audio Process ๐ŸŽต")
    audio_bytes = audio_recorder()
    if audio_bytes:
        filename = generate_filename("recording", "wav")
        with open(filename, "wb") as f:
            f.write(audio_bytes)
        st.audio(filename)
        transcript, summary = process_audio(filename, "Summarize this audio in markdown")
        st.text_area("Transcript", transcript)
        st.markdown(summary)

with tab_video:
    st.header("Video Process ๐ŸŽฅ")
    video_input = st.file_uploader("Upload Video", type=["mp4"])
    if video_input:
        video_path = generate_filename(video_input.name, "mp4")
        with open(video_path, "wb") as f:
            f.write(video_input.read())
        st.video(video_path)
        result = process_video(video_path, "Summarize this video in markdown")
        st.markdown(result)

with tab_code:
    st.header("Code Executor ๐Ÿง‘โ€๐Ÿ’ป")
    code_input = st.text_area("Python Code", height=400)
    if st.button("Run Code"):
        output, error = execute_code(code_input)
        if error:
            st.error(f"Error: {error}")
        else:
            st.success(f"Output: {output or 'No output'}")

with tab_gallery:
    st.header("Gallery ๐Ÿ“š")
    all_files = get_gallery_files()
    for file in all_files:
        if file.endswith('.png'):
            st.image(Image.open(file), caption=file)
        elif file.endswith('.pdf'):
            doc = fitz.open(file)
            pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5))
            st.image(Image.frombytes("RGB", [pix.width, pix.height], pix.samples), caption=file)
            doc.close()
        elif file.endswith('.md'):
            with open(file, "r") as f:
                st.markdown(f.read())
        elif file.endswith('.wav'):
            st.audio(file)
        elif file.endswith('.mp4'):
            st.video(file)

# Update gallery in sidebar
def update_gallery():
    container = st.session_state['asset_gallery_container']
    container.empty()
    all_files = get_gallery_files()
    if all_files:
        container.markdown("### Asset Gallery ๐Ÿ“ธ๐Ÿ“–")
        cols = container.columns(2)
        for idx, file in enumerate(all_files[:st.session_state['gallery_size']]):
            with cols[idx % 2]:
                if file.endswith('.png'):
                    st.image(Image.open(file), caption=os.path.basename(file))
                elif file.endswith('.pdf'):
                    doc = fitz.open(file)
                    pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5))
                    st.image(Image.frombytes("RGB", [pix.width, pix.height], pix.samples), caption=os.path.basename(file))
                    doc.close()
                st.checkbox("Select", key=f"asset_{file}", value=st.session_state['asset_checkboxes'].get(file, False))
                st.markdown(get_download_link(file, "application/octet-stream", "Download"), unsafe_allow_html=True)
                if st.button("Delete", key=f"delete_{file}"):
                    os.remove(file)
                    st.session_state['asset_checkboxes'].pop(file, None)
                    st.experimental_rerun()

update_gallery()

# Sidebar logs and history
st.sidebar.subheader("Action Logs ๐Ÿ“œ")
for record in log_records:
    st.sidebar.write(f"{record.asctime} - {record.levelname} - {record.message}")
st.sidebar.subheader("History ๐Ÿ“œ")
for entry in st.session_state.get("history", []):
    if entry:
        st.sidebar.write(entry)