Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 39,541 Bytes
c9b3642 9273ac8 d939f62 c9b3642 1bd9563 c9b3642 4cb8044 1f82ed4 4cb8044 c9b3642 e4afc79 c9b3642 e4afc79 c9b3642 aa54183 c9b3642 1bd9563 c9b3642 1bd9563 c9b3642 7b454b3 0f94994 39647be c9b3642 39647be c9b3642 4cb8044 c9b3642 dd39660 c9b3642 dd39660 c9b3642 dd39660 c9b3642 dd39660 c9b3642 dd39660 c9b3642 d939f62 4cb8044 d939f62 c9b3642 4cb8044 d939f62 4cb8044 d939f62 1f82ed4 d939f62 c9b3642 9273ac8 c9b3642 4cb8044 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 |
import aiofiles
import asyncio
import base64
import fitz
import glob
import logging
import os
import pandas as pd
import pytz
import random
import re
import requests
import shutil
import streamlit as st
import time
import torch
import zipfile
import json
from dataclasses import dataclass
from datetime import datetime
from diffusers import StableDiffusionPipeline
from io import BytesIO
from openai import OpenAI
from PIL import Image
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel
from typing import Optional
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID'))
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
log_records = []
class LogCaptureHandler(logging.Handler):
def emit(self, record):
log_records.append(record)
logger.addHandler(LogCaptureHandler())
st.set_page_config(
page_title="AI Vision & SFT Titans 🚀",
page_icon="🤖",
layout="wide",
initial_sidebar_state="expanded",
menu_items={
'Get Help': 'https://huggingface.co/awacke1',
'Report a Bug': 'https://huggingface.co/spaces/awacke1',
'About': "AI Vision & SFT Titans: PDFs, OCR, Image Gen, Line Drawings, Custom Diffusion, and SFT on CPU! 🌌"
}
)
st.session_state.setdefault('history', [])
st.session_state.setdefault('builder', None)
st.session_state.setdefault('model_loaded', False)
st.session_state.setdefault('processing', {})
st.session_state.setdefault('asset_checkboxes', {})
st.session_state.setdefault('downloaded_pdfs', {})
st.session_state.setdefault('unique_counter', 0)
st.session_state.setdefault('selected_model_type', "Causal LM")
st.session_state.setdefault('selected_model', "None")
st.session_state.setdefault('cam0_file', None)
st.session_state.setdefault('cam1_file', None)
st.session_state.setdefault('characters', [])
st.session_state.setdefault('char_form_reset', False)
if 'asset_gallery_container' not in st.session_state:
st.session_state['asset_gallery_container'] = st.sidebar.empty()
@dataclass
class ModelConfig:
name: str
base_model: str
size: str
domain: Optional[str] = None
model_type: str = "causal_lm"
@property
def model_path(self):
return f"models/{self.name}"
@dataclass
class DiffusionConfig:
name: str
base_model: str
size: str
domain: Optional[str] = None
@property
def model_path(self):
return f"diffusion_models/{self.name}"
class ModelBuilder:
def __init__(self):
self.config = None
self.model = None
self.tokenizer = None
self.jokes = [
"Why did the AI go to therapy? Too many layers to unpack! 😂",
"Training complete! Time for a binary coffee break. ☕",
"I told my neural network a joke; it couldn't stop dropping bits! 🤖",
"I asked the AI for a pun, and it said, 'I'm punning on parallel processing!' 😄",
"Debugging my code is like a stand-up routine—always a series of exceptions! 😆"
]
def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
with st.spinner(f"Loading {model_path}... ⏳"):
self.model = AutoModelForCausalLM.from_pretrained(model_path)
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
if config:
self.config = config
self.model.to("cuda" if torch.cuda.is_available() else "cpu")
st.success(f"Model loaded! 🎉 {random.choice(self.jokes)}")
return self
def save_model(self, path: str):
with st.spinner("Saving model... 💾"):
os.makedirs(os.path.dirname(path), exist_ok=True)
self.model.save_pretrained(path)
self.tokenizer.save_pretrained(path)
st.success(f"Model saved at {path}! ✅")
class DiffusionBuilder:
def __init__(self):
self.config = None
self.pipeline = None
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None):
with st.spinner(f"Loading diffusion model {model_path}... ⏳"):
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cpu")
if config:
self.config = config
st.success("Diffusion model loaded! 🎨")
return self
def save_model(self, path: str):
with st.spinner("Saving diffusion model... 💾"):
os.makedirs(os.path.dirname(path), exist_ok=True)
self.pipeline.save_pretrained(path)
st.success(f"Diffusion model saved at {path}! ✅")
def generate(self, prompt: str):
return self.pipeline(prompt, num_inference_steps=20).images[0]
def generate_filename(sequence, ext="png"):
return f"{sequence}_{time.strftime('%d%m%Y%H%M%S')}.{ext}"
def pdf_url_to_filename(url):
return re.sub(r'[<>:"/\\|?*]', '_', url) + ".pdf"
def get_download_link(file_path, mime_type="application/pdf", label="Download"):
return f'<a href="data:{mime_type};base64,{base64.b64encode(open(file_path, "rb").read()).decode()}" download="{os.path.basename(file_path)}">{label}</a>'
def zip_directory(directory_path, zip_path):
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
[zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path)))
for root, _, files in os.walk(directory_path) for file in files]
def get_model_files(model_type="causal_lm"):
return [d for d in glob.glob("models/*" if model_type == "causal_lm" else "diffusion_models/*") if os.path.isdir(d)] or ["None"]
def get_gallery_files(file_types=["png", "pdf"]):
return sorted(list({f for ext in file_types for f in glob.glob(f"*.{ext}")}))
def get_pdf_files():
return sorted(glob.glob("*.pdf"))
def download_pdf(url, output_path):
try:
response = requests.get(url, stream=True, timeout=10)
if response.status_code == 200:
with open(output_path, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
ret = True
else:
ret = False
except requests.RequestException as e:
logger.error(f"Failed to download {url}: {e}")
ret = False
return ret
async def process_pdf_snapshot(pdf_path, mode="single"):
start_time = time.time()
status = st.empty()
status.text(f"Processing PDF Snapshot ({mode})... (0s)")
try:
doc = fitz.open(pdf_path)
output_files = []
if mode == "single":
page = doc[0]
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
output_file = generate_filename("single", "png")
pix.save(output_file)
output_files.append(output_file)
elif mode == "twopage":
for i in range(min(2, len(doc))):
page = doc[i]
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
output_file = generate_filename(f"twopage_{i}", "png")
pix.save(output_file)
output_files.append(output_file)
elif mode == "allpages":
for i in range(len(doc)):
page = doc[i]
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
output_file = generate_filename(f"page_{i}", "png")
pix.save(output_file)
output_files.append(output_file)
doc.close()
elapsed = int(time.time() - start_time)
status.text(f"PDF Snapshot ({mode}) completed in {elapsed}s!")
return output_files
except Exception as e:
status.error(f"Failed to process PDF: {str(e)}")
return []
async def process_gpt4o_ocr(image, output_file):
start_time = time.time()
status = st.empty()
status.text("Processing GPT-4o OCR... (0s)")
buffered = BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
messages = [{
"role": "user",
"content": [
{"type": "text", "text": "Extract electronic text, and explain"},
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{img_str}", "detail": "auto"}}
]
}]
try:
response = client.chat.completions.create(model="gpt-4o", messages=messages, max_tokens=300)
result = response.choices[0].message.content
elapsed = int(time.time() - start_time)
status.text(f"GPT-4o OCR completed in {elapsed}s!")
async with aiofiles.open(output_file, "w") as f:
await f.write(result)
return result
except Exception as e:
status.error(f"Failed to process image with GPT-4o: {str(e)}")
return ""
async def process_image_gen(prompt, output_file):
start_time = time.time()
status = st.empty()
status.text("Processing Image Gen... (0s)")
pipeline = (st.session_state['builder'].pipeline
if st.session_state.get('builder') and isinstance(st.session_state['builder'], DiffusionBuilder)
and st.session_state['builder'].pipeline
else StableDiffusionPipeline.from_pretrained("OFA-Sys/small-stable-diffusion-v0", torch_dtype=torch.float32).to("cpu"))
gen_image = pipeline(prompt, num_inference_steps=20).images[0]
elapsed = int(time.time() - start_time)
status.text(f"Image Gen completed in {elapsed}s!")
gen_image.save(output_file)
return gen_image
def process_image_with_prompt(image, prompt, model="gpt-4o-mini", detail="auto"):
buffered = BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
messages = [{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{img_str}", "detail": detail}}
]
}]
try:
response = client.chat.completions.create(model=model, messages=messages, max_tokens=300)
return response.choices[0].message.content
except Exception as e:
return f"Error processing image with GPT: {str(e)}"
def process_text_with_prompt(text, prompt, model="gpt-4o-mini"):
messages = [{"role": "user", "content": f"{prompt}\n\n{text}"}]
try:
response = client.chat.completions.create(model=model, messages=messages, max_tokens=300)
return response.choices[0].message.content
except Exception as e:
return f"Error processing text with GPT: {str(e)}"
def randomize_character_content():
intro_templates = [
"{char} is a valiant knight who is silent and reserved, he looks handsome but aloof.",
"{char} is a mischievous thief with a heart of gold, always sneaking around but helping those in need.",
"{char} is a wise scholar who loves books more than people, often lost in thought.",
"{char} is a fiery warrior with a short temper, but fiercely loyal to friends.",
"{char} is a gentle healer who speaks softly, always carrying herbs and a warm smile."
]
greeting_templates = [
"You were startled by the sudden intrusion of a man into your home. 'I am from the knight's guild, and I have been ordered to arrest you.'",
"A shadowy figure steps into the light. 'I heard you needed help—name’s {char}, best thief in town.'",
"A voice calls from behind a stack of books. 'Oh, hello! I’m {char}, didn’t see you there—too many scrolls!'",
"A booming voice echoes, 'I’m {char}, and I’m here to fight for justice—or at least a good brawl!'",
"A soft hand touches your shoulder. 'I’m {char}, here to heal your wounds—don’t worry, I’ve got you.'"
]
name = f"Character_{random.randint(1000, 9999)}"
gender = random.choice(["Male", "Female"])
intro = random.choice(intro_templates).format(char=name)
greeting = random.choice(greeting_templates).format(char=name)
return name, gender, intro, greeting
def save_character(character_data):
characters = st.session_state.get('characters', [])
characters.append(character_data)
st.session_state['characters'] = characters
with open("characters.json", "w") as f:
json.dump(characters, f)
def load_characters():
try:
with open("characters.json", "r") as f:
characters = json.load(f)
st.session_state['characters'] = characters
except FileNotFoundError:
st.session_state['characters'] = []
st.sidebar.subheader("Gallery Settings")
st.session_state.setdefault('gallery_size', 2)
st.session_state['gallery_size'] = st.sidebar.slider("Gallery Size", 1, 10, st.session_state['gallery_size'], key="gallery_size_slider")
tabs = st.tabs([
"Camera Snap 📷", "Test OCR 🔍", "MD Gallery 📚", "Download PDFs 📥", "Build Titan 🌱",
"Test Image Gen 🎨", "PDF Process 📄", "Image Process 🖼️",
"Character Editor 🧑🎨", "Character Gallery 🖼️"
])
(tab_camera, tab_ocr, tab_md_gallery, tab_download, tab_build, tab_imggen, tab_pdf_process, tab_image_process, tab_character_editor, tab_character_gallery) = tabs
with tab_camera:
st.header("Camera Snap 📷")
st.subheader("Single Capture")
cols = st.columns(2)
with cols[0]:
cam0_img = st.camera_input("Take a picture - Cam 0", key="cam0")
if cam0_img:
filename = generate_filename("cam0")
if st.session_state['cam0_file'] and os.path.exists(st.session_state['cam0_file']):
os.remove(st.session_state['cam0_file'])
with open(filename, "wb") as f:
f.write(cam0_img.getvalue())
st.session_state['cam0_file'] = filename
entry = f"Snapshot from Cam 0: {filename}"
st.session_state['history'].append(entry)
st.image(Image.open(filename), caption="Camera 0", use_container_width=True)
logger.info(f"Saved snapshot from Camera 0: {filename}")
with cols[1]:
cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1")
if cam1_img:
filename = generate_filename("cam1")
if st.session_state['cam1_file'] and os.path.exists(st.session_state['cam1_file']):
os.remove(st.session_state['cam1_file'])
with open(filename, "wb") as f:
f.write(cam1_img.getvalue())
st.session_state['cam1_file'] = filename
entry = f"Snapshot from Cam 1: {filename}"
st.session_state['history'].append(entry)
st.image(Image.open(filename), caption="Camera 1", use_container_width=True)
logger.info(f"Saved snapshot from Camera 1: {filename}")
with tab_download:
st.header("Download PDFs 📥")
if st.button("Examples 📚"):
example_urls = [
"https://arxiv.org/pdf/2308.03892",
"https://arxiv.org/pdf/1912.01703",
"https://arxiv.org/pdf/2408.11039",
"https://arxiv.org/pdf/2109.10282",
"https://arxiv.org/pdf/2112.10752",
"https://arxiv.org/pdf/2308.11236",
"https://arxiv.org/pdf/1706.03762",
"https://arxiv.org/pdf/2006.11239",
"https://arxiv.org/pdf/2305.11207",
"https://arxiv.org/pdf/2106.09685",
"https://arxiv.org/pdf/2005.11401",
"https://arxiv.org/pdf/2106.10504"
]
st.session_state['pdf_urls'] = "\n".join(example_urls)
url_input = st.text_area("Enter PDF URLs (one per line)", value=st.session_state.get('pdf_urls', ""), height=200)
if st.button("Robo-Download 🤖"):
urls = url_input.strip().split("\n")
progress_bar = st.progress(0)
status_text = st.empty()
total_urls = len(urls)
existing_pdfs = get_pdf_files()
for idx, url in enumerate(urls):
if url:
output_path = pdf_url_to_filename(url)
status_text.text(f"Fetching {idx + 1}/{total_urls}: {os.path.basename(output_path)}...")
if output_path not in existing_pdfs:
if download_pdf(url, output_path):
st.session_state['downloaded_pdfs'][url] = output_path
logger.info(f"Downloaded PDF from {url} to {output_path}")
entry = f"Downloaded PDF: {output_path}"
st.session_state['history'].append(entry)
st.session_state['asset_checkboxes'][output_path] = True
else:
st.error(f"Failed to nab {url} 😿")
else:
st.info(f"Already got {os.path.basename(output_path)}! Skipping... 🐾")
st.session_state['downloaded_pdfs'][url] = output_path
progress_bar.progress((idx + 1) / total_urls)
status_text.text("Robo-Download complete! 🚀")
mode = st.selectbox("Snapshot Mode", ["Single Page (High-Res)", "Two Pages (High-Res)", "All Pages (High-Res)"], key="download_mode")
if st.button("Snapshot Selected 📸"):
selected_pdfs = [path for path in get_gallery_files() if path.endswith('.pdf') and st.session_state['asset_checkboxes'].get(path, False)]
if selected_pdfs:
for pdf_path in selected_pdfs:
if not os.path.exists(pdf_path):
st.warning(f"File not found: {pdf_path}. Skipping.")
continue
mode_key = {"Single Page (High-Res)": "single",
"Two Pages (High-Res)": "twopage",
"All Pages (High-Res)": "allpages"}[mode]
snapshots = asyncio.run(process_pdf_snapshot(pdf_path, mode_key))
for snapshot in snapshots:
st.image(Image.open(snapshot), caption=snapshot, use_container_width=True)
st.session_state['asset_checkboxes'][snapshot] = True
else:
st.warning("No PDFs selected for snapshotting! Check some boxes in the sidebar.")
with tab_ocr:
st.header("Test OCR 🔍")
all_files = get_gallery_files()
if all_files:
if st.button("OCR All Assets 🚀"):
full_text = "# OCR Results (GPT-4o)\n\n"
for file in all_files:
if file.endswith('.png'):
image = Image.open(file)
else:
doc = fitz.open(file)
pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
doc.close()
output_file = generate_filename(f"ocr_{os.path.basename(file)}", "txt")
result = asyncio.run(process_gpt4o_ocr(image, output_file))
full_text += f"## {os.path.basename(file)}\n\n{result}\n\n"
entry = f"OCR Test: {file} -> {output_file}"
st.session_state['history'].append(entry)
md_output_file = f"full_ocr_{int(time.time())}.md"
with open(md_output_file, "w") as f:
f.write(full_text)
st.success(f"Full OCR saved to {md_output_file}")
st.markdown(get_download_link(md_output_file, "text/markdown", "Download Full OCR Markdown"), unsafe_allow_html=True)
selected_file = st.selectbox("Select Image or PDF", all_files, key="ocr_select")
if selected_file:
if selected_file.endswith('.png'):
image = Image.open(selected_file)
else:
doc = fitz.open(selected_file)
pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
doc.close()
st.image(image, caption="Input Image", use_container_width=True)
if st.button("Run OCR 🚀", key="ocr_run"):
output_file = generate_filename("ocr_output", "md")
st.session_state['processing']['ocr'] = True
result = asyncio.run(process_gpt4o_ocr(image, output_file))
entry = f"OCR Test: {selected_file} -> {output_file}"
st.session_state['history'].append(entry)
#st.text_area("OCR Result", result, height=200, key="ocr_result")
st.code(result, language="python", line_numbers=True, wrap_lines=True, height=200)
# 03312025 5:55AM
if len(result) > 50: open(output_file, "w").write(result); st.success(f"OCR output saved to {output_file}")
else: st.warning("OCR output too short; file not saved.")
st.session_state['processing']['ocr'] = False
if selected_file.endswith('.pdf') and st.button("OCR All Pages 🚀", key="ocr_all_pages"):
doc = fitz.open(selected_file)
full_text = f"# OCR Results for {os.path.basename(selected_file)}\n\n"
for i in range(len(doc)):
pix = doc[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
output_file = generate_filename(f"ocr_page_{i}", "txt")
result = asyncio.run(process_gpt4o_ocr(image, output_file))
full_text += f"## Page {i + 1}\n\n{result}\n\n"
entry = f"OCR Test: {selected_file} Page {i + 1} -> {output_file}"
st.session_state['history'].append(entry)
md_output_file = f"full_ocr_{os.path.basename(selected_file)}_{int(time.time())}.md"
with open(md_output_file, "w") as f:
f.write(full_text)
st.success(f"Full OCR saved to {md_output_file}")
st.markdown(get_download_link(md_output_file, "text/markdown", "Download Full OCR Markdown"), unsafe_allow_html=True)
else:
st.warning("No assets in gallery yet. Use Camera Snap or Download PDFs!")
with tab_build:
st.header("Build Titan 🌱")
model_type = st.selectbox("Model Type", ["Causal LM", "Diffusion"], key="build_type")
base_model = st.selectbox(
"Select Tiny Model",
["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"] if model_type == "Causal LM"
else ["OFA-Sys/small-stable-diffusion-v0", "stabilityai/stable-diffusion-2-base"]
)
model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}")
domain = st.text_input("Target Domain", "general")
if st.button("Download Model ⬇️"):
config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(
name=model_name, base_model=base_model, size="small", domain=domain
)
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
builder.load_model(base_model, config)
builder.save_model(config.model_path)
st.session_state['builder'] = builder
st.session_state['model_loaded'] = True
st.session_state['selected_model_type'] = model_type
st.session_state['selected_model'] = config.model_path
entry = f"Built {model_type} model: {model_name}"
st.session_state['history'].append(entry)
st.success(f"Model downloaded and saved to {config.model_path}! 🎉")
st.rerun()
with tab_imggen:
st.header("Test Image Gen 🎨")
all_files = get_gallery_files()
if all_files:
selected_file = st.selectbox("Select Image or PDF", all_files, key="gen_select")
if selected_file:
if selected_file.endswith('.png'):
image = Image.open(selected_file)
else:
doc = fitz.open(selected_file)
pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
doc.close()
st.image(image, caption="Reference Image", use_container_width=True)
prompt = st.text_area("Prompt", "Generate a neon superhero version of this image", key="gen_prompt")
if st.button("Run Image Gen 🚀", key="gen_run"):
output_file = generate_filename("gen_output", "png")
st.session_state['processing']['gen'] = True
result = asyncio.run(process_image_gen(prompt, output_file))
entry = f"Image Gen Test: {prompt} -> {output_file}"
st.session_state['history'].append(entry)
st.image(result, caption="Generated Image", use_container_width=True)
st.success(f"Image saved to {output_file}")
st.session_state['processing']['gen'] = False
else:
st.warning("No images or PDFs in gallery yet. Use Camera Snap or Download PDFs!")
with tab_pdf_process:
st.header("PDF Process")
st.subheader("Upload PDFs for GPT-based text extraction")
gpt_models = ["gpt-4o", "gpt-4o-mini"]
selected_gpt_model = st.selectbox("Select GPT Model", gpt_models, key="pdf_gpt_model")
detail_level = st.selectbox("Detail Level", ["auto", "low", "high"], key="pdf_detail_level")
uploaded_pdfs = st.file_uploader("Upload PDF files", type=["pdf"], accept_multiple_files=True, key="pdf_process_uploader")
view_mode = st.selectbox("View Mode", ["Single Page", "Double Page"], key="pdf_view_mode")
if st.button("Process Uploaded PDFs", key="process_pdfs"):
combined_text = ""
for pdf_file in uploaded_pdfs:
pdf_bytes = pdf_file.read()
temp_pdf_path = f"temp_{pdf_file.name}"
with open(temp_pdf_path, "wb") as f:
f.write(pdf_bytes)
try:
doc = fitz.open(temp_pdf_path)
st.write(f"Processing {pdf_file.name} with {len(doc)} pages")
if view_mode == "Single Page":
for i, page in enumerate(doc):
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
st.image(img, caption=f"{pdf_file.name} Page {i+1}")
gpt_text = process_image_with_prompt(img, "Extract the electronic text from image", model=selected_gpt_model, detail=detail_level)
combined_text += f"\n## {pdf_file.name} - Page {i+1}\n\n{gpt_text}\n"
else:
pages = list(doc)
for i in range(0, len(pages), 2):
if i+1 < len(pages):
pix1 = pages[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
img1 = Image.frombytes("RGB", [pix1.width, pix1.height], pix1.samples)
pix2 = pages[i+1].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
img2 = Image.frombytes("RGB", [pix2.width, pix2.height], pix2.samples)
total_width = img1.width + img2.width
max_height = max(img1.height, img2.height)
combined_img = Image.new("RGB", (total_width, max_height))
combined_img.paste(img1, (0, 0))
combined_img.paste(img2, (img1.width, 0))
st.image(combined_img, caption=f"{pdf_file.name} Pages {i+1}-{i+2}")
gpt_text = process_image_with_prompt(combined_img, "Extract the electronic text from image", model=selected_gpt_model, detail=detail_level)
combined_text += f"\n## {pdf_file.name} - Pages {i+1}-{i+2}\n\n{gpt_text}\n"
else:
pix = pages[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
st.image(img, caption=f"{pdf_file.name} Page {i+1}")
gpt_text = process_image_with_prompt(img, "Extract the electronic text from image", model=selected_gpt_model, detail=detail_level)
combined_text += f"\n## {pdf_file.name} - Page {i+1}\n\n{gpt_text}\n"
doc.close()
except Exception as e:
st.error(f"Error processing {pdf_file.name}: {str(e)}")
finally:
os.remove(temp_pdf_path)
output_filename = generate_filename("processed_pdf", "md")
with open(output_filename, "w", encoding="utf-8") as f:
f.write(combined_text)
st.success(f"PDF processing complete. MD file saved as {output_filename}")
st.markdown(get_download_link(output_filename, "text/markdown", "Download Processed PDF MD"), unsafe_allow_html=True)
with tab_image_process:
st.header("Image Process")
st.subheader("Upload Images for GPT-based OCR")
gpt_models = ["gpt-4o", "gpt-4o-mini"]
selected_gpt_model = st.selectbox("Select GPT Model", gpt_models, key="img_gpt_model")
detail_level = st.selectbox("Detail Level", ["auto", "low", "high"], key="img_detail_level")
prompt_img = st.text_input("Enter prompt for image processing", "Extract the electronic text from image", key="img_process_prompt")
uploaded_images = st.file_uploader("Upload image files", type=["png", "jpg", "jpeg"], accept_multiple_files=True, key="image_process_uploader")
if st.button("Process Uploaded Images", key="process_images"):
combined_text = ""
for img_file in uploaded_images:
try:
img = Image.open(img_file)
st.image(img, caption=img_file.name)
gpt_text = process_image_with_prompt(img, prompt_img, model=selected_gpt_model, detail=detail_level)
combined_text += f"\n## {img_file.name}\n\n{gpt_text}\n"
except Exception as e:
st.error(f"Error processing image {img_file.name}: {str(e)}")
output_filename = generate_filename("processed_image", "md")
with open(output_filename, "w", encoding="utf-8") as f:
f.write(combined_text)
st.success(f"Image processing complete. MD file saved as {output_filename}")
st.markdown(get_download_link(output_filename, "text/markdown", "Download Processed Image MD"), unsafe_allow_html=True)
with tab_md_gallery:
st.header("MD Gallery and GPT Processing")
gpt_models = ["gpt-4o", "gpt-4o-mini"]
selected_gpt_model = st.selectbox("Select GPT Model", gpt_models, key="md_gpt_model")
md_files = sorted(glob.glob("*.md"))
if md_files:
st.subheader("Individual File Processing")
cols = st.columns(2)
for idx, md_file in enumerate(md_files):
with cols[idx % 2]:
st.write(md_file)
if st.button(f"Process {md_file}", key=f"process_md_{md_file}"):
try:
with open(md_file, "r", encoding="utf-8") as f:
content = f.read()
prompt_md = "Summarize this into markdown outline with emojis and number the topics 1..12"
result_text = process_text_with_prompt(content, prompt_md, model=selected_gpt_model)
st.markdown(result_text)
output_filename = generate_filename(f"processed_{os.path.splitext(md_file)[0]}", "md")
with open(output_filename, "w", encoding="utf-8") as f:
f.write(result_text)
st.markdown(get_download_link(output_filename, "text/markdown", f"Download {output_filename}"), unsafe_allow_html=True)
except Exception as e:
st.error(f"Error processing {md_file}: {str(e)}")
st.subheader("Knowledge Processing")
st.write("Select MD files to combine and process:")
selected_md = {}
for md_file in md_files:
selected_md[md_file] = st.checkbox(md_file, key=f"checkbox_md_{md_file}")
Knowledge_prompt = st.text_input("1. Change into a numbered markdown outline with emojis. 2. Number the topics and make sure to include all data.", key="Knowledge_prompt")
if st.button("Process Selected MD Files", key="process_Knowledge_md"):
combined_content = ""
for md_file, selected in selected_md.items():
if selected:
try:
with open(md_file, "r", encoding="utf-8") as f:
combined_content += f"\n## {md_file}\n" + f.read() + "\n"
except Exception as e:
st.error(f"Error reading {md_file}: {str(e)}")
if combined_content:
result_text = process_text_with_prompt(combined_content, Knowledge_prompt, model=selected_gpt_model)
st.markdown(result_text)
output_filename = generate_filename("Knowledge_processed_md", "md")
with open(output_filename, "w", encoding="utf-8") as f:
f.write(result_text)
st.success(f"Knowledge processing complete. MD file saved as {output_filename}")
st.markdown(get_download_link(output_filename, "text/markdown", "Download Knowledge Processed MD"), unsafe_allow_html=True)
else:
st.warning("No MD files selected.")
else:
st.warning("No MD files found.")
with tab_character_editor:
st.header("Character Editor 🧑🎨")
st.subheader("Create Your Character")
with st.form(key="character_form"):
if st.session_state.get('char_form_reset', False):
default_name, default_gender, default_intro, default_greeting = randomize_character_content()
st.session_state['char_form_reset'] = False
else:
default_name, default_gender, default_intro, default_greeting = randomize_character_content()
if st.form_submit_button("Randomize Content 🎲"):
default_name, default_gender, default_intro, default_greeting = randomize_character_content()
name = st.text_input("Name (3-25 characters, letters, numbers, underscore, hyphen, space only)",
value=default_name,
max_chars=25,
key="char_name")
gender = st.radio("Gender", ["Male", "Female"],
index=["Male", "Female"].index(default_gender),
key="char_gender")
intro = st.text_area("Intro (Publicly seen)",
value=default_intro,
max_chars=300,
key="char_intro")
greeting = st.text_area("Greeting",
value=default_greeting,
max_chars=300,
key="char_greeting")
if st.form_submit_button("Create Character"):
if not name or len(name) < 3:
st.error("Name must be 3-25 characters long.")
elif not re.match(r'^[a-zA-Z0-9 _-]+$', name):
st.error("Name can only contain letters, numbers, underscores, hyphens, and spaces.")
elif not intro or not greeting:
st.error("Intro and Greeting cannot be empty.")
else:
character_data = {
"name": name,
"gender": gender,
"intro": intro,
"greeting": greeting,
"created_at": datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
"tags": ["OC"]
}
save_character(character_data)
st.success(f"Character '{name}' created successfully!")
st.session_state['char_form_reset'] = True
st.rerun()
with tab_character_gallery:
st.header("Character Gallery 🖼️")
load_characters()
characters = st.session_state.get('characters', [])
if characters:
st.subheader("Your Characters")
cols = st.columns(3)
for idx, char in enumerate(characters):
with cols[idx % 3]:
st.markdown(f"**{char['name']}**")
st.write(f"**Gender**: {char['gender']}")
st.write(f"**Intro**: {char['intro']}")
st.write(f"**Greeting**: {char['greeting']}")
st.write(f"**Created**: {char['created_at']}")
st.write(f"**Tags**: {', '.join(char['tags'])}")
if st.button(f"Delete {char['name']}", key=f"delete_char_{idx}"):
characters.pop(idx)
st.session_state['characters'] = characters
with open("characters.json", "w") as f:
json.dump(characters, f)
st.rerun()
st.markdown("---")
else:
st.warning("No characters created yet. Use the Character Editor to create one!")
def update_gallery():
container = st.session_state['asset_gallery_container']
container.empty()
all_files = get_gallery_files()
if all_files:
container.markdown("### Asset Gallery 📸📖")
cols = container.columns(2)
for idx, file in enumerate(all_files[:st.session_state['gallery_size']]):
with cols[idx % 2]:
st.session_state['unique_counter'] += 1
unique_id = st.session_state['unique_counter']
if file.endswith('.png'):
st.image(Image.open(file), caption=os.path.basename(file), use_container_width=True)
else:
doc = fitz.open(file)
pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5))
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
st.image(img, caption=os.path.basename(file), use_container_width=True)
doc.close()
checkbox_key = f"asset_{file}_{unique_id}"
st.session_state['asset_checkboxes'][file] = st.checkbox("Use for SFT/Input", value=st.session_state['asset_checkboxes'].get(file, False), key=checkbox_key)
mime_type = "image/png" if file.endswith('.png') else "application/pdf"
st.markdown(get_download_link(file, mime_type, "Snag It! 📥"), unsafe_allow_html=True)
if st.button("Zap It! 🗑️", key=f"delete_{file}_{unique_id}"):
os.remove(file)
st.session_state['asset_checkboxes'].pop(file, None)
st.success(f"Asset {os.path.basename(file)} vaporized! 💨")
st.rerun()
update_gallery()
st.sidebar.subheader("Action Logs 📜")
for record in log_records:
st.sidebar.write(f"{record.asctime} - {record.levelname} - {record.message}")
st.sidebar.subheader("History 📜")
for entry in st.session_state.get("history", []):
if entry is not None:
st.sidebar.write(entry)
|