File size: 11,689 Bytes
2578d93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
#!/usr/bin/env python3
import os
import glob
import time
import streamlit as st
from PIL import Image
import torch
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration, AutoTokenizer, AutoModel, TrOCRProcessor, VisionEncoderDecoderModel
from diffusers import StableDiffusionPipeline
import cv2
import numpy as np
import logging
import asyncio
import aiofiles
from io import BytesIO

# Logging setup
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
log_records = []

class LogCaptureHandler(logging.Handler):
    def emit(self, record):
        log_records.append(record)

logger.addHandler(LogCaptureHandler())

# Page Configuration
st.set_page_config(
    page_title="AI Vision Titans 🚀",
    page_icon="🤖",
    layout="wide",
    initial_sidebar_state="expanded",
    menu_items={'About': "AI Vision Titans: OCR, Image Gen, Line Drawings on CPU! 🌌"}
)

# Initialize st.session_state
if 'captured_images' not in st.session_state:
    st.session_state['captured_images'] = []
if 'processing' not in st.session_state:
    st.session_state['processing'] = {}

# Utility Functions
def generate_filename(sequence, ext="png"):
    from datetime import datetime
    import pytz
    central = pytz.timezone('US/Central')
    timestamp = datetime.now(central).strftime("%d%m%Y%H%M%S%p")
    return f"{sequence}{timestamp}.{ext}"

def get_gallery_files(file_types):
    return sorted([f for ext in file_types for f in glob.glob(f"*.{ext}")])

def update_gallery():
    media_files = get_gallery_files(["png", "txt"])
    if media_files:
        cols = st.sidebar.columns(2)
        for idx, file in enumerate(media_files[:gallery_size * 2]):
            with cols[idx % 2]:
                if file.endswith(".png"):
                    st.image(Image.open(file), caption=file, use_container_width=True)
                elif file.endswith(".txt"):
                    with open(file, "r") as f:
                        st.text(f.read()[:50] + "..." if len(f.read()) > 50 else f.read(), help=file)

# Model Loaders (Smaller, CPU-focused)
def load_ocr_qwen2vl():
    model_id = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
    processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
    model = Qwen2VLForConditionalGeneration.from_pretrained(model_id, trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval()
    return processor, model

def load_ocr_trocr():
    model_id = "microsoft/trocr-small-handwritten"  # ~250 MB
    processor = TrOCRProcessor.from_pretrained(model_id)
    model = VisionEncoderDecoderModel.from_pretrained(model_id, torch_dtype=torch.float32).to("cpu").eval()
    return processor, model

def load_image_gen():
    model_id = "OFA-Sys/small-stable-diffusion-v0"  # ~300 MB
    pipeline = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32).to("cpu")
    return pipeline

def load_line_drawer():
    # Simplified OpenCV-based edge detection (CPU-friendly substitute for Torch Space UNet)
    def edge_detection(image):
        img_np = np.array(image.convert("RGB"))
        gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY)
        edges = cv2.Canny(gray, 100, 200)
        return Image.fromarray(edges)
    return edge_detection

# Async Processing Functions
async def process_ocr(image, prompt, model_name, output_file):
    start_time = time.time()
    status = st.empty()
    status.text(f"Processing {model_name} OCR... (0s)")
    if model_name == "Qwen2-VL-OCR-2B":
        processor, model = load_ocr_qwen2vl()
        # Corrected input format: apply chat template
        messages = [{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": prompt}]}]
        text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        inputs = processor(text=[text], images=[image], return_tensors="pt", padding=True).to("cpu")
        outputs = model.generate(**inputs, max_new_tokens=1024)
        result = processor.batch_decode(outputs, skip_special_tokens=True)[0]
    else:  # TrOCR
        processor, model = load_ocr_trocr()
        pixel_values = processor(images=image, return_tensors="pt").pixel_values.to("cpu")
        outputs = model.generate(pixel_values)
        result = processor.batch_decode(outputs, skip_special_tokens=True)[0]
    elapsed = int(time.time() - start_time)
    status.text(f"{model_name} OCR completed in {elapsed}s!")
    async with aiofiles.open(output_file, "w") as f:
        await f.write(result)
    st.session_state['captured_images'].append(output_file)
    return result

async def process_image_gen(prompt, output_file):
    start_time = time.time()
    status = st.empty()
    status.text("Processing Image Gen... (0s)")
    pipeline = load_image_gen()
    gen_image = pipeline(prompt, num_inference_steps=20).images[0]  # Reduced steps for speed
    elapsed = int(time.time() - start_time)
    status.text(f"Image Gen completed in {elapsed}s!")
    gen_image.save(output_file)
    st.session_state['captured_images'].append(output_file)
    return gen_image

async def process_line_drawing(image, output_file):
    start_time = time.time()
    status = st.empty()
    status.text("Processing Line Drawing... (0s)")
    edge_fn = load_line_drawer()
    line_drawing = edge_fn(image)
    elapsed = int(time.time() - start_time)
    status.text(f"Line Drawing completed in {elapsed}s!")
    line_drawing.save(output_file)
    st.session_state['captured_images'].append(output_file)
    return line_drawing

# Main App
st.title("AI Vision Titans 🚀 (OCR, Gen, Drawings!)")

# Sidebar Gallery
st.sidebar.header("Captured Images 🎨")
gallery_size = st.sidebar.slider("Gallery Size", 1, 10, 4)
update_gallery()

st.sidebar.subheader("Action Logs 📜")
log_container = st.sidebar.empty()
with log_container:
    for record in log_records:
        st.write(f"{record.asctime} - {record.levelname} - {record.message}")

# Tabs
tab1, tab2, tab3, tab4 = st.tabs(["Camera Snap 📷", "Test OCR 🔍", "Test Image Gen 🎨", "Test Line Drawings ✏️"])

with tab1:
    st.header("Camera Snap 📷")
    st.subheader("Single Capture")
    cols = st.columns(2)
    with cols[0]:
        cam0_img = st.camera_input("Take a picture - Cam 0", key="cam0")
        if cam0_img:
            filename = generate_filename(0)
            if filename not in st.session_state['captured_images']:
                with open(filename, "wb") as f:
                    f.write(cam0_img.getvalue())
                st.image(Image.open(filename), caption=filename, use_container_width=True)
                logger.info(f"Saved snapshot from Camera 0: {filename}")
                st.session_state['captured_images'].append(filename)
                update_gallery()
    with cols[1]:
        cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1")
        if cam1_img:
            filename = generate_filename(1)
            if filename not in st.session_state['captured_images']:
                with open(filename, "wb") as f:
                    f.write(cam1_img.getvalue())
                st.image(Image.open(filename), caption=filename, use_container_width=True)
                logger.info(f"Saved snapshot from Camera 1: {filename}")
                st.session_state['captured_images'].append(filename)
                update_gallery()

    st.subheader("Burst Capture")
    slice_count = st.number_input("Number of Frames", min_value=1, max_value=20, value=10, key="burst_count")
    if st.button("Start Burst Capture 📸"):
        st.session_state['burst_frames'] = []
        placeholder = st.empty()
        for i in range(slice_count):
            with placeholder.container():
                st.write(f"Capturing frame {i+1}/{slice_count}...")
                img = st.camera_input(f"Frame {i}", key=f"burst_{i}_{time.time()}")
                if img:
                    filename = generate_filename(f"burst_{i}")
                    if filename not in st.session_state['captured_images']:
                        with open(filename, "wb") as f:
                            f.write(img.getvalue())
                        st.session_state['burst_frames'].append(filename)
                        logger.info(f"Saved burst frame {i}: {filename}")
                        st.image(Image.open(filename), caption=filename, use_container_width=True)
                    time.sleep(0.5)  # Small delay for visibility
        st.session_state['captured_images'].extend([f for f in st.session_state['burst_frames'] if f not in st.session_state['captured_images']])
        update_gallery()
        placeholder.success(f"Captured {len(st.session_state['burst_frames'])} frames!")

with tab2:
    st.header("Test OCR 🔍")
    captured_images = get_gallery_files(["png"])
    if captured_images:
        selected_image = st.selectbox("Select Image", captured_images, key="ocr_select")
        image = Image.open(selected_image)
        st.image(image, caption="Input Image", use_container_width=True)
        ocr_model = st.selectbox("Select OCR Model", ["Qwen2-VL-OCR-2B", "TrOCR-Small"], key="ocr_model_select")
        prompt = st.text_area("Prompt", "Extract text from the image", key="ocr_prompt")
        if st.button("Run OCR 🚀", key="ocr_run"):
            output_file = generate_filename("ocr_output", "txt")
            st.session_state['processing']['ocr'] = True
            result = asyncio.run(process_ocr(image, prompt, ocr_model, output_file))
            st.text_area("OCR Result", result, height=200, key="ocr_result")
            st.success(f"OCR output saved to {output_file}")
            st.session_state['processing']['ocr'] = False
    else:
        st.warning("No images captured yet. Use Camera Snap first!")

with tab3:
    st.header("Test Image Gen 🎨")
    captured_images = get_gallery_files(["png"])
    if captured_images:
        selected_image = st.selectbox("Select Image", captured_images, key="gen_select")
        image = Image.open(selected_image)
        st.image(image, caption="Reference Image", use_container_width=True)
        prompt = st.text_area("Prompt", "Generate a similar superhero image", key="gen_prompt")
        if st.button("Run Image Gen 🚀", key="gen_run"):
            output_file = generate_filename("gen_output", "png")
            st.session_state['processing']['gen'] = True
            result = asyncio.run(process_image_gen(prompt, output_file))
            st.image(result, caption="Generated Image", use_container_width=True)
            st.success(f"Image saved to {output_file}")
            st.session_state['processing']['gen'] = False
    else:
        st.warning("No images captured yet. Use Camera Snap first!")

with tab4:
    st.header("Test Line Drawings ✏️")
    captured_images = get_gallery_files(["png"])
    if captured_images:
        selected_image = st.selectbox("Select Image", captured_images, key="line_select")
        image = Image.open(selected_image)
        st.image(image, caption="Input Image", use_container_width=True)
        if st.button("Run Line Drawing 🚀", key="line_run"):
            output_file = generate_filename("line_output", "png")
            st.session_state['processing']['line'] = True
            result = asyncio.run(process_line_drawing(image, output_file))
            st.image(result, caption="Line Drawing", use_container_width=True)
            st.success(f"Line drawing saved to {output_file}")
            st.session_state['processing']['line'] = False
    else:
        st.warning("No images captured yet. Use Camera Snap first!")

# Initial Gallery Update
update_gallery()