|
|
|
|
|
|
|
import os |
|
import glob |
|
import base64 |
|
import streamlit as st |
|
import pandas as pd |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from torch.utils.data import Dataset, DataLoader |
|
import csv |
|
import time |
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple |
|
import zipfile |
|
import math |
|
from PIL import Image |
|
import random |
|
import logging |
|
import numpy as np |
|
|
|
|
|
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") |
|
logger = logging.getLogger(__name__) |
|
log_records = [] |
|
|
|
class LogCaptureHandler(logging.Handler): |
|
def emit(self, record): |
|
log_records.append(record) |
|
|
|
logger.addHandler(LogCaptureHandler()) |
|
|
|
|
|
st.set_page_config( |
|
page_title="SFT Tiny Titans 🚀", |
|
page_icon="🤖", |
|
layout="wide", |
|
initial_sidebar_state="expanded", |
|
menu_items={ |
|
'Get Help': 'https://huggingface.co/awacke1', |
|
'Report a Bug': 'https://huggingface.co/spaces/awacke1', |
|
'About': "Tiny Titans: Small models, big dreams, and a sprinkle of chaos! 🌌" |
|
} |
|
) |
|
|
|
|
|
if 'captured_images' not in st.session_state: |
|
st.session_state['captured_images'] = [] |
|
if 'builder' not in st.session_state: |
|
st.session_state['builder'] = None |
|
if 'model_loaded' not in st.session_state: |
|
st.session_state['model_loaded'] = False |
|
|
|
|
|
@dataclass |
|
class ModelConfig: |
|
name: str |
|
base_model: str |
|
size: str |
|
domain: Optional[str] = None |
|
model_type: str = "causal_lm" |
|
@property |
|
def model_path(self): |
|
return f"models/{self.name}" |
|
|
|
@dataclass |
|
class DiffusionConfig: |
|
name: str |
|
base_model: str |
|
size: str |
|
@property |
|
def model_path(self): |
|
return f"diffusion_models/{self.name}" |
|
|
|
|
|
class SFTDataset(Dataset): |
|
def __init__(self, data, tokenizer, max_length=128): |
|
self.data = data |
|
self.tokenizer = tokenizer |
|
self.max_length = max_length |
|
def __len__(self): |
|
return len(self.data) |
|
def __getitem__(self, idx): |
|
prompt = self.data[idx]["prompt"] |
|
response = self.data[idx]["response"] |
|
full_text = f"{prompt} {response}" |
|
full_encoding = self.tokenizer(full_text, max_length=self.max_length, padding="max_length", truncation=True, return_tensors="pt") |
|
prompt_encoding = self.tokenizer(prompt, max_length=self.max_length, padding=False, truncation=True, return_tensors="pt") |
|
input_ids = full_encoding["input_ids"].squeeze() |
|
attention_mask = full_encoding["attention_mask"].squeeze() |
|
labels = input_ids.clone() |
|
prompt_len = prompt_encoding["input_ids"].shape[1] |
|
if prompt_len < self.max_length: |
|
labels[:prompt_len] = -100 |
|
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels} |
|
|
|
class DiffusionDataset(Dataset): |
|
def __init__(self, images, texts): |
|
self.images = images |
|
self.texts = texts |
|
def __len__(self): |
|
return len(self.images) |
|
def __getitem__(self, idx): |
|
return {"image": self.images[idx], "text": self.texts[idx]} |
|
|
|
|
|
class ModelBuilder: |
|
def __init__(self): |
|
self.config = None |
|
self.model = None |
|
self.tokenizer = None |
|
self.sft_data = None |
|
self.jokes = ["Why did the AI go to therapy? Too many layers to unpack! 😂", "Training complete! Time for a binary coffee break. ☕"] |
|
def load_model(self, model_path: str, config: Optional[ModelConfig] = None): |
|
with st.spinner(f"Loading {model_path}... ⏳"): |
|
self.model = AutoModelForCausalLM.from_pretrained(model_path) |
|
self.tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
if self.tokenizer.pad_token is None: |
|
self.tokenizer.pad_token = self.tokenizer.eos_token |
|
if config: |
|
self.config = config |
|
self.model.to("cuda" if torch.cuda.is_available() else "cpu") |
|
st.success(f"Model loaded! 🎉 {random.choice(self.jokes)}") |
|
return self |
|
def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4): |
|
self.sft_data = [] |
|
with open(csv_path, "r") as f: |
|
reader = csv.DictReader(f) |
|
for row in reader: |
|
self.sft_data.append({"prompt": row["prompt"], "response": row["response"]}) |
|
dataset = SFTDataset(self.sft_data, self.tokenizer) |
|
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True) |
|
optimizer = torch.optim.AdamW(self.model.parameters(), lr=2e-5) |
|
self.model.train() |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
self.model.to(device) |
|
for epoch in range(epochs): |
|
with st.spinner(f"Training epoch {epoch + 1}/{epochs}... ⚙️"): |
|
total_loss = 0 |
|
for batch in dataloader: |
|
optimizer.zero_grad() |
|
input_ids = batch["input_ids"].to(device) |
|
attention_mask = batch["attention_mask"].to(device) |
|
labels = batch["labels"].to(device) |
|
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, labels=labels) |
|
loss = outputs.loss |
|
loss.backward() |
|
optimizer.step() |
|
total_loss += loss.item() |
|
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}") |
|
st.success(f"SFT Fine-tuning completed! 🎉 {random.choice(self.jokes)}") |
|
return self |
|
def save_model(self, path: str): |
|
with st.spinner("Saving model... 💾"): |
|
os.makedirs(os.path.dirname(path), exist_ok=True) |
|
self.model.save_pretrained(path) |
|
self.tokenizer.save_pretrained(path) |
|
st.success(f"Model saved at {path}! ✅") |
|
def evaluate(self, prompt: str, status_container=None): |
|
self.model.eval() |
|
if status_container: |
|
status_container.write("Preparing to evaluate... 🧠") |
|
try: |
|
with torch.no_grad(): |
|
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device) |
|
outputs = self.model.generate(**inputs, max_new_tokens=50, do_sample=True, top_p=0.95, temperature=0.7) |
|
return self.tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
except Exception as e: |
|
if status_container: |
|
status_container.error(f"Oops! Something broke: {str(e)} 💥") |
|
return f"Error: {str(e)}" |
|
|
|
class DiffusionBuilder: |
|
def __init__(self): |
|
self.config = None |
|
self.pipeline = None |
|
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None): |
|
from diffusers import StableDiffusionPipeline |
|
with st.spinner(f"Loading diffusion model {model_path}... ⏳"): |
|
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path) |
|
self.pipeline.to("cuda" if torch.cuda.is_available() else "cpu") |
|
if config: |
|
self.config = config |
|
st.success(f"Diffusion model loaded! 🎨") |
|
return self |
|
def fine_tune_sft(self, images, texts, epochs=3): |
|
dataset = DiffusionDataset(images, texts) |
|
dataloader = DataLoader(dataset, batch_size=1, shuffle=True) |
|
optimizer = torch.optim.AdamW(self.pipeline.unet.parameters(), lr=1e-5) |
|
self.pipeline.unet.train() |
|
for epoch in range(epochs): |
|
with st.spinner(f"Training diffusion epoch {epoch + 1}/{epochs}... ⚙️"): |
|
total_loss = 0 |
|
for batch in dataloader: |
|
optimizer.zero_grad() |
|
image = batch["image"][0].to(self.pipeline.device) |
|
text = batch["text"][0] |
|
latents = self.pipeline.vae.encode(torch.tensor(np.array(image)).permute(2, 0, 1).unsqueeze(0).float().to(self.pipeline.device)).latent_dist.sample() |
|
noise = torch.randn_like(latents) |
|
timesteps = torch.randint(0, self.pipeline.scheduler.num_train_timesteps, (latents.shape[0],), device=latents.device) |
|
noisy_latents = self.pipeline.scheduler.add_noise(latents, noise, timesteps) |
|
text_embeddings = self.pipeline.text_encoder(self.pipeline.tokenizer(text, return_tensors="pt").input_ids.to(self.pipeline.device))[0] |
|
pred_noise = self.pipeline.unet(noisy_latents, timesteps, encoder_hidden_states=text_embeddings).sample |
|
loss = torch.nn.functional.mse_loss(pred_noise, noise) |
|
loss.backward() |
|
optimizer.step() |
|
total_loss += loss.item() |
|
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}") |
|
st.success("Diffusion SFT Fine-tuning completed! 🎨") |
|
return self |
|
def save_model(self, path: str): |
|
with st.spinner("Saving diffusion model... 💾"): |
|
os.makedirs(os.path.dirname(path), exist_ok=True) |
|
self.pipeline.save_pretrained(path) |
|
st.success(f"Diffusion model saved at {path}! ✅") |
|
def generate(self, prompt: str): |
|
return self.pipeline(prompt, num_inference_steps=50).images[0] |
|
|
|
|
|
def generate_filename(sequence, ext="png"): |
|
from datetime import datetime |
|
import pytz |
|
central = pytz.timezone('US/Central') |
|
timestamp = datetime.now(central).strftime("%d%m%Y%H%M%S%p") |
|
return f"{sequence}{timestamp}.{ext}" |
|
|
|
def get_download_link(file_path, mime_type="text/plain", label="Download"): |
|
with open(file_path, 'rb') as f: |
|
data = f.read() |
|
b64 = base64.b64encode(data).decode() |
|
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label} 📥</a>' |
|
|
|
def zip_directory(directory_path, zip_path): |
|
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf: |
|
for root, _, files in os.walk(directory_path): |
|
for file in files: |
|
zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path))) |
|
|
|
def get_model_files(model_type="causal_lm"): |
|
path = "models/*" if model_type == "causal_lm" else "diffusion_models/*" |
|
return [d for d in glob.glob(path) if os.path.isdir(d)] |
|
|
|
def get_gallery_files(file_types): |
|
return sorted([f for ext in file_types for f in glob.glob(f"*.{ext}")]) |
|
|
|
def update_gallery(): |
|
media_files = get_gallery_files(["png"]) |
|
if media_files: |
|
cols = st.sidebar.columns(2) |
|
for idx, file in enumerate(media_files[:gallery_size * 2]): |
|
with cols[idx % 2]: |
|
st.image(Image.open(file), caption=file, use_container_width=True) |
|
st.markdown(get_download_link(file, "image/png", "Download Image"), unsafe_allow_html=True) |
|
|
|
|
|
def mock_search(query: str) -> str: |
|
if "superhero" in query.lower(): |
|
return "Latest trends: Gold-plated Batman statues, VR superhero battles." |
|
return "No relevant results found." |
|
|
|
class PartyPlannerAgent: |
|
def __init__(self, model, tokenizer): |
|
self.model = model |
|
self.tokenizer = tokenizer |
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
self.model.to(self.device) |
|
def generate(self, prompt: str) -> str: |
|
self.model.eval() |
|
with torch.no_grad(): |
|
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.device) |
|
outputs = self.model.generate(**inputs, max_new_tokens=100, do_sample=True, top_p=0.95, temperature=0.7) |
|
return self.tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
def plan_party(self, task: str) -> pd.DataFrame: |
|
search_result = mock_search("superhero party trends") |
|
prompt = f"Given this context: '{search_result}'\n{task}" |
|
plan_text = self.generate(prompt) |
|
locations = {"Wayne Manor": (42.3601, -71.0589), "New York": (40.7128, -74.0060)} |
|
wayne_coords = locations["Wayne Manor"] |
|
travel_times = {loc: calculate_cargo_travel_time(coords, wayne_coords) for loc, coords in locations.items() if loc != "Wayne Manor"} |
|
data = [ |
|
{"Location": "New York", "Travel Time (hrs)": travel_times["New York"], "Luxury Idea": "Gold-plated Batman statues"}, |
|
{"Location": "Wayne Manor", "Travel Time (hrs)": 0.0, "Luxury Idea": "VR superhero battles"} |
|
] |
|
return pd.DataFrame(data) |
|
|
|
class CVPartyPlannerAgent: |
|
def __init__(self, pipeline): |
|
self.pipeline = pipeline |
|
def generate(self, prompt: str) -> Image.Image: |
|
return self.pipeline(prompt, num_inference_steps=50).images[0] |
|
def plan_party(self, task: str) -> pd.DataFrame: |
|
search_result = mock_search("superhero party trends") |
|
prompt = f"Given this context: '{search_result}'\n{task}" |
|
data = [ |
|
{"Theme": "Batman", "Image Idea": "Gold-plated Batman statue"}, |
|
{"Theme": "Avengers", "Image Idea": "VR superhero battle scene"} |
|
] |
|
return pd.DataFrame(data) |
|
|
|
def calculate_cargo_travel_time(origin_coords: Tuple[float, float], destination_coords: Tuple[float, float], cruising_speed_kmh: float = 750.0) -> float: |
|
def to_radians(degrees: float) -> float: |
|
return degrees * (math.pi / 180) |
|
lat1, lon1 = map(to_radians, origin_coords) |
|
lat2, lon2 = map(to_radians, destination_coords) |
|
EARTH_RADIUS_KM = 6371.0 |
|
dlon = lon2 - lon1 |
|
dlat = lat2 - lat1 |
|
a = (math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2) ** 2) |
|
c = 2 * math.asin(math.sqrt(a)) |
|
distance = EARTH_RADIUS_KM * c |
|
actual_distance = distance * 1.1 |
|
flight_time = (actual_distance / cruising_speed_kmh) + 1.0 |
|
return round(flight_time, 2) |
|
|
|
|
|
st.title("SFT Tiny Titans 🚀 (Small but Mighty!)") |
|
|
|
|
|
st.sidebar.header("Media Gallery 🎨") |
|
gallery_size = st.sidebar.slider("Gallery Size", 1, 10, 4) |
|
update_gallery() |
|
|
|
st.sidebar.subheader("Model Management 🗂️") |
|
model_type = st.sidebar.selectbox("Model Type", ["Causal LM", "Diffusion"]) |
|
model_dirs = get_model_files("causal_lm" if model_type == "Causal LM" else "diffusion") |
|
selected_model = st.sidebar.selectbox("Select Saved Model", ["None"] + model_dirs) |
|
if selected_model != "None" and st.sidebar.button("Load Model 📂"): |
|
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder() |
|
config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=os.path.basename(selected_model), base_model="unknown", size="small") |
|
builder.load_model(selected_model, config) |
|
st.session_state['builder'] = builder |
|
st.session_state['model_loaded'] = True |
|
st.rerun() |
|
|
|
|
|
tab1, tab2, tab3, tab4, tab5 = st.tabs(["Build Titan 🌱", "Camera Snap 📷", "Fine-Tune Titan 🔧", "Test Titan 🧪", "Agentic RAG Party 🌐"]) |
|
|
|
with tab1: |
|
st.header("Build Titan 🌱") |
|
model_type = st.selectbox("Model Type", ["Causal LM", "Diffusion"], key="build_type") |
|
base_model = st.selectbox("Select Tiny Model", |
|
["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"] if model_type == "Causal LM" else |
|
["stabilityai/stable-diffusion-2-base", "runwayml/stable-diffusion-v1-5"]) |
|
model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}") |
|
if st.button("Download Model ⬇️"): |
|
config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=model_name, base_model=base_model, size="small") |
|
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder() |
|
builder.load_model(base_model, config) |
|
builder.save_model(config.model_path) |
|
st.session_state['builder'] = builder |
|
st.session_state['model_loaded'] = True |
|
st.rerun() |
|
|
|
with tab2: |
|
st.header("Camera Snap 📷 (Dual Capture!)") |
|
slice_count = st.number_input("Image Slice Count", min_value=1, max_value=20, value=10) |
|
video_length = st.number_input("Video Length (seconds)", min_value=1, max_value=30, value=10) |
|
cols = st.columns(2) |
|
with cols[0]: |
|
st.subheader("Camera 0") |
|
cam0_img = st.camera_input("Take a picture - Cam 0", key="cam0") |
|
if cam0_img: |
|
filename = generate_filename(0) |
|
with open(filename, "wb") as f: |
|
f.write(cam0_img.getvalue()) |
|
st.image(Image.open(filename), caption=filename, use_container_width=True) |
|
logger.info(f"Saved snapshot from Camera 0: {filename}") |
|
st.session_state['captured_images'].append(filename) |
|
update_gallery() |
|
if st.button(f"Capture {slice_count} Frames - Cam 0 📸"): |
|
st.session_state['cam0_frames'] = [] |
|
for i in range(slice_count): |
|
img = st.camera_input(f"Frame {i} - Cam 0", key=f"cam0_frame_{i}_{time.time()}") |
|
if img: |
|
filename = generate_filename(f"0_{i}") |
|
with open(filename, "wb") as f: |
|
f.write(img.getvalue()) |
|
st.session_state['cam0_frames'].append(filename) |
|
logger.info(f"Saved frame {i} from Camera 0: {filename}") |
|
time.sleep(1.0 / slice_count) |
|
st.session_state['captured_images'].extend(st.session_state['cam0_frames']) |
|
update_gallery() |
|
for frame in st.session_state['cam0_frames']: |
|
st.image(Image.open(frame), caption=frame, use_container_width=True) |
|
with cols[1]: |
|
st.subheader("Camera 1") |
|
cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1") |
|
if cam1_img: |
|
filename = generate_filename(1) |
|
with open(filename, "wb") as f: |
|
f.write(cam1_img.getvalue()) |
|
st.image(Image.open(filename), caption=filename, use_container_width=True) |
|
logger.info(f"Saved snapshot from Camera 1: {filename}") |
|
st.session_state['captured_images'].append(filename) |
|
update_gallery() |
|
if st.button(f"Capture {slice_count} Frames - Cam 1 📸"): |
|
st.session_state['cam1_frames'] = [] |
|
for i in range(slice_count): |
|
img = st.camera_input(f"Frame {i} - Cam 1", key=f"cam1_frame_{i}_{time.time()}") |
|
if img: |
|
filename = generate_filename(f"1_{i}") |
|
with open(filename, "wb") as f: |
|
f.write(img.getvalue()) |
|
st.session_state['cam1_frames'].append(filename) |
|
logger.info(f"Saved frame {i} from Camera 1: {filename}") |
|
time.sleep(1.0 / slice_count) |
|
st.session_state['captured_images'].extend(st.session_state['cam1_frames']) |
|
update_gallery() |
|
for frame in st.session_state['cam1_frames']: |
|
st.image(Image.open(frame), caption=frame, use_container_width=True) |
|
|
|
with tab3: |
|
st.header("Fine-Tune Titan 🔧") |
|
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False): |
|
st.warning("Please build or load a Titan first! ⚠️") |
|
else: |
|
if isinstance(st.session_state['builder'], ModelBuilder): |
|
uploaded_csv = st.file_uploader("Upload CSV for SFT", type="csv") |
|
if uploaded_csv and st.button("Fine-Tune with Uploaded CSV 🔄"): |
|
csv_path = f"uploaded_sft_data_{int(time.time())}.csv" |
|
with open(csv_path, "wb") as f: |
|
f.write(uploaded_csv.read()) |
|
new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}" |
|
new_config = ModelConfig(name=new_model_name, base_model=st.session_state['builder'].config.base_model, size="small") |
|
st.session_state['builder'].config = new_config |
|
st.session_state['builder'].fine_tune_sft(csv_path) |
|
st.session_state['builder'].save_model(new_config.model_path) |
|
zip_path = f"{new_config.model_path}.zip" |
|
zip_directory(new_config.model_path, zip_path) |
|
st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned Titan"), unsafe_allow_html=True) |
|
elif isinstance(st.session_state['builder'], DiffusionBuilder): |
|
captured_images = get_gallery_files(["png"]) |
|
if len(captured_images) >= 2: |
|
demo_data = [{"image": img, "text": f"Superhero {os.path.basename(img).split('.')[0]}"} for img in captured_images[:min(len(captured_images), slice_count)]] |
|
edited_data = st.data_editor(pd.DataFrame(demo_data), num_rows="dynamic") |
|
if st.button("Fine-Tune with Dataset 🔄"): |
|
images = [Image.open(row["image"]) for _, row in edited_data.iterrows()] |
|
texts = [row["text"] for _, row in edited_data.iterrows()] |
|
new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}" |
|
new_config = DiffusionConfig(name=new_model_name, base_model=st.session_state['builder'].config.base_model, size="small") |
|
st.session_state['builder'].config = new_config |
|
st.session_state['builder'].fine_tune_sft(images, texts) |
|
st.session_state['builder'].save_model(new_config.model_path) |
|
zip_path = f"{new_config.model_path}.zip" |
|
zip_directory(new_config.model_path, zip_path) |
|
st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned Diffusion Model"), unsafe_allow_html=True) |
|
csv_path = f"sft_dataset_{int(time.time())}.csv" |
|
with open(csv_path, "w", newline="") as f: |
|
writer = csv.writer(f) |
|
writer.writerow(["image", "text"]) |
|
for _, row in edited_data.iterrows(): |
|
writer.writerow([row["image"], row["text"]]) |
|
st.markdown(get_download_link(csv_path, "text/csv", "Download SFT Dataset CSV"), unsafe_allow_html=True) |
|
|
|
with tab4: |
|
st.header("Test Titan 🧪") |
|
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False): |
|
st.warning("Please build or load a Titan first! ⚠️") |
|
else: |
|
if isinstance(st.session_state['builder'], ModelBuilder): |
|
test_prompt = st.text_area("Enter Test Prompt", "What is AI?") |
|
if st.button("Run Test ▶️"): |
|
result = st.session_state['builder'].evaluate(test_prompt) |
|
st.write(f"**Generated Response**: {result}") |
|
elif isinstance(st.session_state['builder'], DiffusionBuilder): |
|
test_prompt = st.text_area("Enter Test Prompt", "Neon Batman") |
|
if st.button("Run Test ▶️"): |
|
image = st.session_state['builder'].generate(test_prompt) |
|
st.image(image, caption="Generated Image") |
|
|
|
with tab5: |
|
st.header("Agentic RAG Party 🌐") |
|
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False): |
|
st.warning("Please build or load a Titan first! ⚠️") |
|
else: |
|
if isinstance(st.session_state['builder'], ModelBuilder): |
|
if st.button("Run NLP RAG Demo 🎉"): |
|
agent = PartyPlannerAgent(st.session_state['builder'].model, st.session_state['builder'].tokenizer) |
|
task = "Plan a luxury superhero-themed party at Wayne Manor." |
|
plan_df = agent.plan_party(task) |
|
st.dataframe(plan_df) |
|
elif isinstance(st.session_state['builder'], DiffusionBuilder): |
|
if st.button("Run CV RAG Demo 🎉"): |
|
agent = CVPartyPlannerAgent(st.session_state['builder'].pipeline) |
|
task = "Generate images for a luxury superhero-themed party." |
|
plan_df = agent.plan_party(task) |
|
st.dataframe(plan_df) |
|
for _, row in plan_df.iterrows(): |
|
image = agent.generate(row["Image Idea"]) |
|
st.image(image, caption=f"{row['Theme']} - {row['Image Idea']}") |
|
|
|
|
|
st.sidebar.subheader("Action Logs 📜") |
|
log_container = st.sidebar.empty() |
|
with log_container: |
|
for record in log_records: |
|
st.write(f"{record.asctime} - {record.levelname} - {record.message}") |
|
|
|
|
|
update_gallery() |