|
|
|
""" |
|
Combined Multimodal AI Suite |
|
- TorchTransformers-Diffusion-CV-SFT functionality (Camera, PDF, OCR, diffusion image gen, etc.) |
|
- GPT-4o Omni: Text, Audio, Image, Video processing with chat and paper search |
|
- Python Code Interpreter for code generation and execution |
|
|
|
This app integrates all modalities and adds an “Integrated Workflow” tab that enables you to: |
|
• Upload documents (e.g. double-page papers) |
|
• Extract text via OCR and image processing |
|
• Prompt GPT to generate Python code based on the extracted text |
|
• Display and execute the generated code |
|
|
|
Developed with Streamlit. |
|
""" |
|
|
|
import aiofiles |
|
import asyncio |
|
import base64 |
|
import fitz |
|
import glob |
|
import logging |
|
import os |
|
import pandas as pd |
|
import pytz |
|
import random |
|
import re |
|
import requests |
|
import shutil |
|
import streamlit as st |
|
import time |
|
import torch |
|
import zipfile |
|
|
|
from dataclasses import dataclass |
|
from datetime import datetime |
|
from diffusers import StableDiffusionPipeline |
|
from io import BytesIO |
|
from openai import OpenAI |
|
from PIL import Image |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel |
|
from typing import Optional |
|
|
|
|
|
import cv2 |
|
import json |
|
import streamlit.components.v1 as components |
|
import textract |
|
from audio_recorder_streamlit import audio_recorder |
|
from bs4 import BeautifulSoup |
|
from collections import deque |
|
from dotenv import load_dotenv |
|
from gradio_client import Client, handle_file |
|
from huggingface_hub import InferenceClient |
|
from moviepy import VideoFileClip |
|
from urllib.parse import quote |
|
from xml.etree import ElementTree as ET |
|
import openai |
|
|
|
|
|
import io |
|
import sys |
|
from contextlib import redirect_stdout |
|
import mistune |
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
st.set_page_config( |
|
page_title="Combined Multimodal AI Suite 🚀", |
|
page_icon="🤖", |
|
layout="wide", |
|
initial_sidebar_state="expanded", |
|
menu_items={ |
|
'Get Help': 'https://huggingface.co/awacke1', |
|
'Report a Bug': 'https://huggingface.co/spaces/awacke1', |
|
'About': "Combined Multimodal AI Suite: Camera, OCR, Chat, Code Generation & Execution" |
|
} |
|
) |
|
|
|
|
|
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") |
|
logger = logging.getLogger(__name__) |
|
log_records = [] |
|
class LogCaptureHandler(logging.Handler): |
|
def emit(self, record): |
|
log_records.append(record) |
|
logger.addHandler(LogCaptureHandler()) |
|
|
|
|
|
if 'history' not in st.session_state: |
|
st.session_state.history = [] |
|
if 'messages' not in st.session_state: |
|
st.session_state.messages = [] |
|
if 'gallery_files' not in st.session_state: |
|
st.session_state.gallery_files = [] |
|
if 'builder' not in st.session_state: |
|
st.session_state.builder = None |
|
if 'model_loaded' not in st.session_state: |
|
st.session_state.model_loaded = False |
|
if 'processing' not in st.session_state: |
|
st.session_state.processing = {} |
|
if 'asset_checkboxes' not in st.session_state: |
|
st.session_state.asset_checkboxes = {} |
|
if 'downloaded_pdfs' not in st.session_state: |
|
st.session_state.downloaded_pdfs = {} |
|
if 'unique_counter' not in st.session_state: |
|
st.session_state.unique_counter = 0 |
|
|
|
|
|
def generate_filename(prompt, file_type): |
|
"""Generates a safe filename based on prompt and file type.""" |
|
central = pytz.timezone('US/Central') |
|
safe_date_time = datetime.now(central).strftime("%m%d_%H%M") |
|
replaced_prompt = prompt.replace(" ", "_").replace("\n", "_") |
|
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90] |
|
return f"{safe_date_time}_{safe_prompt}.{file_type}" |
|
|
|
def get_download_link(file_path, mime_type="application/octet-stream", label="Download"): |
|
with open(file_path, "rb") as f: |
|
b64 = base64.b64encode(f.read()).decode() |
|
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label}</a>' |
|
|
|
def zip_directory(directory_path, zip_path): |
|
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf: |
|
for root, _, files in os.walk(directory_path): |
|
for file in files: |
|
zipf.write(os.path.join(root, file), |
|
os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path))) |
|
|
|
def get_gallery_files(file_types=["png", "pdf", "md"]): |
|
return sorted(list({f for ext in file_types for f in glob.glob(f"*.{ext}")})) |
|
|
|
def download_pdf(url, output_path): |
|
try: |
|
response = requests.get(url, stream=True, timeout=10) |
|
if response.status_code == 200: |
|
with open(output_path, "wb") as f: |
|
for chunk in response.iter_content(chunk_size=8192): |
|
f.write(chunk) |
|
return True |
|
except requests.RequestException as e: |
|
logger.error(f"Failed to download {url}: {e}") |
|
return False |
|
|
|
|
|
@dataclass |
|
class ModelConfig: |
|
name: str |
|
base_model: str |
|
size: str |
|
domain: Optional[str] = None |
|
model_type: str = "causal_lm" |
|
@property |
|
def model_path(self): |
|
return f"models/{self.name}" |
|
|
|
@dataclass |
|
class DiffusionConfig: |
|
name: str |
|
base_model: str |
|
size: str |
|
domain: Optional[str] = None |
|
@property |
|
def model_path(self): |
|
return f"diffusion_models/{self.name}" |
|
|
|
class ModelBuilder: |
|
def __init__(self): |
|
self.config = None |
|
self.model = None |
|
self.tokenizer = None |
|
self.jokes = [ |
|
"Why did the AI go to therapy? Too many layers to unpack! 😂", |
|
"Training complete! Time for a binary coffee break. ☕", |
|
"I told my neural network a joke; it couldn't stop dropping bits! 🤖" |
|
] |
|
def load_model(self, model_path: str, config: Optional[ModelConfig] = None): |
|
with st.spinner(f"Loading model from {model_path}..."): |
|
self.model = AutoModelForCausalLM.from_pretrained(model_path) |
|
self.tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
if self.tokenizer.pad_token is None: |
|
self.tokenizer.pad_token = self.tokenizer.eos_token |
|
if config: |
|
self.config = config |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
self.model.to(device) |
|
st.success(f"Model loaded! {random.choice(self.jokes)}") |
|
return self |
|
def save_model(self, path: str): |
|
with st.spinner("Saving model..."): |
|
os.makedirs(os.path.dirname(path), exist_ok=True) |
|
self.model.save_pretrained(path) |
|
self.tokenizer.save_pretrained(path) |
|
st.success(f"Model saved at {path}!") |
|
|
|
class DiffusionBuilder: |
|
def __init__(self): |
|
self.config = None |
|
self.pipeline = None |
|
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None): |
|
with st.spinner(f"Loading diffusion model from {model_path}..."): |
|
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cpu") |
|
if config: |
|
self.config = config |
|
st.success("Diffusion model loaded!") |
|
return self |
|
def save_model(self, path: str): |
|
with st.spinner("Saving diffusion model..."): |
|
os.makedirs(os.path.dirname(path), exist_ok=True) |
|
self.pipeline.save_pretrained(path) |
|
st.success(f"Diffusion model saved at {path}!") |
|
def generate(self, prompt: str): |
|
return self.pipeline(prompt, num_inference_steps=20).images[0] |
|
|
|
|
|
async def process_ocr(image, output_file): |
|
start_time = time.time() |
|
status = st.empty() |
|
status.text("Processing OCR... (0s)") |
|
tokenizer = AutoTokenizer.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True) |
|
model = AutoModel.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval() |
|
temp_file = f"temp_{int(time.time())}.png" |
|
image.save(temp_file) |
|
result = model.chat(tokenizer, temp_file, ocr_type='ocr') |
|
os.remove(temp_file) |
|
elapsed = int(time.time() - start_time) |
|
status.text(f"OCR completed in {elapsed}s!") |
|
async with aiofiles.open(output_file, "w") as f: |
|
await f.write(result) |
|
return result |
|
|
|
async def process_image_gen(prompt, output_file): |
|
start_time = time.time() |
|
status = st.empty() |
|
status.text("Generating image... (0s)") |
|
|
|
if st.session_state.get('builder') and isinstance(st.session_state.builder, DiffusionBuilder): |
|
pipeline = st.session_state.builder.pipeline |
|
else: |
|
pipeline = StableDiffusionPipeline.from_pretrained("OFA-Sys/small-stable-diffusion-v0", torch_dtype=torch.float32).to("cpu") |
|
gen_image = pipeline(prompt, num_inference_steps=20).images[0] |
|
elapsed = int(time.time() - start_time) |
|
status.text(f"Image generation completed in {elapsed}s!") |
|
gen_image.save(output_file) |
|
return gen_image |
|
|
|
def process_image_with_prompt(image, prompt, model="gpt-4o-mini", detail="auto"): |
|
buffered = BytesIO() |
|
image.save(buffered, format="PNG") |
|
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") |
|
messages = [{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "text", "text": prompt}, |
|
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{img_str}", "detail": detail}} |
|
] |
|
}] |
|
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID')) |
|
try: |
|
response = client.chat.completions.create(model=model, messages=messages, max_tokens=300) |
|
return response.choices[0].message.content |
|
except Exception as e: |
|
return f"Error: {str(e)}" |
|
|
|
def process_text_with_prompt(text, prompt, model="gpt-4o-mini"): |
|
messages = [{"role": "user", "content": f"{prompt}\n\n{text}"}] |
|
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID')) |
|
try: |
|
response = client.chat.completions.create(model=model, messages=messages, max_tokens=300) |
|
return response.choices[0].message.content |
|
except Exception as e: |
|
return f"Error: {str(e)}" |
|
|
|
|
|
async def process_pdf_snapshot(pdf_path, mode="single"): |
|
start_time = time.time() |
|
status = st.empty() |
|
status.text(f"Processing PDF Snapshot ({mode})... (0s)") |
|
try: |
|
doc = fitz.open(pdf_path) |
|
output_files = [] |
|
if mode == "single": |
|
page = doc[0] |
|
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) |
|
output_file = generate_filename("single_snapshot", "png") |
|
pix.save(output_file) |
|
output_files.append(output_file) |
|
elif mode == "twopage": |
|
for i in range(min(2, len(doc))): |
|
page = doc[i] |
|
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) |
|
output_file = generate_filename(f"twopage_{i}", "png") |
|
pix.save(output_file) |
|
output_files.append(output_file) |
|
elif mode == "allpages": |
|
for i in range(len(doc)): |
|
page = doc[i] |
|
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) |
|
output_file = generate_filename(f"page_{i}", "png") |
|
pix.save(output_file) |
|
output_files.append(output_file) |
|
doc.close() |
|
elapsed = int(time.time() - start_time) |
|
status.text(f"PDF Snapshot ({mode}) completed in {elapsed}s!") |
|
return output_files |
|
except Exception as e: |
|
status.error(f"Error: {str(e)}") |
|
return [] |
|
|
|
|
|
def process_text(text_input): |
|
if text_input: |
|
st.session_state.messages.append({"role": "user", "content": text_input}) |
|
with st.chat_message("user"): |
|
st.markdown(text_input) |
|
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID')) |
|
with st.chat_message("assistant"): |
|
completion = client.chat.completions.create( |
|
model="gpt-4o-2024-05-13", |
|
messages=st.session_state.messages, |
|
stream=False |
|
) |
|
return_text = completion.choices[0].message.content |
|
st.write("Assistant: " + return_text) |
|
st.session_state.messages.append({"role": "assistant", "content": return_text}) |
|
return return_text |
|
|
|
def process_text2(text_input, model="gpt-4o-2024-05-13"): |
|
if text_input: |
|
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID')) |
|
completion = client.chat.completions.create( |
|
model=model, |
|
messages=st.session_state.messages, |
|
stream=False |
|
) |
|
return_text = completion.choices[0].message.content |
|
st.write("Assistant: " + return_text) |
|
st.session_state.messages.append({"role": "assistant", "content": return_text}) |
|
return return_text |
|
|
|
|
|
def SpeechSynthesis(result): |
|
documentHTML5 = f''' |
|
<!DOCTYPE html> |
|
<html> |
|
<head> |
|
<title>Read It Aloud</title> |
|
<script type="text/javascript"> |
|
function readAloud() {{ |
|
const text = document.getElementById("textArea").value; |
|
const speech = new SpeechSynthesisUtterance(text); |
|
window.speechSynthesis.speak(speech); |
|
}} |
|
</script> |
|
</head> |
|
<body> |
|
<h1>🔊 Read It Aloud</h1> |
|
<textarea id="textArea" rows="10" cols="80">{result}</textarea> |
|
<br> |
|
<button onclick="readAloud()">🔊 Read Aloud</button> |
|
</body> |
|
</html> |
|
''' |
|
components.html(documentHTML5, width=1280, height=300) |
|
|
|
def process_audio(audio_input, text_input=''): |
|
if audio_input: |
|
|
|
with open("temp_audio.wav", "wb") as file: |
|
file.write(audio_input.getvalue()) |
|
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID')) |
|
transcription = client.audio.transcriptions.create(model="whisper-1", file=open("temp_audio.wav", "rb")) |
|
st.session_state.messages.append({"role": "user", "content": transcription.text}) |
|
with st.chat_message("assistant"): |
|
st.markdown(transcription.text) |
|
SpeechSynthesis(transcription.text) |
|
filename = generate_filename(transcription.text, "md") |
|
with open(filename, "w", encoding="utf-8") as f: |
|
f.write(transcription.text) |
|
return transcription.text |
|
|
|
def process_video_and_audio(video_input): |
|
if video_input: |
|
|
|
video_path = video_input.name |
|
with open(video_path, "wb") as f: |
|
f.write(video_input.getbuffer()) |
|
|
|
base64Frames = [] |
|
video = cv2.VideoCapture(video_path) |
|
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) |
|
fps = video.get(cv2.CAP_PROP_FPS) |
|
frames_to_skip = int(fps * 1) |
|
curr_frame = 0 |
|
while curr_frame < total_frames - 1: |
|
video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame) |
|
success, frame = video.read() |
|
if not success: |
|
break |
|
_, buffer = cv2.imencode(".jpg", frame) |
|
base64Frames.append(base64.b64encode(buffer).decode("utf-8")) |
|
curr_frame += frames_to_skip |
|
video.release() |
|
|
|
try: |
|
clip = VideoFileClip(video_path) |
|
audio_path = f"{os.path.splitext(video_path)[0]}.mp3" |
|
clip.audio.write_audiofile(audio_path, bitrate="32k") |
|
clip.audio.close() |
|
clip.close() |
|
with open(audio_path, "rb") as f: |
|
audio_data = f.read() |
|
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID')) |
|
transcription = client.audio.transcriptions.create(model="whisper-1", file=BytesIO(audio_data)) |
|
except Exception as e: |
|
transcription = type("Dummy", (), {"text": "No transcript available."})() |
|
|
|
st.markdown("### Video Frames") |
|
for frame_b64 in base64Frames: |
|
st.image(f"data:image/jpg;base64,{frame_b64}", use_container_width=True) |
|
st.markdown("### Audio Transcription") |
|
st.write(transcription.text) |
|
return transcription.text |
|
|
|
|
|
def extract_python_code(markdown_text): |
|
pattern = r"```python\s*(.*?)\s*```" |
|
matches = re.findall(pattern, markdown_text, re.DOTALL) |
|
return matches |
|
|
|
def execute_code(code): |
|
buffer = io.StringIO() |
|
local_vars = {} |
|
try: |
|
with redirect_stdout(buffer): |
|
exec(code, {}, local_vars) |
|
output = buffer.getvalue() |
|
return output, None |
|
except Exception as e: |
|
return None, str(e) |
|
finally: |
|
buffer.close() |
|
|
|
def create_and_save_file(filename, prompt, response, should_save=True): |
|
if not should_save: |
|
return |
|
base_filename, ext = os.path.splitext(filename) |
|
if ext in ['.txt', '.htm', '.md']: |
|
with open(f"{base_filename}.md", 'w', encoding='utf-8') as file: |
|
file.write(response) |
|
|
|
|
|
def integrated_workflow(): |
|
st.header("Integrated Workflow: From Paper to Code") |
|
st.markdown(""" |
|
1. **Upload a PDF or Image** of a paper (double-page images work best). |
|
2. **Run OCR** to extract text. |
|
3. **Generate Python Code** based on the extracted text using GPT. |
|
4. **Review and Execute** the generated code. |
|
""") |
|
uploaded_file = st.file_uploader("Upload PDF or Image", type=["pdf", "png", "jpg", "jpeg"], key="integrated_file") |
|
if uploaded_file: |
|
|
|
file_path = f"uploaded_{uploaded_file.name}" |
|
with open(file_path, "wb") as f: |
|
f.write(uploaded_file.getvalue()) |
|
st.success(f"Uploaded file saved as {file_path}") |
|
|
|
if uploaded_file.type == "application/pdf": |
|
mode = st.selectbox("Snapshot Mode", ["single", "twopage", "allpages"]) |
|
snapshots = asyncio.run(process_pdf_snapshot(file_path, mode)) |
|
for snapshot in snapshots: |
|
st.image(Image.open(snapshot), caption=f"Snapshot: {snapshot}", use_container_width=True) |
|
else: |
|
st.image(Image.open(file_path), caption="Uploaded Image", use_container_width=True) |
|
|
|
if st.button("Run OCR on File"): |
|
if uploaded_file.type == "application/pdf": |
|
doc = fitz.open(file_path) |
|
page = doc[0] |
|
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) |
|
temp_img = f"ocr_{os.path.basename(file_path)}.png" |
|
pix.save(temp_img) |
|
doc.close() |
|
image = Image.open(temp_img) |
|
else: |
|
image = Image.open(file_path) |
|
ocr_output_file = generate_filename("ocr_output", "txt") |
|
ocr_result = asyncio.run(process_ocr(image, ocr_output_file)) |
|
st.text_area("OCR Output", ocr_result, height=200) |
|
|
|
st.markdown("### Generate Python Code from OCR Text") |
|
code_prompt = st.text_area("Edit Prompt for Code Generation", value=f"Generate a Python script that processes the following scientific text:\n\n{ocr_result}", height=200) |
|
if st.button("Generate Code"): |
|
code_generated = process_text_with_prompt(ocr_result, code_prompt, model="gpt-4o-mini") |
|
st.code(code_generated, language="python") |
|
|
|
code_filename = generate_filename("generated_code", "py") |
|
with open(code_filename, "w", encoding="utf-8") as f: |
|
f.write(code_generated) |
|
st.markdown(get_download_link(code_filename, "text/plain", "Download Generated Code"), unsafe_allow_html=True) |
|
|
|
if st.button("Execute Generated Code"): |
|
output, error = execute_code(code_generated) |
|
if error: |
|
st.error(f"Error executing code:\n{error}") |
|
else: |
|
st.success("Code executed successfully. Output:") |
|
st.code(output) |
|
|
|
|
|
def update_gallery(): |
|
container = st.sidebar.empty() |
|
all_files = get_gallery_files() |
|
if all_files: |
|
container.markdown("### Asset Gallery") |
|
cols = container.columns(2) |
|
for idx, file in enumerate(all_files[:st.session_state.get('gallery_size', 5)]): |
|
with cols[idx % 2]: |
|
if file.endswith('.png'): |
|
st.image(Image.open(file), caption=os.path.basename(file), use_container_width=True) |
|
else: |
|
st.markdown(os.path.basename(file)) |
|
if st.button("Delete "+os.path.basename(file), key="del_"+file): |
|
os.remove(file) |
|
st.experimental_rerun() |
|
|
|
update_gallery() |
|
st.sidebar.subheader("Action Logs") |
|
for record in log_records: |
|
st.sidebar.write(f"{record.asctime} - {record.levelname} - {record.message}") |
|
|
|
|
|
st.title("Combined Multimodal AI Suite") |
|
|
|
tabs = st.tabs(["Home", "Camera & Images", "PDF & Documents", "Multimodal Chat", "Code Executor", "Integrated Workflow"]) |
|
|
|
|
|
with tabs[0]: |
|
st.header("Welcome to the Combined Multimodal AI Suite") |
|
st.markdown(""" |
|
This application integrates multiple AI functionalities: |
|
|
|
- **Camera & Image Processing:** Capture images, generate new images using diffusion models. |
|
- **PDF & Document Processing:** Download PDFs, perform OCR, and generate markdown summaries. |
|
- **Multimodal Chat:** Chat with GPT-4o using text, audio, image, and video inputs. |
|
- **Code Executor:** Write, generate, and execute Python code interactively. |
|
- **Integrated Workflow:** Seamlessly extract text from papers and generate & run Python code. |
|
|
|
Use the tabs above to explore each modality. |
|
""") |
|
|
|
|
|
with tabs[1]: |
|
st.header("Camera & Image Processing") |
|
st.subheader("Capture and Process Images") |
|
col1, col2 = st.columns(2) |
|
with col1: |
|
cam0_img = st.camera_input("Take a picture - Cam 0", key="cam0") |
|
if cam0_img: |
|
filename = generate_filename("cam0_snapshot", "png") |
|
with open(filename, "wb") as f: |
|
f.write(cam0_img.getvalue()) |
|
st.image(Image.open(filename), caption="Camera 0 Snapshot", use_container_width=True) |
|
st.session_state.history.append(f"Captured {filename}") |
|
with col2: |
|
cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1") |
|
if cam1_img: |
|
filename = generate_filename("cam1_snapshot", "png") |
|
with open(filename, "wb") as f: |
|
f.write(cam1_img.getvalue()) |
|
st.image(Image.open(filename), caption="Camera 1 Snapshot", use_container_width=True) |
|
st.session_state.history.append(f"Captured {filename}") |
|
st.markdown("---") |
|
st.subheader("Generate New Image with Diffusion") |
|
prompt_img = st.text_input("Enter prompt for image generation", "A neon futuristic cityscape") |
|
if st.button("Generate Image"): |
|
output_file = generate_filename("gen_output", "png") |
|
result_img = asyncio.run(process_image_gen(prompt_img, output_file)) |
|
st.image(result_img, caption="Generated Image", use_container_width=True) |
|
|
|
|
|
with tabs[2]: |
|
st.header("PDF & Document Processing") |
|
st.subheader("Download and Process PDFs") |
|
url_input = st.text_area("Enter PDF URLs (one per line)", height=100) |
|
if st.button("Download PDFs"): |
|
urls = [u.strip() for u in url_input.splitlines() if u.strip()] |
|
progress_bar = st.progress(0) |
|
for idx, url in enumerate(urls): |
|
output_path = generate_filename(url, "pdf") |
|
if download_pdf(url, output_path): |
|
st.session_state.downloaded_pdfs[url] = output_path |
|
st.success(f"Downloaded: {output_path}") |
|
progress_bar.progress((idx + 1) / len(urls)) |
|
st.markdown("---") |
|
st.subheader("OCR & PDF Snapshot") |
|
all_assets = get_gallery_files() |
|
selected_asset = st.selectbox("Select an asset", all_assets) if all_assets else None |
|
if selected_asset and st.button("Run OCR on Selected"): |
|
if selected_asset.endswith('.png'): |
|
image = Image.open(selected_asset) |
|
else: |
|
doc = fitz.open(selected_asset) |
|
pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) |
|
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) |
|
doc.close() |
|
output_file = generate_filename("ocr_output", "txt") |
|
ocr_result = asyncio.run(process_ocr(image, output_file)) |
|
st.text_area("OCR Result", ocr_result, height=200) |
|
st.markdown("---") |
|
st.subheader("Markdown Gallery") |
|
md_files = sorted(glob.glob("*.md")) |
|
if md_files: |
|
for md in md_files: |
|
st.markdown(f"**{md}**") |
|
st.markdown(get_download_link(md, "text/markdown", "Download MD"), unsafe_allow_html=True) |
|
|
|
|
|
with tabs[3]: |
|
st.header("Multimodal Chat") |
|
st.markdown("Chat with GPT-4o using text, audio, image, or video inputs.") |
|
mode = st.selectbox("Select Mode", ["Text", "Image", "Audio", "Video"]) |
|
if mode == "Text": |
|
text_input = st.text_input("Enter your text prompt") |
|
if st.button("Send Text"): |
|
response = process_text(text_input) |
|
st.markdown(response) |
|
elif mode == "Image": |
|
text_prompt = st.text_input("Enter prompt for image analysis", "Describe this image and list 10 facts.") |
|
image_file = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"], key="chat_image") |
|
if image_file: |
|
image = Image.open(image_file) |
|
st.image(image, caption="Uploaded Image", use_container_width=True) |
|
response = process_image_with_prompt(image, text_prompt) |
|
st.markdown(response) |
|
elif mode == "Audio": |
|
st.markdown("Record or upload an audio file for transcription.") |
|
audio_bytes = audio_recorder() |
|
if audio_bytes: |
|
st.audio(audio_bytes, format="audio/wav") |
|
transcription = process_audio(audio_bytes) |
|
st.markdown(transcription) |
|
elif mode == "Video": |
|
video_file = st.file_uploader("Upload a video file", type=["mp4", "webm"], key="chat_video") |
|
if video_file: |
|
transcript = process_video_and_audio(video_file) |
|
st.markdown("Video Transcript:") |
|
st.write(transcript) |
|
|
|
st.markdown("---") |
|
st.subheader("Chat History") |
|
for msg in st.session_state.messages: |
|
with st.chat_message(msg["role"]): |
|
st.markdown(msg["content"]) |
|
|
|
|
|
with tabs[4]: |
|
st.header("Python Code Executor") |
|
st.markdown("Enter Python code below or upload a .py/.md file. The code will be executed in a sandboxed environment.") |
|
uploaded_file = st.file_uploader("Upload Python (.py) or Markdown (.md) file", type=["py", "md"], key="code_file") |
|
if 'code' not in st.session_state: |
|
st.session_state.code = """import streamlit as st |
|
st.write("Hello from the Python Code Executor!")""" |
|
if uploaded_file is None: |
|
code_input = st.text_area("Python Code Editor:", value=st.session_state.code, height=400, key="code_editor") |
|
else: |
|
content = uploaded_file.getvalue().decode() |
|
if uploaded_file.type == "text/markdown": |
|
code_blocks = extract_python_code(content) |
|
if code_blocks: |
|
code_input = code_blocks[0] |
|
else: |
|
st.error("No Python code block found in the markdown file!") |
|
code_input = "" |
|
else: |
|
code_input = content |
|
st.code(code_input, language='python') |
|
col1, col2 = st.columns([1,1]) |
|
with col1: |
|
if st.button("▶️ Run Code"): |
|
if code_input: |
|
output, error = execute_code(code_input) |
|
if error: |
|
st.error(f"Error:\n{error}") |
|
elif output: |
|
st.code(output) |
|
else: |
|
st.success("Code executed with no output.") |
|
else: |
|
st.warning("Please enter some code!") |
|
with col2: |
|
if st.button("🗑️ Clear Code"): |
|
st.session_state.code = "" |
|
st.experimental_rerun() |
|
with st.expander("How to use the Code Executor"): |
|
st.markdown(""" |
|
- Enter or upload Python code. |
|
- Click **Run Code** to execute. |
|
- The output (or any errors) will be displayed below. |
|
""") |
|
|
|
|
|
with tabs[5]: |
|
integrated_workflow() |
|
|
|
|
|
if prompt := st.chat_input("GPT-4o Multimodal ChatBot - How can I help you?"): |
|
st.session_state.messages.append({"role": "user", "content": prompt}) |
|
with st.chat_message("user"): |
|
st.markdown(prompt) |
|
with st.chat_message("assistant"): |
|
response = process_text2(prompt) |
|
st.session_state.messages.append({"role": "assistant", "content": response}) |
|
|