awacke1's picture
Rename app.py to backup2.app.py
428c305 verified
raw
history blame
25 kB
#!/usr/bin/env python3
# This version has the image captures working finally using the streamlit camera input which was only thing that worked
# Now that image inputs are in, working on readding the LM components missed and completing the CV diffusion parts next.
import os
import glob
import base64
import streamlit as st
import pandas as pd
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from torch.utils.data import Dataset, DataLoader
import csv
import time
from dataclasses import dataclass
from typing import Optional, Tuple
import zipfile
import math
from PIL import Image
import random
import logging
import numpy as np
# Logging setup with a custom buffer
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
log_records = [] # Custom list to store log records
class LogCaptureHandler(logging.Handler):
def emit(self, record):
log_records.append(record)
logger.addHandler(LogCaptureHandler())
# Page Configuration
st.set_page_config(
page_title="SFT Tiny Titans 🚀",
page_icon="🤖",
layout="wide",
initial_sidebar_state="expanded",
menu_items={
'Get Help': 'https://huggingface.co/awacke1',
'Report a Bug': 'https://huggingface.co/spaces/awacke1',
'About': "Tiny Titans: Small models, big dreams, and a sprinkle of chaos! 🌌"
}
)
# Initialize st.session_state
if 'captured_images' not in st.session_state:
st.session_state['captured_images'] = []
if 'builder' not in st.session_state:
st.session_state['builder'] = None
if 'model_loaded' not in st.session_state:
st.session_state['model_loaded'] = False
# Model Configuration Classes
@dataclass
class ModelConfig:
name: str
base_model: str
size: str
domain: Optional[str] = None
model_type: str = "causal_lm"
@property
def model_path(self):
return f"models/{self.name}"
@dataclass
class DiffusionConfig:
name: str
base_model: str
size: str
@property
def model_path(self):
return f"diffusion_models/{self.name}"
# Datasets
class SFTDataset(Dataset):
def __init__(self, data, tokenizer, max_length=128):
self.data = data
self.tokenizer = tokenizer
self.max_length = max_length
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
prompt = self.data[idx]["prompt"]
response = self.data[idx]["response"]
full_text = f"{prompt} {response}"
full_encoding = self.tokenizer(full_text, max_length=self.max_length, padding="max_length", truncation=True, return_tensors="pt")
prompt_encoding = self.tokenizer(prompt, max_length=self.max_length, padding=False, truncation=True, return_tensors="pt")
input_ids = full_encoding["input_ids"].squeeze()
attention_mask = full_encoding["attention_mask"].squeeze()
labels = input_ids.clone()
prompt_len = prompt_encoding["input_ids"].shape[1]
if prompt_len < self.max_length:
labels[:prompt_len] = -100
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels}
class DiffusionDataset(Dataset):
def __init__(self, images, texts):
self.images = images
self.texts = texts
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
return {"image": self.images[idx], "text": self.texts[idx]}
# Model Builders
class ModelBuilder:
def __init__(self):
self.config = None
self.model = None
self.tokenizer = None
self.sft_data = None
self.jokes = ["Why did the AI go to therapy? Too many layers to unpack! 😂", "Training complete! Time for a binary coffee break. ☕"]
def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
with st.spinner(f"Loading {model_path}... ⏳"):
self.model = AutoModelForCausalLM.from_pretrained(model_path)
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
if config:
self.config = config
self.model.to("cuda" if torch.cuda.is_available() else "cpu")
st.success(f"Model loaded! 🎉 {random.choice(self.jokes)}")
return self
def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4):
self.sft_data = []
with open(csv_path, "r") as f:
reader = csv.DictReader(f)
for row in reader:
self.sft_data.append({"prompt": row["prompt"], "response": row["response"]})
dataset = SFTDataset(self.sft_data, self.tokenizer)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
optimizer = torch.optim.AdamW(self.model.parameters(), lr=2e-5)
self.model.train()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model.to(device)
for epoch in range(epochs):
with st.spinner(f"Training epoch {epoch + 1}/{epochs}... ⚙️"):
total_loss = 0
for batch in dataloader:
optimizer.zero_grad()
input_ids = batch["input_ids"].to(device)
attention_mask = batch["attention_mask"].to(device)
labels = batch["labels"].to(device)
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
loss = outputs.loss
loss.backward()
optimizer.step()
total_loss += loss.item()
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
st.success(f"SFT Fine-tuning completed! 🎉 {random.choice(self.jokes)}")
return self
def save_model(self, path: str):
with st.spinner("Saving model... 💾"):
os.makedirs(os.path.dirname(path), exist_ok=True)
self.model.save_pretrained(path)
self.tokenizer.save_pretrained(path)
st.success(f"Model saved at {path}! ✅")
def evaluate(self, prompt: str, status_container=None):
self.model.eval()
if status_container:
status_container.write("Preparing to evaluate... 🧠")
try:
with torch.no_grad():
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device)
outputs = self.model.generate(**inputs, max_new_tokens=50, do_sample=True, top_p=0.95, temperature=0.7)
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
except Exception as e:
if status_container:
status_container.error(f"Oops! Something broke: {str(e)} 💥")
return f"Error: {str(e)}"
class DiffusionBuilder:
def __init__(self):
self.config = None
self.pipeline = None
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None):
from diffusers import StableDiffusionPipeline
with st.spinner(f"Loading diffusion model {model_path}... ⏳"):
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path)
self.pipeline.to("cuda" if torch.cuda.is_available() else "cpu")
if config:
self.config = config
st.success(f"Diffusion model loaded! 🎨")
return self
def fine_tune_sft(self, images, texts, epochs=3):
dataset = DiffusionDataset(images, texts)
dataloader = DataLoader(dataset, batch_size=1, shuffle=True)
optimizer = torch.optim.AdamW(self.pipeline.unet.parameters(), lr=1e-5)
self.pipeline.unet.train()
for epoch in range(epochs):
with st.spinner(f"Training diffusion epoch {epoch + 1}/{epochs}... ⚙️"):
total_loss = 0
for batch in dataloader:
optimizer.zero_grad()
image = batch["image"][0].to(self.pipeline.device)
text = batch["text"][0]
latents = self.pipeline.vae.encode(torch.tensor(np.array(image)).permute(2, 0, 1).unsqueeze(0).float().to(self.pipeline.device)).latent_dist.sample()
noise = torch.randn_like(latents)
timesteps = torch.randint(0, self.pipeline.scheduler.num_train_timesteps, (latents.shape[0],), device=latents.device)
noisy_latents = self.pipeline.scheduler.add_noise(latents, noise, timesteps)
text_embeddings = self.pipeline.text_encoder(self.pipeline.tokenizer(text, return_tensors="pt").input_ids.to(self.pipeline.device))[0]
pred_noise = self.pipeline.unet(noisy_latents, timesteps, encoder_hidden_states=text_embeddings).sample
loss = torch.nn.functional.mse_loss(pred_noise, noise)
loss.backward()
optimizer.step()
total_loss += loss.item()
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
st.success("Diffusion SFT Fine-tuning completed! 🎨")
return self
def save_model(self, path: str):
with st.spinner("Saving diffusion model... 💾"):
os.makedirs(os.path.dirname(path), exist_ok=True)
self.pipeline.save_pretrained(path)
st.success(f"Diffusion model saved at {path}! ✅")
def generate(self, prompt: str):
return self.pipeline(prompt, num_inference_steps=50).images[0]
# Utility Functions
def generate_filename(sequence, ext="png"):
from datetime import datetime
import pytz
central = pytz.timezone('US/Central')
timestamp = datetime.now(central).strftime("%d%m%Y%H%M%S%p")
return f"{sequence}{timestamp}.{ext}"
def get_download_link(file_path, mime_type="text/plain", label="Download"):
with open(file_path, 'rb') as f:
data = f.read()
b64 = base64.b64encode(data).decode()
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label} 📥</a>'
def zip_directory(directory_path, zip_path):
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
for root, _, files in os.walk(directory_path):
for file in files:
zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path)))
def get_model_files(model_type="causal_lm"):
path = "models/*" if model_type == "causal_lm" else "diffusion_models/*"
return [d for d in glob.glob(path) if os.path.isdir(d)]
def get_gallery_files(file_types):
return sorted([f for ext in file_types for f in glob.glob(f"*.{ext}")])
def update_gallery():
media_files = get_gallery_files(["png"])
if media_files:
cols = st.sidebar.columns(2)
for idx, file in enumerate(media_files[:gallery_size * 2]):
with cols[idx % 2]:
st.image(Image.open(file), caption=file, use_container_width=True)
st.markdown(get_download_link(file, "image/png", "Download Image"), unsafe_allow_html=True)
# Mock Search Tool for RAG
def mock_search(query: str) -> str:
if "superhero" in query.lower():
return "Latest trends: Gold-plated Batman statues, VR superhero battles."
return "No relevant results found."
class PartyPlannerAgent:
def __init__(self, model, tokenizer):
self.model = model
self.tokenizer = tokenizer
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model.to(self.device)
def generate(self, prompt: str) -> str:
self.model.eval()
with torch.no_grad():
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.device)
outputs = self.model.generate(**inputs, max_new_tokens=100, do_sample=True, top_p=0.95, temperature=0.7)
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
def plan_party(self, task: str) -> pd.DataFrame:
search_result = mock_search("superhero party trends")
prompt = f"Given this context: '{search_result}'\n{task}"
plan_text = self.generate(prompt)
locations = {"Wayne Manor": (42.3601, -71.0589), "New York": (40.7128, -74.0060)}
wayne_coords = locations["Wayne Manor"]
travel_times = {loc: calculate_cargo_travel_time(coords, wayne_coords) for loc, coords in locations.items() if loc != "Wayne Manor"}
data = [
{"Location": "New York", "Travel Time (hrs)": travel_times["New York"], "Luxury Idea": "Gold-plated Batman statues"},
{"Location": "Wayne Manor", "Travel Time (hrs)": 0.0, "Luxury Idea": "VR superhero battles"}
]
return pd.DataFrame(data)
class CVPartyPlannerAgent:
def __init__(self, pipeline):
self.pipeline = pipeline
def generate(self, prompt: str) -> Image.Image:
return self.pipeline(prompt, num_inference_steps=50).images[0]
def plan_party(self, task: str) -> pd.DataFrame:
search_result = mock_search("superhero party trends")
prompt = f"Given this context: '{search_result}'\n{task}"
data = [
{"Theme": "Batman", "Image Idea": "Gold-plated Batman statue"},
{"Theme": "Avengers", "Image Idea": "VR superhero battle scene"}
]
return pd.DataFrame(data)
def calculate_cargo_travel_time(origin_coords: Tuple[float, float], destination_coords: Tuple[float, float], cruising_speed_kmh: float = 750.0) -> float:
def to_radians(degrees: float) -> float:
return degrees * (math.pi / 180)
lat1, lon1 = map(to_radians, origin_coords)
lat2, lon2 = map(to_radians, destination_coords)
EARTH_RADIUS_KM = 6371.0
dlon = lon2 - lon1
dlat = lat2 - lat1
a = (math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2) ** 2)
c = 2 * math.asin(math.sqrt(a))
distance = EARTH_RADIUS_KM * c
actual_distance = distance * 1.1
flight_time = (actual_distance / cruising_speed_kmh) + 1.0
return round(flight_time, 2)
# Main App
st.title("SFT Tiny Titans 🚀 (Small but Mighty!)")
# Sidebar Galleries
st.sidebar.header("Media Gallery 🎨")
gallery_size = st.sidebar.slider("Gallery Size", 1, 10, 4)
update_gallery()
st.sidebar.subheader("Model Management 🗂️")
model_type = st.sidebar.selectbox("Model Type", ["Causal LM", "Diffusion"])
model_dirs = get_model_files("causal_lm" if model_type == "Causal LM" else "diffusion")
selected_model = st.sidebar.selectbox("Select Saved Model", ["None"] + model_dirs)
if selected_model != "None" and st.sidebar.button("Load Model 📂"):
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=os.path.basename(selected_model), base_model="unknown", size="small")
builder.load_model(selected_model, config)
st.session_state['builder'] = builder
st.session_state['model_loaded'] = True
st.rerun()
# Tabs
tab1, tab2, tab3, tab4, tab5 = st.tabs(["Build Titan 🌱", "Camera Snap 📷", "Fine-Tune Titan 🔧", "Test Titan 🧪", "Agentic RAG Party 🌐"])
with tab1:
st.header("Build Titan 🌱")
model_type = st.selectbox("Model Type", ["Causal LM", "Diffusion"], key="build_type")
base_model = st.selectbox("Select Tiny Model",
["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"] if model_type == "Causal LM" else
["stabilityai/stable-diffusion-2-base", "runwayml/stable-diffusion-v1-5"])
model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}")
if st.button("Download Model ⬇️"):
config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=model_name, base_model=base_model, size="small")
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
builder.load_model(base_model, config)
builder.save_model(config.model_path)
st.session_state['builder'] = builder
st.session_state['model_loaded'] = True
st.rerun()
with tab2:
st.header("Camera Snap 📷 (Dual Capture!)")
slice_count = st.number_input("Image Slice Count", min_value=1, max_value=20, value=10)
video_length = st.number_input("Video Length (seconds)", min_value=1, max_value=30, value=10)
cols = st.columns(2)
with cols[0]:
st.subheader("Camera 0")
cam0_img = st.camera_input("Take a picture - Cam 0", key="cam0")
if cam0_img:
filename = generate_filename(0)
with open(filename, "wb") as f:
f.write(cam0_img.getvalue())
st.image(Image.open(filename), caption=filename, use_container_width=True)
logger.info(f"Saved snapshot from Camera 0: {filename}")
st.session_state['captured_images'].append(filename)
update_gallery()
if st.button(f"Capture {slice_count} Frames - Cam 0 📸"):
st.session_state['cam0_frames'] = []
for i in range(slice_count):
img = st.camera_input(f"Frame {i} - Cam 0", key=f"cam0_frame_{i}_{time.time()}")
if img:
filename = generate_filename(f"0_{i}")
with open(filename, "wb") as f:
f.write(img.getvalue())
st.session_state['cam0_frames'].append(filename)
logger.info(f"Saved frame {i} from Camera 0: {filename}")
time.sleep(1.0 / slice_count)
st.session_state['captured_images'].extend(st.session_state['cam0_frames'])
update_gallery()
for frame in st.session_state['cam0_frames']:
st.image(Image.open(frame), caption=frame, use_container_width=True)
with cols[1]:
st.subheader("Camera 1")
cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1")
if cam1_img:
filename = generate_filename(1)
with open(filename, "wb") as f:
f.write(cam1_img.getvalue())
st.image(Image.open(filename), caption=filename, use_container_width=True)
logger.info(f"Saved snapshot from Camera 1: {filename}")
st.session_state['captured_images'].append(filename)
update_gallery()
if st.button(f"Capture {slice_count} Frames - Cam 1 📸"):
st.session_state['cam1_frames'] = []
for i in range(slice_count):
img = st.camera_input(f"Frame {i} - Cam 1", key=f"cam1_frame_{i}_{time.time()}")
if img:
filename = generate_filename(f"1_{i}")
with open(filename, "wb") as f:
f.write(img.getvalue())
st.session_state['cam1_frames'].append(filename)
logger.info(f"Saved frame {i} from Camera 1: {filename}")
time.sleep(1.0 / slice_count)
st.session_state['captured_images'].extend(st.session_state['cam1_frames'])
update_gallery()
for frame in st.session_state['cam1_frames']:
st.image(Image.open(frame), caption=frame, use_container_width=True)
with tab3:
st.header("Fine-Tune Titan 🔧")
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
st.warning("Please build or load a Titan first! ⚠️")
else:
if isinstance(st.session_state['builder'], ModelBuilder):
uploaded_csv = st.file_uploader("Upload CSV for SFT", type="csv")
if uploaded_csv and st.button("Fine-Tune with Uploaded CSV 🔄"):
csv_path = f"uploaded_sft_data_{int(time.time())}.csv"
with open(csv_path, "wb") as f:
f.write(uploaded_csv.read())
new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}"
new_config = ModelConfig(name=new_model_name, base_model=st.session_state['builder'].config.base_model, size="small")
st.session_state['builder'].config = new_config
st.session_state['builder'].fine_tune_sft(csv_path)
st.session_state['builder'].save_model(new_config.model_path)
zip_path = f"{new_config.model_path}.zip"
zip_directory(new_config.model_path, zip_path)
st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned Titan"), unsafe_allow_html=True)
elif isinstance(st.session_state['builder'], DiffusionBuilder):
captured_images = get_gallery_files(["png"])
if len(captured_images) >= 2:
demo_data = [{"image": img, "text": f"Superhero {os.path.basename(img).split('.')[0]}"} for img in captured_images[:min(len(captured_images), slice_count)]]
edited_data = st.data_editor(pd.DataFrame(demo_data), num_rows="dynamic")
if st.button("Fine-Tune with Dataset 🔄"):
images = [Image.open(row["image"]) for _, row in edited_data.iterrows()]
texts = [row["text"] for _, row in edited_data.iterrows()]
new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}"
new_config = DiffusionConfig(name=new_model_name, base_model=st.session_state['builder'].config.base_model, size="small")
st.session_state['builder'].config = new_config
st.session_state['builder'].fine_tune_sft(images, texts)
st.session_state['builder'].save_model(new_config.model_path)
zip_path = f"{new_config.model_path}.zip"
zip_directory(new_config.model_path, zip_path)
st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned Diffusion Model"), unsafe_allow_html=True)
csv_path = f"sft_dataset_{int(time.time())}.csv"
with open(csv_path, "w", newline="") as f:
writer = csv.writer(f)
writer.writerow(["image", "text"])
for _, row in edited_data.iterrows():
writer.writerow([row["image"], row["text"]])
st.markdown(get_download_link(csv_path, "text/csv", "Download SFT Dataset CSV"), unsafe_allow_html=True)
with tab4:
st.header("Test Titan 🧪")
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
st.warning("Please build or load a Titan first! ⚠️")
else:
if isinstance(st.session_state['builder'], ModelBuilder):
test_prompt = st.text_area("Enter Test Prompt", "What is AI?")
if st.button("Run Test ▶️"):
result = st.session_state['builder'].evaluate(test_prompt)
st.write(f"**Generated Response**: {result}")
elif isinstance(st.session_state['builder'], DiffusionBuilder):
test_prompt = st.text_area("Enter Test Prompt", "Neon Batman")
if st.button("Run Test ▶️"):
image = st.session_state['builder'].generate(test_prompt)
st.image(image, caption="Generated Image")
with tab5:
st.header("Agentic RAG Party 🌐")
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
st.warning("Please build or load a Titan first! ⚠️")
else:
if isinstance(st.session_state['builder'], ModelBuilder):
if st.button("Run NLP RAG Demo 🎉"):
agent = PartyPlannerAgent(st.session_state['builder'].model, st.session_state['builder'].tokenizer)
task = "Plan a luxury superhero-themed party at Wayne Manor."
plan_df = agent.plan_party(task)
st.dataframe(plan_df)
elif isinstance(st.session_state['builder'], DiffusionBuilder):
if st.button("Run CV RAG Demo 🎉"):
agent = CVPartyPlannerAgent(st.session_state['builder'].pipeline)
task = "Generate images for a luxury superhero-themed party."
plan_df = agent.plan_party(task)
st.dataframe(plan_df)
for _, row in plan_df.iterrows():
image = agent.generate(row["Image Idea"])
st.image(image, caption=f"{row['Theme']} - {row['Image Idea']}")
# Display Logs
st.sidebar.subheader("Action Logs 📜")
log_container = st.sidebar.empty()
with log_container:
for record in log_records:
st.write(f"{record.asctime} - {record.levelname} - {record.message}")
# Initial Gallery Update
update_gallery()