Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
#!/usr/bin/env python3 | |
# This version has the image captures working finally using the streamlit camera input which was only thing that worked | |
# Now that image inputs are in, working on readding the LM components missed and completing the CV diffusion parts next. | |
import os | |
import glob | |
import base64 | |
import streamlit as st | |
import pandas as pd | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from torch.utils.data import Dataset, DataLoader | |
import csv | |
import time | |
from dataclasses import dataclass | |
from typing import Optional, Tuple | |
import zipfile | |
import math | |
from PIL import Image | |
import random | |
import logging | |
import numpy as np | |
# Logging setup with a custom buffer | |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") | |
logger = logging.getLogger(__name__) | |
log_records = [] # Custom list to store log records | |
class LogCaptureHandler(logging.Handler): | |
def emit(self, record): | |
log_records.append(record) | |
logger.addHandler(LogCaptureHandler()) | |
# Page Configuration | |
st.set_page_config( | |
page_title="SFT Tiny Titans 🚀", | |
page_icon="🤖", | |
layout="wide", | |
initial_sidebar_state="expanded", | |
menu_items={ | |
'Get Help': 'https://huggingface.co/awacke1', | |
'Report a Bug': 'https://huggingface.co/spaces/awacke1', | |
'About': "Tiny Titans: Small models, big dreams, and a sprinkle of chaos! 🌌" | |
} | |
) | |
# Initialize st.session_state | |
if 'captured_images' not in st.session_state: | |
st.session_state['captured_images'] = [] | |
if 'builder' not in st.session_state: | |
st.session_state['builder'] = None | |
if 'model_loaded' not in st.session_state: | |
st.session_state['model_loaded'] = False | |
# Model Configuration Classes | |
class ModelConfig: | |
name: str | |
base_model: str | |
size: str | |
domain: Optional[str] = None | |
model_type: str = "causal_lm" | |
def model_path(self): | |
return f"models/{self.name}" | |
class DiffusionConfig: | |
name: str | |
base_model: str | |
size: str | |
def model_path(self): | |
return f"diffusion_models/{self.name}" | |
# Datasets | |
class SFTDataset(Dataset): | |
def __init__(self, data, tokenizer, max_length=128): | |
self.data = data | |
self.tokenizer = tokenizer | |
self.max_length = max_length | |
def __len__(self): | |
return len(self.data) | |
def __getitem__(self, idx): | |
prompt = self.data[idx]["prompt"] | |
response = self.data[idx]["response"] | |
full_text = f"{prompt} {response}" | |
full_encoding = self.tokenizer(full_text, max_length=self.max_length, padding="max_length", truncation=True, return_tensors="pt") | |
prompt_encoding = self.tokenizer(prompt, max_length=self.max_length, padding=False, truncation=True, return_tensors="pt") | |
input_ids = full_encoding["input_ids"].squeeze() | |
attention_mask = full_encoding["attention_mask"].squeeze() | |
labels = input_ids.clone() | |
prompt_len = prompt_encoding["input_ids"].shape[1] | |
if prompt_len < self.max_length: | |
labels[:prompt_len] = -100 | |
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels} | |
class DiffusionDataset(Dataset): | |
def __init__(self, images, texts): | |
self.images = images | |
self.texts = texts | |
def __len__(self): | |
return len(self.images) | |
def __getitem__(self, idx): | |
return {"image": self.images[idx], "text": self.texts[idx]} | |
# Model Builders | |
class ModelBuilder: | |
def __init__(self): | |
self.config = None | |
self.model = None | |
self.tokenizer = None | |
self.sft_data = None | |
self.jokes = ["Why did the AI go to therapy? Too many layers to unpack! 😂", "Training complete! Time for a binary coffee break. ☕"] | |
def load_model(self, model_path: str, config: Optional[ModelConfig] = None): | |
with st.spinner(f"Loading {model_path}... ⏳"): | |
self.model = AutoModelForCausalLM.from_pretrained(model_path) | |
self.tokenizer = AutoTokenizer.from_pretrained(model_path) | |
if self.tokenizer.pad_token is None: | |
self.tokenizer.pad_token = self.tokenizer.eos_token | |
if config: | |
self.config = config | |
self.model.to("cuda" if torch.cuda.is_available() else "cpu") | |
st.success(f"Model loaded! 🎉 {random.choice(self.jokes)}") | |
return self | |
def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4): | |
self.sft_data = [] | |
with open(csv_path, "r") as f: | |
reader = csv.DictReader(f) | |
for row in reader: | |
self.sft_data.append({"prompt": row["prompt"], "response": row["response"]}) | |
dataset = SFTDataset(self.sft_data, self.tokenizer) | |
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True) | |
optimizer = torch.optim.AdamW(self.model.parameters(), lr=2e-5) | |
self.model.train() | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
self.model.to(device) | |
for epoch in range(epochs): | |
with st.spinner(f"Training epoch {epoch + 1}/{epochs}... ⚙️"): | |
total_loss = 0 | |
for batch in dataloader: | |
optimizer.zero_grad() | |
input_ids = batch["input_ids"].to(device) | |
attention_mask = batch["attention_mask"].to(device) | |
labels = batch["labels"].to(device) | |
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, labels=labels) | |
loss = outputs.loss | |
loss.backward() | |
optimizer.step() | |
total_loss += loss.item() | |
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}") | |
st.success(f"SFT Fine-tuning completed! 🎉 {random.choice(self.jokes)}") | |
return self | |
def save_model(self, path: str): | |
with st.spinner("Saving model... 💾"): | |
os.makedirs(os.path.dirname(path), exist_ok=True) | |
self.model.save_pretrained(path) | |
self.tokenizer.save_pretrained(path) | |
st.success(f"Model saved at {path}! ✅") | |
def evaluate(self, prompt: str, status_container=None): | |
self.model.eval() | |
if status_container: | |
status_container.write("Preparing to evaluate... 🧠") | |
try: | |
with torch.no_grad(): | |
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device) | |
outputs = self.model.generate(**inputs, max_new_tokens=50, do_sample=True, top_p=0.95, temperature=0.7) | |
return self.tokenizer.decode(outputs[0], skip_special_tokens=True) | |
except Exception as e: | |
if status_container: | |
status_container.error(f"Oops! Something broke: {str(e)} 💥") | |
return f"Error: {str(e)}" | |
class DiffusionBuilder: | |
def __init__(self): | |
self.config = None | |
self.pipeline = None | |
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None): | |
from diffusers import StableDiffusionPipeline | |
with st.spinner(f"Loading diffusion model {model_path}... ⏳"): | |
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path) | |
self.pipeline.to("cuda" if torch.cuda.is_available() else "cpu") | |
if config: | |
self.config = config | |
st.success(f"Diffusion model loaded! 🎨") | |
return self | |
def fine_tune_sft(self, images, texts, epochs=3): | |
dataset = DiffusionDataset(images, texts) | |
dataloader = DataLoader(dataset, batch_size=1, shuffle=True) | |
optimizer = torch.optim.AdamW(self.pipeline.unet.parameters(), lr=1e-5) | |
self.pipeline.unet.train() | |
for epoch in range(epochs): | |
with st.spinner(f"Training diffusion epoch {epoch + 1}/{epochs}... ⚙️"): | |
total_loss = 0 | |
for batch in dataloader: | |
optimizer.zero_grad() | |
image = batch["image"][0].to(self.pipeline.device) | |
text = batch["text"][0] | |
latents = self.pipeline.vae.encode(torch.tensor(np.array(image)).permute(2, 0, 1).unsqueeze(0).float().to(self.pipeline.device)).latent_dist.sample() | |
noise = torch.randn_like(latents) | |
timesteps = torch.randint(0, self.pipeline.scheduler.num_train_timesteps, (latents.shape[0],), device=latents.device) | |
noisy_latents = self.pipeline.scheduler.add_noise(latents, noise, timesteps) | |
text_embeddings = self.pipeline.text_encoder(self.pipeline.tokenizer(text, return_tensors="pt").input_ids.to(self.pipeline.device))[0] | |
pred_noise = self.pipeline.unet(noisy_latents, timesteps, encoder_hidden_states=text_embeddings).sample | |
loss = torch.nn.functional.mse_loss(pred_noise, noise) | |
loss.backward() | |
optimizer.step() | |
total_loss += loss.item() | |
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}") | |
st.success("Diffusion SFT Fine-tuning completed! 🎨") | |
return self | |
def save_model(self, path: str): | |
with st.spinner("Saving diffusion model... 💾"): | |
os.makedirs(os.path.dirname(path), exist_ok=True) | |
self.pipeline.save_pretrained(path) | |
st.success(f"Diffusion model saved at {path}! ✅") | |
def generate(self, prompt: str): | |
return self.pipeline(prompt, num_inference_steps=50).images[0] | |
# Utility Functions | |
def generate_filename(sequence, ext="png"): | |
from datetime import datetime | |
import pytz | |
central = pytz.timezone('US/Central') | |
timestamp = datetime.now(central).strftime("%d%m%Y%H%M%S%p") | |
return f"{sequence}{timestamp}.{ext}" | |
def get_download_link(file_path, mime_type="text/plain", label="Download"): | |
with open(file_path, 'rb') as f: | |
data = f.read() | |
b64 = base64.b64encode(data).decode() | |
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label} 📥</a>' | |
def zip_directory(directory_path, zip_path): | |
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf: | |
for root, _, files in os.walk(directory_path): | |
for file in files: | |
zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path))) | |
def get_model_files(model_type="causal_lm"): | |
path = "models/*" if model_type == "causal_lm" else "diffusion_models/*" | |
return [d for d in glob.glob(path) if os.path.isdir(d)] | |
def get_gallery_files(file_types): | |
return sorted([f for ext in file_types for f in glob.glob(f"*.{ext}")]) | |
def update_gallery(): | |
media_files = get_gallery_files(["png"]) | |
if media_files: | |
cols = st.sidebar.columns(2) | |
for idx, file in enumerate(media_files[:gallery_size * 2]): | |
with cols[idx % 2]: | |
st.image(Image.open(file), caption=file, use_container_width=True) | |
st.markdown(get_download_link(file, "image/png", "Download Image"), unsafe_allow_html=True) | |
# Mock Search Tool for RAG | |
def mock_search(query: str) -> str: | |
if "superhero" in query.lower(): | |
return "Latest trends: Gold-plated Batman statues, VR superhero battles." | |
return "No relevant results found." | |
class PartyPlannerAgent: | |
def __init__(self, model, tokenizer): | |
self.model = model | |
self.tokenizer = tokenizer | |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
self.model.to(self.device) | |
def generate(self, prompt: str) -> str: | |
self.model.eval() | |
with torch.no_grad(): | |
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.device) | |
outputs = self.model.generate(**inputs, max_new_tokens=100, do_sample=True, top_p=0.95, temperature=0.7) | |
return self.tokenizer.decode(outputs[0], skip_special_tokens=True) | |
def plan_party(self, task: str) -> pd.DataFrame: | |
search_result = mock_search("superhero party trends") | |
prompt = f"Given this context: '{search_result}'\n{task}" | |
plan_text = self.generate(prompt) | |
locations = {"Wayne Manor": (42.3601, -71.0589), "New York": (40.7128, -74.0060)} | |
wayne_coords = locations["Wayne Manor"] | |
travel_times = {loc: calculate_cargo_travel_time(coords, wayne_coords) for loc, coords in locations.items() if loc != "Wayne Manor"} | |
data = [ | |
{"Location": "New York", "Travel Time (hrs)": travel_times["New York"], "Luxury Idea": "Gold-plated Batman statues"}, | |
{"Location": "Wayne Manor", "Travel Time (hrs)": 0.0, "Luxury Idea": "VR superhero battles"} | |
] | |
return pd.DataFrame(data) | |
class CVPartyPlannerAgent: | |
def __init__(self, pipeline): | |
self.pipeline = pipeline | |
def generate(self, prompt: str) -> Image.Image: | |
return self.pipeline(prompt, num_inference_steps=50).images[0] | |
def plan_party(self, task: str) -> pd.DataFrame: | |
search_result = mock_search("superhero party trends") | |
prompt = f"Given this context: '{search_result}'\n{task}" | |
data = [ | |
{"Theme": "Batman", "Image Idea": "Gold-plated Batman statue"}, | |
{"Theme": "Avengers", "Image Idea": "VR superhero battle scene"} | |
] | |
return pd.DataFrame(data) | |
def calculate_cargo_travel_time(origin_coords: Tuple[float, float], destination_coords: Tuple[float, float], cruising_speed_kmh: float = 750.0) -> float: | |
def to_radians(degrees: float) -> float: | |
return degrees * (math.pi / 180) | |
lat1, lon1 = map(to_radians, origin_coords) | |
lat2, lon2 = map(to_radians, destination_coords) | |
EARTH_RADIUS_KM = 6371.0 | |
dlon = lon2 - lon1 | |
dlat = lat2 - lat1 | |
a = (math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2) ** 2) | |
c = 2 * math.asin(math.sqrt(a)) | |
distance = EARTH_RADIUS_KM * c | |
actual_distance = distance * 1.1 | |
flight_time = (actual_distance / cruising_speed_kmh) + 1.0 | |
return round(flight_time, 2) | |
# Main App | |
st.title("SFT Tiny Titans 🚀 (Small but Mighty!)") | |
# Sidebar Galleries | |
st.sidebar.header("Media Gallery 🎨") | |
gallery_size = st.sidebar.slider("Gallery Size", 1, 10, 4) | |
update_gallery() | |
st.sidebar.subheader("Model Management 🗂️") | |
model_type = st.sidebar.selectbox("Model Type", ["Causal LM", "Diffusion"]) | |
model_dirs = get_model_files("causal_lm" if model_type == "Causal LM" else "diffusion") | |
selected_model = st.sidebar.selectbox("Select Saved Model", ["None"] + model_dirs) | |
if selected_model != "None" and st.sidebar.button("Load Model 📂"): | |
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder() | |
config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=os.path.basename(selected_model), base_model="unknown", size="small") | |
builder.load_model(selected_model, config) | |
st.session_state['builder'] = builder | |
st.session_state['model_loaded'] = True | |
st.rerun() | |
# Tabs | |
tab1, tab2, tab3, tab4, tab5 = st.tabs(["Build Titan 🌱", "Camera Snap 📷", "Fine-Tune Titan 🔧", "Test Titan 🧪", "Agentic RAG Party 🌐"]) | |
with tab1: | |
st.header("Build Titan 🌱") | |
model_type = st.selectbox("Model Type", ["Causal LM", "Diffusion"], key="build_type") | |
base_model = st.selectbox("Select Tiny Model", | |
["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"] if model_type == "Causal LM" else | |
["stabilityai/stable-diffusion-2-base", "runwayml/stable-diffusion-v1-5"]) | |
model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}") | |
if st.button("Download Model ⬇️"): | |
config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=model_name, base_model=base_model, size="small") | |
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder() | |
builder.load_model(base_model, config) | |
builder.save_model(config.model_path) | |
st.session_state['builder'] = builder | |
st.session_state['model_loaded'] = True | |
st.rerun() | |
with tab2: | |
st.header("Camera Snap 📷 (Dual Capture!)") | |
slice_count = st.number_input("Image Slice Count", min_value=1, max_value=20, value=10) | |
video_length = st.number_input("Video Length (seconds)", min_value=1, max_value=30, value=10) | |
cols = st.columns(2) | |
with cols[0]: | |
st.subheader("Camera 0") | |
cam0_img = st.camera_input("Take a picture - Cam 0", key="cam0") | |
if cam0_img: | |
filename = generate_filename(0) | |
with open(filename, "wb") as f: | |
f.write(cam0_img.getvalue()) | |
st.image(Image.open(filename), caption=filename, use_container_width=True) | |
logger.info(f"Saved snapshot from Camera 0: {filename}") | |
st.session_state['captured_images'].append(filename) | |
update_gallery() | |
if st.button(f"Capture {slice_count} Frames - Cam 0 📸"): | |
st.session_state['cam0_frames'] = [] | |
for i in range(slice_count): | |
img = st.camera_input(f"Frame {i} - Cam 0", key=f"cam0_frame_{i}_{time.time()}") | |
if img: | |
filename = generate_filename(f"0_{i}") | |
with open(filename, "wb") as f: | |
f.write(img.getvalue()) | |
st.session_state['cam0_frames'].append(filename) | |
logger.info(f"Saved frame {i} from Camera 0: {filename}") | |
time.sleep(1.0 / slice_count) | |
st.session_state['captured_images'].extend(st.session_state['cam0_frames']) | |
update_gallery() | |
for frame in st.session_state['cam0_frames']: | |
st.image(Image.open(frame), caption=frame, use_container_width=True) | |
with cols[1]: | |
st.subheader("Camera 1") | |
cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1") | |
if cam1_img: | |
filename = generate_filename(1) | |
with open(filename, "wb") as f: | |
f.write(cam1_img.getvalue()) | |
st.image(Image.open(filename), caption=filename, use_container_width=True) | |
logger.info(f"Saved snapshot from Camera 1: {filename}") | |
st.session_state['captured_images'].append(filename) | |
update_gallery() | |
if st.button(f"Capture {slice_count} Frames - Cam 1 📸"): | |
st.session_state['cam1_frames'] = [] | |
for i in range(slice_count): | |
img = st.camera_input(f"Frame {i} - Cam 1", key=f"cam1_frame_{i}_{time.time()}") | |
if img: | |
filename = generate_filename(f"1_{i}") | |
with open(filename, "wb") as f: | |
f.write(img.getvalue()) | |
st.session_state['cam1_frames'].append(filename) | |
logger.info(f"Saved frame {i} from Camera 1: {filename}") | |
time.sleep(1.0 / slice_count) | |
st.session_state['captured_images'].extend(st.session_state['cam1_frames']) | |
update_gallery() | |
for frame in st.session_state['cam1_frames']: | |
st.image(Image.open(frame), caption=frame, use_container_width=True) | |
with tab3: | |
st.header("Fine-Tune Titan 🔧") | |
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False): | |
st.warning("Please build or load a Titan first! ⚠️") | |
else: | |
if isinstance(st.session_state['builder'], ModelBuilder): | |
uploaded_csv = st.file_uploader("Upload CSV for SFT", type="csv") | |
if uploaded_csv and st.button("Fine-Tune with Uploaded CSV 🔄"): | |
csv_path = f"uploaded_sft_data_{int(time.time())}.csv" | |
with open(csv_path, "wb") as f: | |
f.write(uploaded_csv.read()) | |
new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}" | |
new_config = ModelConfig(name=new_model_name, base_model=st.session_state['builder'].config.base_model, size="small") | |
st.session_state['builder'].config = new_config | |
st.session_state['builder'].fine_tune_sft(csv_path) | |
st.session_state['builder'].save_model(new_config.model_path) | |
zip_path = f"{new_config.model_path}.zip" | |
zip_directory(new_config.model_path, zip_path) | |
st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned Titan"), unsafe_allow_html=True) | |
elif isinstance(st.session_state['builder'], DiffusionBuilder): | |
captured_images = get_gallery_files(["png"]) | |
if len(captured_images) >= 2: | |
demo_data = [{"image": img, "text": f"Superhero {os.path.basename(img).split('.')[0]}"} for img in captured_images[:min(len(captured_images), slice_count)]] | |
edited_data = st.data_editor(pd.DataFrame(demo_data), num_rows="dynamic") | |
if st.button("Fine-Tune with Dataset 🔄"): | |
images = [Image.open(row["image"]) for _, row in edited_data.iterrows()] | |
texts = [row["text"] for _, row in edited_data.iterrows()] | |
new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}" | |
new_config = DiffusionConfig(name=new_model_name, base_model=st.session_state['builder'].config.base_model, size="small") | |
st.session_state['builder'].config = new_config | |
st.session_state['builder'].fine_tune_sft(images, texts) | |
st.session_state['builder'].save_model(new_config.model_path) | |
zip_path = f"{new_config.model_path}.zip" | |
zip_directory(new_config.model_path, zip_path) | |
st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned Diffusion Model"), unsafe_allow_html=True) | |
csv_path = f"sft_dataset_{int(time.time())}.csv" | |
with open(csv_path, "w", newline="") as f: | |
writer = csv.writer(f) | |
writer.writerow(["image", "text"]) | |
for _, row in edited_data.iterrows(): | |
writer.writerow([row["image"], row["text"]]) | |
st.markdown(get_download_link(csv_path, "text/csv", "Download SFT Dataset CSV"), unsafe_allow_html=True) | |
with tab4: | |
st.header("Test Titan 🧪") | |
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False): | |
st.warning("Please build or load a Titan first! ⚠️") | |
else: | |
if isinstance(st.session_state['builder'], ModelBuilder): | |
test_prompt = st.text_area("Enter Test Prompt", "What is AI?") | |
if st.button("Run Test ▶️"): | |
result = st.session_state['builder'].evaluate(test_prompt) | |
st.write(f"**Generated Response**: {result}") | |
elif isinstance(st.session_state['builder'], DiffusionBuilder): | |
test_prompt = st.text_area("Enter Test Prompt", "Neon Batman") | |
if st.button("Run Test ▶️"): | |
image = st.session_state['builder'].generate(test_prompt) | |
st.image(image, caption="Generated Image") | |
with tab5: | |
st.header("Agentic RAG Party 🌐") | |
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False): | |
st.warning("Please build or load a Titan first! ⚠️") | |
else: | |
if isinstance(st.session_state['builder'], ModelBuilder): | |
if st.button("Run NLP RAG Demo 🎉"): | |
agent = PartyPlannerAgent(st.session_state['builder'].model, st.session_state['builder'].tokenizer) | |
task = "Plan a luxury superhero-themed party at Wayne Manor." | |
plan_df = agent.plan_party(task) | |
st.dataframe(plan_df) | |
elif isinstance(st.session_state['builder'], DiffusionBuilder): | |
if st.button("Run CV RAG Demo 🎉"): | |
agent = CVPartyPlannerAgent(st.session_state['builder'].pipeline) | |
task = "Generate images for a luxury superhero-themed party." | |
plan_df = agent.plan_party(task) | |
st.dataframe(plan_df) | |
for _, row in plan_df.iterrows(): | |
image = agent.generate(row["Image Idea"]) | |
st.image(image, caption=f"{row['Theme']} - {row['Image Idea']}") | |
# Display Logs | |
st.sidebar.subheader("Action Logs 📜") | |
log_container = st.sidebar.empty() | |
with log_container: | |
for record in log_records: | |
st.write(f"{record.asctime} - {record.levelname} - {record.message}") | |
# Initial Gallery Update | |
update_gallery() |