|
|
|
import os |
|
import glob |
|
import base64 |
|
import streamlit as st |
|
import pandas as pd |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from torch.utils.data import Dataset, DataLoader |
|
import csv |
|
import time |
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple |
|
import zipfile |
|
import math |
|
from PIL import Image |
|
import random |
|
import logging |
|
import numpy as np |
|
|
|
|
|
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") |
|
logger = logging.getLogger(__name__) |
|
log_records = [] |
|
|
|
class LogCaptureHandler(logging.Handler): |
|
def emit(self, record): |
|
log_records.append(record) |
|
|
|
logger.addHandler(LogCaptureHandler()) |
|
|
|
|
|
st.set_page_config( |
|
page_title="SFT Tiny Titans 🚀", |
|
page_icon="🤖", |
|
layout="wide", |
|
initial_sidebar_state="expanded", |
|
menu_items={ |
|
'Get Help': 'https://huggingface.co/awacke1', |
|
'Report a Bug': 'https://huggingface.co/spaces/awacke1', |
|
'About': "Tiny Titans: Small models, big dreams, and a sprinkle of chaos! 🌌" |
|
} |
|
) |
|
|
|
|
|
if 'captured_images' not in st.session_state: |
|
st.session_state['captured_images'] = [] |
|
if 'nlp_builder' not in st.session_state: |
|
st.session_state['nlp_builder'] = None |
|
if 'cv_builder' not in st.session_state: |
|
st.session_state['cv_builder'] = None |
|
if 'nlp_loaded' not in st.session_state: |
|
st.session_state['nlp_loaded'] = False |
|
if 'cv_loaded' not in st.session_state: |
|
st.session_state['cv_loaded'] = False |
|
if 'active_tab' not in st.session_state: |
|
st.session_state['active_tab'] = "Build Titan 🌱" |
|
|
|
|
|
@dataclass |
|
class ModelConfig: |
|
name: str |
|
base_model: str |
|
size: str |
|
domain: Optional[str] = None |
|
model_type: str = "causal_lm" |
|
@property |
|
def model_path(self): |
|
return f"models/{self.name}" |
|
|
|
@dataclass |
|
class DiffusionConfig: |
|
name: str |
|
base_model: str |
|
size: str |
|
@property |
|
def model_path(self): |
|
return f"diffusion_models/{self.name}" |
|
|
|
|
|
class SFTDataset(Dataset): |
|
def __init__(self, data, tokenizer, max_length=128): |
|
self.data = data |
|
self.tokenizer = tokenizer |
|
self.max_length = max_length |
|
def __len__(self): |
|
return len(self.data) |
|
def __getitem__(self, idx): |
|
prompt = self.data[idx]["prompt"] |
|
response = self.data[idx]["response"] |
|
full_text = f"{prompt} {response}" |
|
full_encoding = self.tokenizer(full_text, max_length=self.max_length, padding="max_length", truncation=True, return_tensors="pt") |
|
prompt_encoding = self.tokenizer(prompt, max_length=self.max_length, padding=False, truncation=True, return_tensors="pt") |
|
input_ids = full_encoding["input_ids"].squeeze() |
|
attention_mask = full_encoding["attention_mask"].squeeze() |
|
labels = input_ids.clone() |
|
prompt_len = prompt_encoding["input_ids"].shape[1] |
|
if prompt_len < self.max_length: |
|
labels[:prompt_len] = -100 |
|
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels} |
|
|
|
class DiffusionDataset(Dataset): |
|
def __init__(self, images, texts): |
|
self.images = images |
|
self.texts = texts |
|
def __len__(self): |
|
return len(self.images) |
|
def __getitem__(self, idx): |
|
return {"image": self.images[idx], "text": self.texts[idx]} |
|
|
|
|
|
class ModelBuilder: |
|
def __init__(self): |
|
self.config = None |
|
self.model = None |
|
self.tokenizer = None |
|
self.sft_data = None |
|
self.jokes = ["Why did the AI go to therapy? Too many layers to unpack! 😂", "Training complete! Time for a binary coffee break. ☕"] |
|
def load_model(self, model_path: str, config: Optional[ModelConfig] = None): |
|
try: |
|
with st.spinner(f"Loading {model_path}... ⏳ (Patience, young padawan!)"): |
|
self.model = AutoModelForCausalLM.from_pretrained(model_path) |
|
self.tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
if self.tokenizer.pad_token is None: |
|
self.tokenizer.pad_token = self.tokenizer.eos_token |
|
if config: |
|
self.config = config |
|
self.model.to("cuda" if torch.cuda.is_available() else "cpu") |
|
st.success(f"Model loaded! 🎉 {random.choice(self.jokes)}") |
|
logger.info(f"Successfully loaded Causal LM model: {model_path}") |
|
except torch.cuda.OutOfMemoryError as e: |
|
st.error(f"GPU memory error loading {model_path}: {str(e)} 💥 (Out of GPU juice!)") |
|
logger.error(f"GPU memory error loading {model_path}: {str(e)}") |
|
raise |
|
except MemoryError as e: |
|
st.error(f"CPU memory error loading {model_path}: {str(e)} 💥 (RAM ran away!)") |
|
logger.error(f"CPU memory error loading {model_path}: {str(e)}") |
|
raise |
|
except Exception as e: |
|
st.error(f"Failed to load {model_path}: {str(e)} 💥 (Something broke—check the logs!)") |
|
logger.error(f"Failed to load {model_path}: {str(e)}") |
|
raise |
|
return self |
|
def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4): |
|
try: |
|
self.sft_data = [] |
|
with open(csv_path, "r") as f: |
|
reader = csv.DictReader(f) |
|
for row in reader: |
|
self.sft_data.append({"prompt": row["prompt"], "response": row["response"]}) |
|
dataset = SFTDataset(self.sft_data, self.tokenizer) |
|
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True) |
|
optimizer = torch.optim.AdamW(self.model.parameters(), lr=2e-5) |
|
self.model.train() |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
self.model.to(device) |
|
for epoch in range(epochs): |
|
with st.spinner(f"Training epoch {epoch + 1}/{epochs}... ⚙️ (The AI is lifting weights!)"): |
|
total_loss = 0 |
|
for batch in dataloader: |
|
optimizer.zero_grad() |
|
input_ids = batch["input_ids"].to(device) |
|
attention_mask = batch["attention_mask"].to(device) |
|
labels = batch["labels"].to(device) |
|
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, labels=labels) |
|
loss = outputs.loss |
|
loss.backward() |
|
optimizer.step() |
|
total_loss += loss.item() |
|
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}") |
|
st.success(f"SFT Fine-tuning completed! 🎉 {random.choice(self.jokes)}") |
|
logger.info(f"Successfully fine-tuned Causal LM model: {self.config.name}") |
|
except Exception as e: |
|
st.error(f"Fine-tuning failed: {str(e)} 💥 (Training hit a snag!)") |
|
logger.error(f"Fine-tuning failed: {str(e)}") |
|
raise |
|
return self |
|
def save_model(self, path: str): |
|
try: |
|
with st.spinner("Saving model... 💾 (Packing the AI’s suitcase!)"): |
|
os.makedirs(os.path.dirname(path), exist_ok=True) |
|
self.model.save_pretrained(path) |
|
self.tokenizer.save_pretrained(path) |
|
st.success(f"Model saved at {path}! ✅ May the force be with it.") |
|
logger.info(f"Model saved at {path}") |
|
except Exception as e: |
|
st.error(f"Failed to save model: {str(e)} 💥 (Save operation crashed!)") |
|
logger.error(f"Failed to save model: {str(e)}") |
|
raise |
|
def evaluate(self, prompt: str, status_container=None): |
|
self.model.eval() |
|
if status_container: |
|
status_container.write("Preparing to evaluate... 🧠 (Titan’s warming up its circuits!)") |
|
logger.info(f"Evaluating prompt: {prompt}") |
|
try: |
|
with torch.no_grad(): |
|
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device) |
|
outputs = self.model.generate(**inputs, max_new_tokens=50, do_sample=True, top_p=0.95, temperature=0.7) |
|
result = self.tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
logger.info(f"Generated response: {result}") |
|
return result |
|
except Exception as e: |
|
logger.error(f"Evaluation error: {str(e)}") |
|
if status_container: |
|
status_container.error(f"Oops! Something broke: {str(e)} 💥 (Titan tripped over a wire!)") |
|
return f"Error: {str(e)}" |
|
|
|
class DiffusionBuilder: |
|
def __init__(self): |
|
self.config = None |
|
self.pipeline = None |
|
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None): |
|
from diffusers import StableDiffusionPipeline |
|
try: |
|
with st.spinner(f"Loading diffusion model {model_path}... ⏳"): |
|
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path) |
|
self.pipeline.to("cuda" if torch.cuda.is_available() else "cpu") |
|
if config: |
|
self.config = config |
|
st.success(f"Diffusion model loaded! 🎨") |
|
logger.info(f"Successfully loaded Diffusion model: {model_path}") |
|
except torch.cuda.OutOfMemoryError as e: |
|
st.error(f"GPU memory error loading {model_path}: {str(e)} 💥 (Out of GPU juice!)") |
|
logger.error(f"GPU memory error loading {model_path}: {str(e)}") |
|
raise |
|
except MemoryError as e: |
|
st.error(f"CPU memory error loading {model_path}: {str(e)} 💥 (RAM ran away!)") |
|
logger.error(f"CPU memory error loading {model_path}: {str(e)}") |
|
raise |
|
except Exception as e: |
|
st.error(f"Failed to load {model_path}: {str(e)} 💥 (Something broke—check the logs!)") |
|
logger.error(f"Failed to load {model_path}: {str(e)}") |
|
raise |
|
return self |
|
def fine_tune_sft(self, images, texts, epochs=3): |
|
try: |
|
dataset = DiffusionDataset(images, texts) |
|
dataloader = DataLoader(dataset, batch_size=1, shuffle=True) |
|
optimizer = torch.optim.AdamW(self.pipeline.unet.parameters(), lr=1e-5) |
|
self.pipeline.unet.train() |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
for epoch in range(epochs): |
|
with st.spinner(f"Training diffusion epoch {epoch + 1}/{epochs}... ⚙️"): |
|
total_loss = 0 |
|
for batch in dataloader: |
|
optimizer.zero_grad() |
|
image = batch["image"][0].to(device) |
|
text = batch["text"][0] |
|
latents = self.pipeline.vae.encode(torch.tensor(np.array(image)).permute(2, 0, 1).unsqueeze(0).float().to(device)).latent_dist.sample() |
|
noise = torch.randn_like(latents) |
|
timesteps = torch.randint(0, self.pipeline.scheduler.num_train_timesteps, (latents.shape[0],), device=latents.device) |
|
noisy_latents = self.pipeline.scheduler.add_noise(latents, noise, timesteps) |
|
text_embeddings = self.pipeline.text_encoder(self.pipeline.tokenizer(text, return_tensors="pt").input_ids.to(device))[0] |
|
pred_noise = self.pipeline.unet(noisy_latents, timesteps, encoder_hidden_states=text_embeddings).sample |
|
loss = torch.nn.functional.mse_loss(pred_noise, noise) |
|
loss.backward() |
|
optimizer.step() |
|
total_loss += loss.item() |
|
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}") |
|
st.success("Diffusion SFT Fine-tuning completed! 🎨") |
|
logger.info(f"Successfully fine-tuned Diffusion model: {self.config.name}") |
|
except Exception as e: |
|
st.error(f"Fine-tuning failed: {str(e)} 💥 (Training hit a snag!)") |
|
logger.error(f"Fine-tuning failed: {str(e)}") |
|
raise |
|
return self |
|
def save_model(self, path: str): |
|
try: |
|
with st.spinner("Saving diffusion model... 💾"): |
|
os.makedirs(os.path.dirname(path), exist_ok=True) |
|
self.pipeline.save_pretrained(path) |
|
st.success(f"Diffusion model saved at {path}! ✅") |
|
logger.info(f"Diffusion model saved at {path}") |
|
except Exception as e: |
|
st.error(f"Failed to save model: {str(e)} 💥 (Save operation crashed!)") |
|
logger.error(f"Failed to save model: {str(e)}") |
|
raise |
|
def generate(self, prompt: str): |
|
try: |
|
return self.pipeline(prompt, num_inference_steps=50).images[0] |
|
except Exception as e: |
|
st.error(f"Image generation failed: {str(e)} 💥 (Pixel party pooper!)") |
|
logger.error(f"Image generation failed: {str(e)}") |
|
raise |
|
|
|
|
|
def generate_filename(sequence, ext="png"): |
|
from datetime import datetime |
|
import pytz |
|
central = pytz.timezone('US/Central') |
|
dt = datetime.now(central) |
|
return f"{dt.strftime('%m-%d-%Y-%I-%M-%S-%p')}.{ext}" |
|
|
|
def get_download_link(file_path, mime_type="text/plain", label="Download"): |
|
try: |
|
with open(file_path, 'rb') as f: |
|
data = f.read() |
|
b64 = base64.b64encode(data).decode() |
|
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label} 📥</a>' |
|
except Exception as e: |
|
logger.error(f"Failed to generate download link for {file_path}: {str(e)}") |
|
return f"Error: Could not generate link for {file_path}" |
|
|
|
def zip_directory(directory_path, zip_path): |
|
try: |
|
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf: |
|
for root, _, files in os.walk(directory_path): |
|
for file in files: |
|
zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path))) |
|
except Exception as e: |
|
logger.error(f"Failed to zip directory {directory_path}: {str(e)}") |
|
raise |
|
|
|
def get_model_files(model_type="causal_lm"): |
|
path = "models/*" if model_type == "causal_lm" else "diffusion_models/*" |
|
return [d for d in glob.glob(path) if os.path.isdir(d)] |
|
|
|
def get_gallery_files(file_types): |
|
return sorted(list(set(f for ext in file_types for f in glob.glob(f"*.{ext}")))) |
|
|
|
def update_gallery(): |
|
media_files = get_gallery_files(["png"]) |
|
if media_files: |
|
cols = st.sidebar.columns(2) |
|
for idx, file in enumerate(media_files[:gallery_size * 2]): |
|
with cols[idx % 2]: |
|
st.image(Image.open(file), caption=file, use_container_width=True) |
|
st.markdown(get_download_link(file, "image/png", "Download Image"), unsafe_allow_html=True) |
|
|
|
|
|
def mock_search(query: str) -> str: |
|
if "superhero" in query.lower(): |
|
return "Latest trends: Gold-plated Batman statues, VR superhero battles." |
|
return "No relevant results found." |
|
|
|
class PartyPlannerAgent: |
|
def __init__(self, model, tokenizer): |
|
self.model = model |
|
self.tokenizer = tokenizer |
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
self.model.to(self.device) |
|
def generate(self, prompt: str) -> str: |
|
self.model.eval() |
|
with torch.no_grad(): |
|
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.device) |
|
outputs = self.model.generate(**inputs, max_new_tokens=100, do_sample=True, top_p=0.95, temperature=0.7) |
|
return self.tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
def plan_party(self, task: str) -> pd.DataFrame: |
|
search_result = mock_search("superhero party trends") |
|
prompt = f"Given this context: '{search_result}'\n{task}" |
|
plan_text = self.generate(prompt) |
|
locations = {"Wayne Manor": (42.3601, -71.0589), "New York": (40.7128, -74.0060)} |
|
wayne_coords = locations["Wayne Manor"] |
|
travel_times = {loc: calculate_cargo_travel_time(coords, wayne_coords) for loc, coords in locations.items() if loc != "Wayne Manor"} |
|
data = [ |
|
{"Location": "New York", "Travel Time (hrs)": travel_times["New York"], "Luxury Idea": "Gold-plated Batman statues"}, |
|
{"Location": "Wayne Manor", "Travel Time (hrs)": 0.0, "Luxury Idea": "VR superhero battles"} |
|
] |
|
return pd.DataFrame(data) |
|
|
|
class CVPartyPlannerAgent: |
|
def __init__(self, pipeline): |
|
self.pipeline = pipeline |
|
def generate(self, prompt: str) -> Image.Image: |
|
return self.pipeline(prompt, num_inference_steps=50).images[0] |
|
def plan_party(self, task: str) -> pd.DataFrame: |
|
search_result = mock_search("superhero party trends") |
|
prompt = f"Given this context: '{search_result}'\n{task}" |
|
data = [ |
|
{"Theme": "Batman", "Image Idea": "Gold-plated Batman statue"}, |
|
{"Theme": "Avengers", "Image Idea": "VR superhero battle scene"} |
|
] |
|
return pd.DataFrame(data) |
|
|
|
def calculate_cargo_travel_time(origin_coords: Tuple[float, float], destination_coords: Tuple[float, float], cruising_speed_kmh: float = 750.0) -> float: |
|
def to_radians(degrees: float) -> float: |
|
return degrees * (math.pi / 180) |
|
lat1, lon1 = map(to_radians, origin_coords) |
|
lat2, lon2 = map(to_radians, destination_coords) |
|
EARTH_RADIUS_KM = 6371.0 |
|
dlon = lon2 - lon1 |
|
dlat = lat2 - lat1 |
|
a = (math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2) ** 2) |
|
c = 2 * math.asin(math.sqrt(a)) |
|
distance = EARTH_RADIUS_KM * c |
|
actual_distance = distance * 1.1 |
|
flight_time = (actual_distance / cruising_speed_kmh) + 1.0 |
|
return round(flight_time, 2) |
|
|
|
|
|
st.title("SFT Tiny Titans 🚀 (Small but Mighty!)") |
|
|
|
|
|
st.sidebar.header("Media Gallery 🎨") |
|
gallery_size = st.sidebar.slider("Gallery Size 📸", 1, 10, 4, help="Adjust how many epic captures you see! 🌟") |
|
update_gallery() |
|
|
|
st.sidebar.subheader("Model Management 🗂️") |
|
model_type = st.sidebar.selectbox("Model Type", ["Causal LM", "Diffusion"]) |
|
model_dirs = get_model_files("causal_lm" if model_type == "Causal LM" else "diffusion") |
|
selected_model = st.sidebar.selectbox("Select Saved Model", ["None"] + model_dirs) |
|
if selected_model != "None" and st.sidebar.button("Load Model 📂"): |
|
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder() |
|
config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=os.path.basename(selected_model), base_model="unknown", size="small") |
|
try: |
|
builder.load_model(selected_model, config) |
|
if model_type == "Causal LM": |
|
st.session_state['nlp_builder'] = builder |
|
st.session_state['nlp_loaded'] = True |
|
else: |
|
st.session_state['cv_builder'] = builder |
|
st.session_state['cv_loaded'] = True |
|
st.rerun() |
|
except Exception as e: |
|
st.error(f"Model load failed: {str(e)} 💥 (Check logs for details!)") |
|
|
|
st.sidebar.subheader("Model Status 🚦") |
|
st.sidebar.write(f"**NLP Model**: {'Loaded' if st.session_state['nlp_loaded'] else 'Not Loaded'} {'(Active)' if st.session_state['nlp_loaded'] and isinstance(st.session_state.get('nlp_builder'), ModelBuilder) else ''}") |
|
st.sidebar.write(f"**CV Model**: {'Loaded' if st.session_state['cv_loaded'] else 'Not Loaded'} {'(Active)' if st.session_state['cv_loaded'] and isinstance(st.session_state.get('cv_builder'), DiffusionBuilder) else ''}") |
|
|
|
|
|
tabs = [ |
|
"Build Titan 🌱", "Camera Snap 📷", |
|
"Fine-Tune Titan (NLP) 🔧", "Test Titan (NLP) 🧪", "Agentic RAG Party (NLP) 🌐", |
|
"Fine-Tune Titan (CV) 🔧", "Test Titan (CV) 🧪", "Agentic RAG Party (CV) 🌐" |
|
] |
|
tab1, tab2, tab3, tab4, tab5, tab6, tab7, tab8 = st.tabs(tabs) |
|
|
|
|
|
for i, tab in enumerate(tabs): |
|
if st.session_state['active_tab'] != tab and st.session_state.get(f'tab{i}_active', False): |
|
logger.info(f"Switched to tab: {tab}") |
|
st.session_state['active_tab'] = tab |
|
st.session_state[f'tab{i}_active'] = (st.session_state['active_tab'] == tab) |
|
|
|
with tab1: |
|
st.header("Build Titan 🌱") |
|
model_type = st.selectbox("Model Type", ["Causal LM", "Diffusion"], key="build_type") |
|
base_model = st.selectbox("Select Tiny Model", |
|
["HuggingFaceTB/SmolLM-135M", "HuggingFaceTB/SmolLM-360M", "Qwen/Qwen1.5-0.5B-Chat"] if model_type == "Causal LM" else |
|
["stabilityai/stable-diffusion-2-base", "runwayml/stable-diffusion-v1-5"]) |
|
model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}") |
|
domain = st.text_input("Target Domain", "general", help="Where will your Titan flex its muscles? 💪") if model_type == "Causal LM" else None |
|
if st.button("Download Model ⬇️"): |
|
config = ModelConfig(name=model_name, base_model=base_model, size="small", domain=domain) if model_type == "Causal LM" else DiffusionConfig(name=model_name, base_model=base_model, size="small") |
|
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder() |
|
try: |
|
builder.load_model(base_model, config) |
|
builder.save_model(config.model_path) |
|
if model_type == "Causal LM": |
|
st.session_state['nlp_builder'] = builder |
|
st.session_state['nlp_loaded'] = True |
|
else: |
|
st.session_state['cv_builder'] = builder |
|
st.session_state['cv_loaded'] = True |
|
st.rerun() |
|
except Exception as e: |
|
st.error(f"Model build failed: {str(e)} 💥 (Check logs for details!)") |
|
|
|
with tab2: |
|
st.header("Camera Snap 📷 (Dual Capture!)") |
|
slice_count = st.number_input("Image Slice Count 🎞️", min_value=1, max_value=20, value=10, help="How many snaps to dream of? (Automation’s on vacation! 😜)") |
|
video_length = st.number_input("Video Dream Length (seconds) 🎥", min_value=1, max_value=30, value=10, help="Imagine a vid this long—sadly, we’re stuck with pics for now! 😂") |
|
cols = st.columns(2) |
|
with cols[0]: |
|
st.subheader("Camera 0 🎬") |
|
cam0_img = st.camera_input("Snap a Shot - Cam 0 📸", key="cam0", help="Click to capture a heroic moment! 🦸♂️") |
|
if cam0_img: |
|
filename = generate_filename(0) |
|
with open(filename, "wb") as f: |
|
f.write(cam0_img.getvalue()) |
|
st.image(Image.open(filename), caption=filename, use_container_width=True) |
|
logger.info(f"Saved snapshot from Camera 0: {filename}") |
|
st.session_state['captured_images'].append(filename) |
|
update_gallery() |
|
st.info("🚨 Multi-frame capture’s on strike! Snap one at a time—your Titan’s too cool for automation glitches! 😎") |
|
with cols[1]: |
|
st.subheader("Camera 1 🎥") |
|
cam1_img = st.camera_input("Snap a Shot - Cam 1 📸", key="cam1", help="Grab another epic frame! 🌟") |
|
if cam1_img: |
|
filename = generate_filename(1) |
|
with open(filename, "wb") as f: |
|
f.write(cam1_img.getvalue()) |
|
st.image(Image.open(filename), caption=filename, use_container_width=True) |
|
logger.info(f"Saved snapshot from Camera 1: {filename}") |
|
st.session_state['captured_images'].append(filename) |
|
update_gallery() |
|
st.info("🚨 Frame bursts? Nope, manual snaps only! One click, one masterpiece! 🎨") |
|
|
|
with tab3: |
|
st.header("Fine-Tune Titan (NLP) 🔧 (Teach Your Word Wizard Some Tricks!)") |
|
if not st.session_state['nlp_loaded'] or not isinstance(st.session_state['nlp_builder'], ModelBuilder): |
|
st.warning("Please build or load an NLP Titan first! ⚠️ (No word wizard, no magic!)") |
|
else: |
|
if st.button("Generate Sample CSV 📝"): |
|
sample_data = [ |
|
{"prompt": "What is AI?", "response": "AI is artificial intelligence, simulating human smarts in machines."}, |
|
{"prompt": "Explain machine learning", "response": "Machine learning is AI’s gym where models bulk up on data."}, |
|
{"prompt": "What is a neural network?", "response": "A neural network is a brainy AI mimicking human noggins."}, |
|
] |
|
csv_path = f"sft_data_{int(time.time())}.csv" |
|
with open(csv_path, "w", newline="") as f: |
|
writer = csv.DictWriter(f, fieldnames=["prompt", "response"]) |
|
writer.writeheader() |
|
writer.writerows(sample_data) |
|
st.markdown(get_download_link(csv_path, "text/csv", "Download Sample CSV"), unsafe_allow_html=True) |
|
st.success(f"Sample CSV generated as {csv_path}! ✅ (Fresh from the data oven!)") |
|
uploaded_csv = st.file_uploader("Upload CSV for SFT 📜", type="csv", help="Feed your Titan some tasty prompt-response pairs! 🍽️") |
|
if uploaded_csv and st.button("Fine-Tune with Uploaded CSV 🔄"): |
|
csv_path = f"uploaded_sft_data_{int(time.time())}.csv" |
|
with open(csv_path, "wb") as f: |
|
f.write(uploaded_csv.read()) |
|
new_model_name = f"{st.session_state['nlp_builder'].config.name}-sft-{int(time.time())}" |
|
new_config = ModelConfig(name=new_model_name, base_model=st.session_state['nlp_builder'].config.base_model, size="small", domain=st.session_state['nlp_builder'].config.domain) |
|
st.session_state['nlp_builder'].config = new_config |
|
with st.status("Fine-tuning NLP Titan... ⏳ (Whipping words into shape!)", expanded=True) as status: |
|
st.session_state['nlp_builder'].fine_tune_sft(csv_path) |
|
st.session_state['nlp_builder'].save_model(new_config.model_path) |
|
status.update(label="Fine-tuning completed! 🎉 (Wordsmith Titan unleashed!)", state="complete") |
|
zip_path = f"{new_config.model_path}.zip" |
|
zip_directory(new_config.model_path, zip_path) |
|
st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned NLP Titan"), unsafe_allow_html=True) |
|
|
|
with tab4: |
|
st.header("Test Titan (NLP) 🧪 (Put Your Word Wizard to the Test!)") |
|
if not st.session_state['nlp_loaded'] or not isinstance(st.session_state['nlp_builder'], ModelBuilder): |
|
st.warning("Please build or load an NLP Titan first! ⚠️ (No word wizard, no test drive!)") |
|
else: |
|
if st.session_state['nlp_builder'].sft_data: |
|
st.write("Testing with SFT Data:") |
|
with st.spinner("Running SFT data tests... ⏳ (Titan’s flexing its word muscles!)"): |
|
for item in st.session_state['nlp_builder'].sft_data[:3]: |
|
prompt = item["prompt"] |
|
expected = item["response"] |
|
status_container = st.empty() |
|
generated = st.session_state['nlp_builder'].evaluate(prompt, status_container) |
|
st.write(f"**Prompt**: {prompt}") |
|
st.write(f"**Expected**: {expected}") |
|
st.write(f"**Generated**: {generated} (Titan says: '{random.choice(['Bleep bloop!', 'I am groot!', '42!'])}')") |
|
st.write("---") |
|
status_container.empty() |
|
test_prompt = st.text_area("Enter Test Prompt 🗣️", "What is AI?", help="Ask your Titan anything—it’s ready to chat! 😜") |
|
if st.button("Run Test ▶️"): |
|
with st.spinner("Testing your prompt... ⏳ (Titan’s pondering deeply!)"): |
|
status_container = st.empty() |
|
result = st.session_state['nlp_builder'].evaluate(test_prompt, status_container) |
|
st.write(f"**Generated Response**: {result} (Titan’s wisdom unleashed!)") |
|
status_container.empty() |
|
|
|
with tab5: |
|
st.header("Agentic RAG Party (NLP) 🌐 (Party Like It’s 2099!)") |
|
st.write("This demo uses your SFT-tuned NLP Titan to plan a superhero party with mock retrieval!") |
|
if not st.session_state['nlp_loaded'] or not isinstance(st.session_state['nlp_builder'], ModelBuilder): |
|
st.warning("Please build or load an NLP Titan first! ⚠️ (No word wizard, no party!)") |
|
else: |
|
if st.button("Run NLP RAG Demo 🎉"): |
|
with st.spinner("Loading your SFT-tuned NLP Titan... ⏳ (Titan’s suiting up!)"): |
|
agent = PartyPlannerAgent(st.session_state['nlp_builder'].model, st.session_state['nlp_builder'].tokenizer) |
|
st.write("Agent ready! 🦸♂️ (Time to plan an epic bash!)") |
|
task = """ |
|
Plan a luxury superhero-themed party at Wayne Manor (42.3601° N, 71.0589° W). |
|
Use mock search results for the latest superhero party trends, refine for luxury elements |
|
(decorations, entertainment, catering), and calculate cargo travel times from key locations |
|
(New York: 40.7128° N, 74.0060° W; LA: 34.0522° N, 118.2437° W; London: 51.5074° N, 0.1278° W) |
|
to Wayne Manor. Create a plan with at least 6 entries in a pandas dataframe. |
|
""" |
|
with st.spinner("Planning the ultimate superhero bash... ⏳ (Calling all caped crusaders!)"): |
|
try: |
|
locations = { |
|
"Wayne Manor": (42.3601, -71.0589), |
|
"New York": (40.7128, -74.0060), |
|
"Los Angeles": (34.0522, -118.2437), |
|
"London": (51.5074, -0.1278) |
|
} |
|
wayne_coords = locations["Wayne Manor"] |
|
travel_times = {loc: calculate_cargo_travel_time(coords, wayne_coords) for loc, coords in locations.items() if loc != "Wayne Manor"} |
|
search_result = mock_search("superhero party trends") |
|
prompt = f""" |
|
Given this context from a search: "{search_result}" |
|
Plan a luxury superhero-themed party at Wayne Manor. Suggest luxury decorations, entertainment, and catering ideas. |
|
""" |
|
plan_text = agent.generate(prompt) |
|
catchphrases = ["To the Batmobile!", "Avengers, assemble!", "I am Iron Man!", "By the power of Grayskull!"] |
|
data = [ |
|
{"Location": "New York", "Travel Time (hrs)": travel_times["New York"], "Luxury Idea": "Gold-plated Batman statues", "Catchphrase": random.choice(catchphrases)}, |
|
{"Location": "Los Angeles", "Travel Time (hrs)": travel_times["Los Angeles"], "Luxury Idea": "Holographic Avengers displays", "Catchphrase": random.choice(catchphrases)}, |
|
{"Location": "London", "Travel Time (hrs)": travel_times["London"], "Luxury Idea": "Live stunt shows with Iron Man suits", "Catchphrase": random.choice(catchphrases)}, |
|
{"Location": "Wayne Manor", "Travel Time (hrs)": 0.0, "Luxury Idea": "VR superhero battles", "Catchphrase": random.choice(catchphrases)}, |
|
{"Location": "New York", "Travel Time (hrs)": travel_times["New York"], "Luxury Idea": "Gourmet kryptonite-green cocktails", "Catchphrase": random.choice(catchphrases)}, |
|
{"Location": "Los Angeles", "Travel Time (hrs)": travel_times["Los Angeles"], "Luxury Idea": "Thor’s hammer-shaped appetizers", "Catchphrase": random.choice(catchphrases)}, |
|
] |
|
plan_df = pd.DataFrame(data) |
|
st.write("Agentic RAG Party Plan:") |
|
st.dataframe(plan_df) |
|
st.write("Party on, Wayne! 🦸♂️🎉") |
|
except Exception as e: |
|
st.error(f"Error planning party: {str(e)} (Even Superman has kryptonite days!)") |
|
logger.error(f"Error in NLP RAG demo: {str(e)}") |
|
|
|
with tab6: |
|
st.header("Fine-Tune Titan (CV) 🔧 (Paint Your Titan’s Masterpiece!)") |
|
if not st.session_state['cv_loaded'] or not isinstance(st.session_state['cv_builder'], DiffusionBuilder): |
|
st.warning("Please build or load a CV Titan first! ⚠️ (No artist, no canvas!)") |
|
else: |
|
captured_images = get_gallery_files(["png"]) |
|
if len(captured_images) >= 2: |
|
demo_data = [{"image": img, "text": f"Superhero {os.path.basename(img).split('.')[0]}"} for img in captured_images[:min(len(captured_images), 10)]] |
|
edited_data = st.data_editor(pd.DataFrame(demo_data), num_rows="dynamic", help="Craft your image-text pairs like a superhero artist! 🎨") |
|
if st.button("Fine-Tune with Dataset 🔄"): |
|
images = [Image.open(row["image"]) for _, row in edited_data.iterrows()] |
|
texts = [row["text"] for _, row in edited_data.iterrows()] |
|
new_model_name = f"{st.session_state['cv_builder'].config.name}-sft-{int(time.time())}" |
|
new_config = DiffusionConfig(name=new_model_name, base_model=st.session_state['cv_builder'].config.base_model, size="small") |
|
st.session_state['cv_builder'].config = new_config |
|
with st.status("Fine-tuning CV Titan... ⏳ (Brushing up those pixels!)", expanded=True) as status: |
|
st.session_state['cv_builder'].fine_tune_sft(images, texts) |
|
st.session_state['cv_builder'].save_model(new_config.model_path) |
|
status.update(label="Fine-tuning completed! 🎉 (Pixel Titan unleashed!)", state="complete") |
|
zip_path = f"{new_config.model_path}.zip" |
|
zip_directory(new_config.model_path, zip_path) |
|
st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned CV Titan"), unsafe_allow_html=True) |
|
csv_path = f"sft_dataset_{int(time.time())}.csv" |
|
with open(csv_path, "w", newline="") as f: |
|
writer = csv.writer(f) |
|
writer.writerow(["image", "text"]) |
|
for _, row in edited_data.iterrows(): |
|
writer.writerow([row["image"], row["text"]]) |
|
st.markdown(get_download_link(csv_path, "text/csv", "Download SFT Dataset CSV"), unsafe_allow_html=True) |
|
|
|
with tab7: |
|
st.header("Test Titan (CV) 🧪 (Unleash Your Pixel Power!)") |
|
if not st.session_state['cv_loaded'] or not isinstance(st.session_state['cv_builder'], DiffusionBuilder): |
|
st.warning("Please build or load a CV Titan first! ⚠️ (No artist, no masterpiece!)") |
|
else: |
|
test_prompt = st.text_area("Enter Test Prompt 🎨", "Neon Batman", help="Dream up a wild image—your Titan’s got the brush! 🖌️") |
|
if st.button("Run Test ▶️"): |
|
with st.spinner("Painting your masterpiece... ⏳ (Titan’s mixing colors!)"): |
|
image = st.session_state['cv_builder'].generate(test_prompt) |
|
st.image(image, caption="Generated Image", use_container_width=True) |
|
|
|
with tab8: |
|
st.header("Agentic RAG Party (CV) 🌐 (Party with Pixels!)") |
|
st.write("This demo uses your SFT-tuned CV Titan to generate superhero party images with mock retrieval!") |
|
if not st.session_state['cv_loaded'] or not isinstance(st.session_state['cv_builder'], DiffusionBuilder): |
|
st.warning("Please build or load a CV Titan first! ⚠️ (No artist, no party!)") |
|
else: |
|
if st.button("Run CV RAG Demo 🎉"): |
|
with st.spinner("Loading your SFT-tuned CV Titan... ⏳ (Titan’s grabbing its paintbrush!)"): |
|
agent = CVPartyPlannerAgent(st.session_state['cv_builder'].pipeline) |
|
st.write("Agent ready! 🎨 (Time to paint an epic bash!)") |
|
task = "Generate images for a luxury superhero-themed party." |
|
with st.spinner("Crafting superhero party visuals... ⏳ (Pixels assemble!)"): |
|
try: |
|
plan_df = agent.plan_party(task) |
|
st.dataframe(plan_df) |
|
for _, row in plan_df.iterrows(): |
|
image = agent.generate(row["Image Idea"]) |
|
st.image(image, caption=f"{row['Theme']} - {row['Image Idea']}", use_container_width=True) |
|
except Exception as e: |
|
st.error(f"Error in CV RAG demo: {str(e)} 💥 (Pixel party crashed!)") |
|
logger.error(f"Error in CV RAG demo: {str(e)}") |
|
|
|
|
|
st.sidebar.subheader("Action Logs 📜") |
|
log_container = st.sidebar.empty() |
|
with log_container: |
|
for record in log_records: |
|
st.write(f"{record.asctime} - {record.levelname} - {record.message}") |
|
|
|
|
|
update_gallery() |