|
import aiofiles |
|
import asyncio |
|
import base64 |
|
import fitz |
|
import glob |
|
import logging |
|
import os |
|
import pandas as pd |
|
import pytz |
|
import random |
|
import re |
|
import requests |
|
import shutil |
|
import streamlit as st |
|
import time |
|
import torch |
|
import zipfile |
|
|
|
from dataclasses import dataclass |
|
from datetime import datetime |
|
from diffusers import StableDiffusionPipeline |
|
from io import BytesIO |
|
from openai import OpenAI |
|
from PIL import Image |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel |
|
from typing import Optional |
|
|
|
|
|
client = OpenAI( |
|
api_key=os.getenv('OPENAI_API_KEY'), |
|
organization=os.getenv('OPENAI_ORG_ID') |
|
) |
|
|
|
|
|
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") |
|
logger = logging.getLogger(__name__) |
|
log_records = [] |
|
class LogCaptureHandler(logging.Handler): |
|
def emit(self, record): |
|
log_records.append(record) |
|
logger.addHandler(LogCaptureHandler()) |
|
|
|
|
|
st.set_page_config( |
|
page_title="AI Vision & SFT Titans 🚀", |
|
page_icon="🤖", |
|
layout="wide", |
|
initial_sidebar_state="expanded", |
|
menu_items={ |
|
'Get Help': 'https://huggingface.co/awacke1', |
|
'Report a Bug': 'https://huggingface.co/spaces/awacke1', |
|
'About': "AI Vision & SFT Titans: PDFs, OCR, Image Gen, Line Drawings, Custom Diffusion, and SFT on CPU! 🌌" |
|
} |
|
) |
|
|
|
|
|
st.session_state.setdefault('history', []) |
|
st.session_state.setdefault('builder', None) |
|
st.session_state.setdefault('model_loaded', False) |
|
st.session_state.setdefault('processing', {}) |
|
st.session_state.setdefault('asset_checkboxes', {}) |
|
st.session_state.setdefault('downloaded_pdfs', {}) |
|
st.session_state.setdefault('unique_counter', 0) |
|
st.session_state.setdefault('selected_model_type', "Causal LM") |
|
st.session_state.setdefault('selected_model', "None") |
|
st.session_state.setdefault('cam0_file', None) |
|
st.session_state.setdefault('cam1_file', None) |
|
|
|
|
|
if 'asset_gallery_container' not in st.session_state: |
|
st.session_state['asset_gallery_container'] = st.sidebar.empty() |
|
|
|
@dataclass |
|
class ModelConfig: |
|
name: str |
|
base_model: str |
|
size: str |
|
domain: Optional[str] = None |
|
model_type: str = "causal_lm" |
|
@property |
|
def model_path(self): |
|
return f"models/{self.name}" |
|
|
|
@dataclass |
|
class DiffusionConfig: |
|
name: str |
|
base_model: str |
|
size: str |
|
domain: Optional[str] = None |
|
@property |
|
def model_path(self): |
|
return f"diffusion_models/{self.name}" |
|
|
|
class ModelBuilder: |
|
def __init__(self): |
|
self.config = None |
|
self.model = None |
|
self.tokenizer = None |
|
self.jokes = [ |
|
"Why did the AI go to therapy? Too many layers to unpack! 😂", |
|
"Training complete! Time for a binary coffee break. ☕", |
|
"I told my neural network a joke; it couldn't stop dropping bits! 🤖", |
|
"I asked the AI for a pun, and it said, 'I'm punning on parallel processing!' 😄", |
|
"Debugging my code is like a stand-up routine—always a series of exceptions! 😆" |
|
] |
|
def load_model(self, model_path: str, config: Optional[ModelConfig] = None): |
|
with st.spinner(f"Loading {model_path}... ⏳"): |
|
self.model = AutoModelForCausalLM.from_pretrained(model_path) |
|
self.tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
if self.tokenizer.pad_token is None: |
|
self.tokenizer.pad_token = self.tokenizer.eos_token |
|
if config: |
|
self.config = config |
|
self.model.to("cuda" if torch.cuda.is_available() else "cpu") |
|
st.success(f"Model loaded! 🎉 {random.choice(self.jokes)}") |
|
return self |
|
def save_model(self, path: str): |
|
with st.spinner("Saving model... 💾"): |
|
os.makedirs(os.path.dirname(path), exist_ok=True) |
|
self.model.save_pretrained(path) |
|
self.tokenizer.save_pretrained(path) |
|
st.success(f"Model saved at {path}! ✅") |
|
|
|
class DiffusionBuilder: |
|
def __init__(self): |
|
self.config = None |
|
self.pipeline = None |
|
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None): |
|
with st.spinner(f"Loading diffusion model {model_path}... ⏳"): |
|
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cpu") |
|
if config: |
|
self.config = config |
|
st.success("Diffusion model loaded! 🎨") |
|
return self |
|
def save_model(self, path: str): |
|
with st.spinner("Saving diffusion model... 💾"): |
|
os.makedirs(os.path.dirname(path), exist_ok=True) |
|
self.pipeline.save_pretrained(path) |
|
st.success(f"Diffusion model saved at {path}! ✅") |
|
def generate(self, prompt: str): |
|
return self.pipeline(prompt, num_inference_steps=20).images[0] |
|
|
|
def generate_filename(sequence, ext="png"): |
|
return f"{sequence}_{time.strftime('%d%m%Y%H%M%S')}.{ext}" |
|
|
|
def pdf_url_to_filename(url): |
|
return re.sub(r'[<>:"/\\|?*]', '_', url) + ".pdf" |
|
|
|
def get_download_link(file_path, mime_type="application/pdf", label="Download"): |
|
return f'<a href="data:{mime_type};base64,{base64.b64encode(open(file_path, "rb").read()).decode()}" download="{os.path.basename(file_path)}">{label}</a>' |
|
|
|
def zip_directory(directory_path, zip_path): |
|
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf: |
|
[zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path))) |
|
for root, _, files in os.walk(directory_path) for file in files] |
|
|
|
def get_model_files(model_type="causal_lm"): |
|
return [d for d in glob.glob("models/*" if model_type == "causal_lm" else "diffusion_models/*") if os.path.isdir(d)] or ["None"] |
|
|
|
def get_gallery_files(file_types=["png", "pdf"]): |
|
return sorted(list({f for ext in file_types for f in glob.glob(f"*.{ext}")})) |
|
|
|
def get_pdf_files(): |
|
return sorted(glob.glob("*.pdf")) |
|
|
|
def download_pdf(url, output_path): |
|
try: |
|
response = requests.get(url, stream=True, timeout=10) |
|
if response.status_code == 200: |
|
with open(output_path, "wb") as f: |
|
for chunk in response.iter_content(chunk_size=8192): |
|
f.write(chunk) |
|
ret = True |
|
else: |
|
ret = False |
|
except requests.RequestException as e: |
|
logger.error(f"Failed to download {url}: {e}") |
|
ret = False |
|
return ret |
|
|
|
|
|
async def process_pdf_snapshot(pdf_path, mode="single"): |
|
start_time = time.time() |
|
status = st.empty() |
|
status.text(f"Processing PDF Snapshot ({mode})... (0s)") |
|
try: |
|
doc = fitz.open(pdf_path) |
|
output_files = [] |
|
if mode == "single": |
|
page = doc[0] |
|
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) |
|
output_file = generate_filename("single", "png") |
|
pix.save(output_file) |
|
output_files.append(output_file) |
|
elif mode == "twopage": |
|
for i in range(min(2, len(doc))): |
|
page = doc[i] |
|
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) |
|
output_file = generate_filename(f"twopage_{i}", "png") |
|
pix.save(output_file) |
|
output_files.append(output_file) |
|
elif mode == "allpages": |
|
for i in range(len(doc)): |
|
page = doc[i] |
|
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) |
|
output_file = generate_filename(f"page_{i}", "png") |
|
pix.save(output_file) |
|
output_files.append(output_file) |
|
doc.close() |
|
elapsed = int(time.time() - start_time) |
|
status.text(f"PDF Snapshot ({mode}) completed in {elapsed}s!") |
|
return output_files |
|
except Exception as e: |
|
status.error(f"Failed to process PDF: {str(e)}") |
|
return [] |
|
|
|
|
|
async def process_ocr(image, output_file): |
|
start_time = time.time() |
|
status = st.empty() |
|
status.text("Processing GOT-OCR2_0... (0s)") |
|
tokenizer = AutoTokenizer.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True) |
|
model = AutoModel.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval() |
|
temp_file = f"temp_{int(time.time())}.png" |
|
image.save(temp_file) |
|
result = model.chat(tokenizer, temp_file, ocr_type='ocr') |
|
os.remove(temp_file) |
|
elapsed = int(time.time() - start_time) |
|
status.text(f"GOT-OCR2_0 completed in {elapsed}s!") |
|
async with aiofiles.open(output_file, "w") as f: |
|
await f.write(result) |
|
return result |
|
|
|
|
|
async def process_image_gen(prompt, output_file): |
|
start_time = time.time() |
|
status = st.empty() |
|
status.text("Processing Image Gen... (0s)") |
|
pipeline = (st.session_state['builder'].pipeline |
|
if st.session_state.get('builder') and isinstance(st.session_state['builder'], DiffusionBuilder) |
|
and st.session_state['builder'].pipeline |
|
else StableDiffusionPipeline.from_pretrained("OFA-Sys/small-stable-diffusion-v0", torch_dtype=torch.float32).to("cpu")) |
|
gen_image = pipeline(prompt, num_inference_steps=20).images[0] |
|
elapsed = int(time.time() - start_time) |
|
status.text(f"Image Gen completed in {elapsed}s!") |
|
gen_image.save(output_file) |
|
return gen_image |
|
|
|
|
|
def process_image_with_prompt(image, prompt, model="gpt-4o-mini", detail="auto"): |
|
buffered = BytesIO() |
|
image.save(buffered, format="PNG") |
|
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") |
|
messages = [{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "text", "text": prompt}, |
|
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{img_str}", "detail": detail}} |
|
] |
|
}] |
|
try: |
|
response = client.chat.completions.create(model=model, messages=messages, max_tokens=300) |
|
return response.choices[0].message.content |
|
except Exception as e: |
|
return f"Error processing image with GPT: {str(e)}" |
|
|
|
|
|
def process_text_with_prompt(text, prompt, model="gpt-4o-mini"): |
|
messages = [{"role": "user", "content": f"{prompt}\n\n{text}"}] |
|
try: |
|
response = client.chat.completions.create(model=model, messages=messages, max_tokens=300) |
|
return response.choices[0].message.content |
|
except Exception as e: |
|
return f"Error processing text with GPT: {str(e)}" |
|
|
|
|
|
|
|
|
|
st.sidebar.subheader("Gallery Settings") |
|
st.session_state.setdefault('gallery_size', 2) |
|
st.session_state['gallery_size'] = st.sidebar.slider("Gallery Size", 1, 10, st.session_state['gallery_size'], key="gallery_size_slider") |
|
|
|
|
|
tabs = st.tabs([ |
|
"Camera Snap 📷", "Download PDFs 📥", "Test OCR 🔍", "Build Titan 🌱", |
|
"Test Image Gen 🎨", "PDF Process 📄", "Image Process 🖼️", "MD Gallery 📚" |
|
]) |
|
(tab_camera, tab_download, tab_ocr, tab_build, tab_imggen, tab_pdf_process, tab_image_process, tab_md_gallery) = tabs |
|
|
|
|
|
with tab_camera: |
|
st.header("Camera Snap 📷") |
|
st.subheader("Single Capture") |
|
cols = st.columns(2) |
|
with cols[0]: |
|
cam0_img = st.camera_input("Take a picture - Cam 0", key="cam0") |
|
if cam0_img: |
|
filename = generate_filename("cam0") |
|
if st.session_state['cam0_file'] and os.path.exists(st.session_state['cam0_file']): |
|
os.remove(st.session_state['cam0_file']) |
|
with open(filename, "wb") as f: |
|
f.write(cam0_img.getvalue()) |
|
st.session_state['cam0_file'] = filename |
|
entry = f"Snapshot from Cam 0: {filename}" |
|
st.session_state['history'].append(entry) |
|
st.image(Image.open(filename), caption="Camera 0", use_container_width=True) |
|
logger.info(f"Saved snapshot from Camera 0: {filename}") |
|
with cols[1]: |
|
cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1") |
|
if cam1_img: |
|
filename = generate_filename("cam1") |
|
if st.session_state['cam1_file'] and os.path.exists(st.session_state['cam1_file']): |
|
os.remove(st.session_state['cam1_file']) |
|
with open(filename, "wb") as f: |
|
f.write(cam1_img.getvalue()) |
|
st.session_state['cam1_file'] = filename |
|
entry = f"Snapshot from Cam 1: {filename}" |
|
st.session_state['history'].append(entry) |
|
st.image(Image.open(filename), caption="Camera 1", use_container_width=True) |
|
logger.info(f"Saved snapshot from Camera 1: {filename}") |
|
|
|
|
|
with tab_download: |
|
st.header("Download PDFs 📥") |
|
if st.button("Examples 📚"): |
|
example_urls = [ |
|
"https://arxiv.org/pdf/2308.03892", |
|
"https://arxiv.org/pdf/1912.01703", |
|
"https://arxiv.org/pdf/2408.11039", |
|
"https://arxiv.org/pdf/2109.10282", |
|
"https://arxiv.org/pdf/2112.10752", |
|
"https://arxiv.org/pdf/2308.11236", |
|
"https://arxiv.org/pdf/1706.03762", |
|
"https://arxiv.org/pdf/2006.11239", |
|
"https://arxiv.org/pdf/2305.11207", |
|
"https://arxiv.org/pdf/2106.09685", |
|
"https://arxiv.org/pdf/2005.11401", |
|
"https://arxiv.org/pdf/2106.10504" |
|
] |
|
st.session_state['pdf_urls'] = "\n".join(example_urls) |
|
url_input = st.text_area("Enter PDF URLs (one per line)", value=st.session_state.get('pdf_urls', ""), height=200) |
|
if st.button("Robo-Download 🤖"): |
|
urls = url_input.strip().split("\n") |
|
progress_bar = st.progress(0) |
|
status_text = st.empty() |
|
total_urls = len(urls) |
|
existing_pdfs = get_pdf_files() |
|
for idx, url in enumerate(urls): |
|
if url: |
|
output_path = pdf_url_to_filename(url) |
|
status_text.text(f"Fetching {idx + 1}/{total_urls}: {os.path.basename(output_path)}...") |
|
if output_path not in existing_pdfs: |
|
if download_pdf(url, output_path): |
|
st.session_state['downloaded_pdfs'][url] = output_path |
|
logger.info(f"Downloaded PDF from {url} to {output_path}") |
|
entry = f"Downloaded PDF: {output_path}" |
|
st.session_state['history'].append(entry) |
|
st.session_state['asset_checkboxes'][output_path] = True |
|
else: |
|
st.error(f"Failed to nab {url} 😿") |
|
else: |
|
st.info(f"Already got {os.path.basename(output_path)}! Skipping... 🐾") |
|
st.session_state['downloaded_pdfs'][url] = output_path |
|
progress_bar.progress((idx + 1) / total_urls) |
|
status_text.text("Robo-Download complete! 🚀") |
|
mode = st.selectbox("Snapshot Mode", ["Single Page (High-Res)", "Two Pages (High-Res)", "All Pages (High-Res)"], key="download_mode") |
|
if st.button("Snapshot Selected 📸"): |
|
selected_pdfs = [path for path in get_gallery_files() if path.endswith('.pdf') and st.session_state['asset_checkboxes'].get(path, False)] |
|
if selected_pdfs: |
|
for pdf_path in selected_pdfs: |
|
if not os.path.exists(pdf_path): |
|
st.warning(f"File not found: {pdf_path}. Skipping.") |
|
continue |
|
mode_key = {"Single Page (High-Res)": "single", |
|
"Two Pages (High-Res)": "twopage", |
|
"All Pages (High-Res)": "allpages"}[mode] |
|
snapshots = asyncio.run(process_pdf_snapshot(pdf_path, mode_key)) |
|
for snapshot in snapshots: |
|
st.image(Image.open(snapshot), caption=snapshot, use_container_width=True) |
|
st.session_state['asset_checkboxes'][snapshot] = True |
|
|
|
else: |
|
st.warning("No PDFs selected for snapshotting! Check some boxes in the sidebar.") |
|
|
|
|
|
with tab_ocr: |
|
st.header("Test OCR 🔍") |
|
all_files = get_gallery_files() |
|
if all_files: |
|
if st.button("OCR All Assets 🚀"): |
|
full_text = "# OCR Results\n\n" |
|
for file in all_files: |
|
if file.endswith('.png'): |
|
image = Image.open(file) |
|
else: |
|
doc = fitz.open(file) |
|
pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) |
|
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) |
|
doc.close() |
|
output_file = generate_filename(f"ocr_{os.path.basename(file)}", "txt") |
|
result = asyncio.run(process_ocr(image, output_file)) |
|
full_text += f"## {os.path.basename(file)}\n\n{result}\n\n" |
|
entry = f"OCR Test: {file} -> {output_file}" |
|
st.session_state['history'].append(entry) |
|
md_output_file = f"full_ocr_{int(time.time())}.md" |
|
with open(md_output_file, "w") as f: |
|
f.write(full_text) |
|
st.success(f"Full OCR saved to {md_output_file}") |
|
st.markdown(get_download_link(md_output_file, "text/markdown", "Download Full OCR Markdown"), unsafe_allow_html=True) |
|
selected_file = st.selectbox("Select Image or PDF", all_files, key="ocr_select") |
|
if selected_file: |
|
if selected_file.endswith('.png'): |
|
image = Image.open(selected_file) |
|
else: |
|
doc = fitz.open(selected_file) |
|
pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) |
|
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) |
|
doc.close() |
|
st.image(image, caption="Input Image", use_container_width=True) |
|
if st.button("Run OCR 🚀", key="ocr_run"): |
|
output_file = generate_filename("ocr_output", "txt") |
|
st.session_state['processing']['ocr'] = True |
|
result = asyncio.run(process_ocr(image, output_file)) |
|
entry = f"OCR Test: {selected_file} -> {output_file}" |
|
st.session_state['history'].append(entry) |
|
st.text_area("OCR Result", result, height=200, key="ocr_result") |
|
st.success(f"OCR output saved to {output_file}") |
|
st.session_state['processing']['ocr'] = False |
|
if selected_file.endswith('.pdf') and st.button("OCR All Pages 🚀", key="ocr_all_pages"): |
|
doc = fitz.open(selected_file) |
|
full_text = f"# OCR Results for {os.path.basename(selected_file)}\n\n" |
|
for i in range(len(doc)): |
|
pix = doc[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) |
|
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) |
|
output_file = generate_filename(f"ocr_page_{i}", "txt") |
|
result = asyncio.run(process_ocr(image, output_file)) |
|
full_text += f"## Page {i + 1}\n\n{result}\n\n" |
|
entry = f"OCR Test: {selected_file} Page {i + 1} -> {output_file}" |
|
st.session_state['history'].append(entry) |
|
md_output_file = f"full_ocr_{os.path.basename(selected_file)}_{int(time.time())}.md" |
|
with open(md_output_file, "w") as f: |
|
f.write(full_text) |
|
st.success(f"Full OCR saved to {md_output_file}") |
|
st.markdown(get_download_link(md_output_file, "text/markdown", "Download Full OCR Markdown"), unsafe_allow_html=True) |
|
else: |
|
st.warning("No assets in gallery yet. Use Camera Snap or Download PDFs!") |
|
|
|
|
|
with tab_build: |
|
st.header("Build Titan 🌱") |
|
model_type = st.selectbox("Model Type", ["Causal LM", "Diffusion"], key="build_type") |
|
base_model = st.selectbox( |
|
"Select Tiny Model", |
|
["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"] if model_type == "Causal LM" |
|
else ["OFA-Sys/small-stable-diffusion-v0", "stabilityai/stable-diffusion-2-base"] |
|
) |
|
model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}") |
|
domain = st.text_input("Target Domain", "general") |
|
if st.button("Download Model ⬇️"): |
|
config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)( |
|
name=model_name, base_model=base_model, size="small", domain=domain |
|
) |
|
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder() |
|
builder.load_model(base_model, config) |
|
builder.save_model(config.model_path) |
|
st.session_state['builder'] = builder |
|
st.session_state['model_loaded'] = True |
|
st.session_state['selected_model_type'] = model_type |
|
st.session_state['selected_model'] = config.model_path |
|
entry = f"Built {model_type} model: {model_name}" |
|
st.session_state['history'].append(entry) |
|
st.success(f"Model downloaded and saved to {config.model_path}! 🎉") |
|
st.experimental_rerun() |
|
|
|
|
|
with tab_imggen: |
|
st.header("Test Image Gen 🎨") |
|
all_files = get_gallery_files() |
|
if all_files: |
|
selected_file = st.selectbox("Select Image or PDF", all_files, key="gen_select") |
|
if selected_file: |
|
if selected_file.endswith('.png'): |
|
image = Image.open(selected_file) |
|
else: |
|
doc = fitz.open(selected_file) |
|
pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) |
|
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) |
|
doc.close() |
|
st.image(image, caption="Reference Image", use_container_width=True) |
|
prompt = st.text_area("Prompt", "Generate a neon superhero version of this image", key="gen_prompt") |
|
if st.button("Run Image Gen 🚀", key="gen_run"): |
|
output_file = generate_filename("gen_output", "png") |
|
st.session_state['processing']['gen'] = True |
|
result = asyncio.run(process_image_gen(prompt, output_file)) |
|
entry = f"Image Gen Test: {prompt} -> {output_file}" |
|
st.session_state['history'].append(entry) |
|
st.image(result, caption="Generated Image", use_container_width=True) |
|
st.success(f"Image saved to {output_file}") |
|
st.session_state['processing']['gen'] = False |
|
else: |
|
st.warning("No images or PDFs in gallery yet. Use Camera Snap or Download PDFs!") |
|
|
|
|
|
with tab_pdf_process: |
|
st.header("PDF Process") |
|
st.subheader("Upload PDFs for GPT-based text extraction") |
|
gpt_models = ["gpt-4o", "gpt-4o-mini"] |
|
selected_gpt_model = st.selectbox("Select GPT Model", gpt_models, key="pdf_gpt_model") |
|
detail_level = st.selectbox("Detail Level", ["auto", "low", "high"], key="pdf_detail_level") |
|
uploaded_pdfs = st.file_uploader("Upload PDF files", type=["pdf"], accept_multiple_files=True, key="pdf_process_uploader") |
|
view_mode = st.selectbox("View Mode", ["Single Page", "Double Page"], key="pdf_view_mode") |
|
if st.button("Process Uploaded PDFs", key="process_pdfs"): |
|
combined_text = "" |
|
for pdf_file in uploaded_pdfs: |
|
pdf_bytes = pdf_file.read() |
|
temp_pdf_path = f"temp_{pdf_file.name}" |
|
with open(temp_pdf_path, "wb") as f: |
|
f.write(pdf_bytes) |
|
try: |
|
doc = fitz.open(temp_pdf_path) |
|
st.write(f"Processing {pdf_file.name} with {len(doc)} pages") |
|
if view_mode == "Single Page": |
|
for i, page in enumerate(doc): |
|
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) |
|
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) |
|
st.image(img, caption=f"{pdf_file.name} Page {i+1}") |
|
gpt_text = process_image_with_prompt(img, "Extract the electronic text from image", model=selected_gpt_model, detail=detail_level) |
|
combined_text += f"\n## {pdf_file.name} - Page {i+1}\n\n{gpt_text}\n" |
|
else: |
|
pages = list(doc) |
|
for i in range(0, len(pages), 2): |
|
if i+1 < len(pages): |
|
pix1 = pages[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) |
|
img1 = Image.frombytes("RGB", [pix1.width, pix1.height], pix1.samples) |
|
pix2 = pages[i+1].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) |
|
img2 = Image.frombytes("RGB", [pix2.width, pix2.height], pix2.samples) |
|
total_width = img1.width + img2.width |
|
max_height = max(img1.height, img2.height) |
|
combined_img = Image.new("RGB", (total_width, max_height)) |
|
combined_img.paste(img1, (0, 0)) |
|
combined_img.paste(img2, (img1.width, 0)) |
|
st.image(combined_img, caption=f"{pdf_file.name} Pages {i+1}-{i+2}") |
|
gpt_text = process_image_with_prompt(combined_img, "Extract the electronic text from image", model=selected_gpt_model, detail=detail_level) |
|
combined_text += f"\n## {pdf_file.name} - Pages {i+1}-{i+2}\n\n{gpt_text}\n" |
|
else: |
|
pix = pages[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) |
|
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) |
|
st.image(img, caption=f"{pdf_file.name} Page {i+1}") |
|
gpt_text = process_image_with_prompt(img, "Extract the electronic text from image", model=selected_gpt_model, detail=detail_level) |
|
combined_text += f"\n## {pdf_file.name} - Page {i+1}\n\n{gpt_text}\n" |
|
doc.close() |
|
except Exception as e: |
|
st.error(f"Error processing {pdf_file.name}: {str(e)}") |
|
finally: |
|
os.remove(temp_pdf_path) |
|
output_filename = generate_filename("processed_pdf", "md") |
|
with open(output_filename, "w", encoding="utf-8") as f: |
|
f.write(combined_text) |
|
st.success(f"PDF processing complete. MD file saved as {output_filename}") |
|
st.markdown(get_download_link(output_filename, "text/markdown", "Download Processed PDF MD"), unsafe_allow_html=True) |
|
|
|
|
|
with tab_image_process: |
|
st.header("Image Process") |
|
st.subheader("Upload Images for GPT-based OCR") |
|
gpt_models = ["gpt-4o", "gpt-4o-mini"] |
|
selected_gpt_model = st.selectbox("Select GPT Model", gpt_models, key="img_gpt_model") |
|
detail_level = st.selectbox("Detail Level", ["auto", "low", "high"], key="img_detail_level") |
|
prompt_img = st.text_input("Enter prompt for image processing", "Extract the electronic text from image", key="img_process_prompt") |
|
uploaded_images = st.file_uploader("Upload image files", type=["png", "jpg", "jpeg"], accept_multiple_files=True, key="image_process_uploader") |
|
if st.button("Process Uploaded Images", key="process_images"): |
|
combined_text = "" |
|
for img_file in uploaded_images: |
|
try: |
|
img = Image.open(img_file) |
|
st.image(img, caption=img_file.name) |
|
gpt_text = process_image_with_prompt(img, prompt_img, model=selected_gpt_model, detail=detail_level) |
|
combined_text += f"\n## {img_file.name}\n\n{gpt_text}\n" |
|
except Exception as e: |
|
st.error(f"Error processing image {img_file.name}: {str(e)}") |
|
output_filename = generate_filename("processed_image", "md") |
|
with open(output_filename, "w", encoding="utf-8") as f: |
|
f.write(combined_text) |
|
st.success(f"Image processing complete. MD file saved as {output_filename}") |
|
st.markdown(get_download_link(output_filename, "text/markdown", "Download Processed Image MD"), unsafe_allow_html=True) |
|
|
|
|
|
with tab_md_gallery: |
|
st.header("MD Gallery and GPT Processing") |
|
gpt_models = ["gpt-4o", "gpt-4o-mini"] |
|
selected_gpt_model = st.selectbox("Select GPT Model", gpt_models, key="md_gpt_model") |
|
md_files = sorted(glob.glob("*.md")) |
|
if md_files: |
|
st.subheader("Individual File Processing") |
|
cols = st.columns(2) |
|
for idx, md_file in enumerate(md_files): |
|
with cols[idx % 2]: |
|
st.write(md_file) |
|
if st.button(f"Process {md_file}", key=f"process_md_{md_file}"): |
|
try: |
|
with open(md_file, "r", encoding="utf-8") as f: |
|
content = f.read() |
|
prompt_md = "Summarize this into markdown outline with emojis and number the topics 1..12" |
|
result_text = process_text_with_prompt(content, prompt_md, model=selected_gpt_model) |
|
st.markdown(result_text) |
|
output_filename = generate_filename(f"processed_{os.path.splitext(md_file)[0]}", "md") |
|
with open(output_filename, "w", encoding="utf-8") as f: |
|
f.write(result_text) |
|
st.markdown(get_download_link(output_filename, "text/markdown", f"Download {output_filename}"), unsafe_allow_html=True) |
|
except Exception as e: |
|
st.error(f"Error processing {md_file}: {str(e)}") |
|
st.subheader("Batch Processing") |
|
st.write("Select MD files to combine and process:") |
|
selected_md = {} |
|
for md_file in md_files: |
|
selected_md[md_file] = st.checkbox(md_file, key=f"checkbox_md_{md_file}") |
|
batch_prompt = st.text_input("Enter batch processing prompt", "Summarize this into markdown outline with emojis and number the topics 1..12", key="batch_prompt") |
|
if st.button("Process Selected MD Files", key="process_batch_md"): |
|
combined_content = "" |
|
for md_file, selected in selected_md.items(): |
|
if selected: |
|
try: |
|
with open(md_file, "r", encoding="utf-8") as f: |
|
combined_content += f"\n## {md_file}\n" + f.read() + "\n" |
|
except Exception as e: |
|
st.error(f"Error reading {md_file}: {str(e)}") |
|
if combined_content: |
|
result_text = process_text_with_prompt(combined_content, batch_prompt, model=selected_gpt_model) |
|
st.markdown(result_text) |
|
output_filename = generate_filename("batch_processed_md", "md") |
|
with open(output_filename, "w", encoding="utf-8") as f: |
|
f.write(result_text) |
|
st.success(f"Batch processing complete. MD file saved as {output_filename}") |
|
st.markdown(get_download_link(output_filename, "text/markdown", "Download Batch Processed MD"), unsafe_allow_html=True) |
|
else: |
|
st.warning("No MD files selected.") |
|
else: |
|
st.warning("No MD files found.") |
|
|
|
|
|
|
|
def update_gallery(): |
|
container = st.session_state['asset_gallery_container'] |
|
container.empty() |
|
all_files = get_gallery_files() |
|
if all_files: |
|
container.markdown("### Asset Gallery 📸📖") |
|
cols = container.columns(2) |
|
for idx, file in enumerate(all_files[:st.session_state['gallery_size']]): |
|
with cols[idx % 2]: |
|
st.session_state['unique_counter'] += 1 |
|
unique_id = st.session_state['unique_counter'] |
|
if file.endswith('.png'): |
|
st.image(Image.open(file), caption=os.path.basename(file), use_container_width=True) |
|
else: |
|
doc = fitz.open(file) |
|
pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5)) |
|
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) |
|
st.image(img, caption=os.path.basename(file), use_container_width=True) |
|
doc.close() |
|
checkbox_key = f"asset_{file}_{unique_id}" |
|
st.session_state['asset_checkboxes'][file] = st.checkbox("Use for SFT/Input", value=st.session_state['asset_checkboxes'].get(file, False), key=checkbox_key) |
|
mime_type = "image/png" if file.endswith('.png') else "application/pdf" |
|
st.markdown(get_download_link(file, mime_type, "Snag It! 📥"), unsafe_allow_html=True) |
|
if st.button("Zap It! 🗑️", key=f"delete_{file}_{unique_id}"): |
|
os.remove(file) |
|
st.session_state['asset_checkboxes'].pop(file, None) |
|
st.success(f"Asset {os.path.basename(file)} vaporized! 💨") |
|
st.experimental_rerun() |
|
|
|
|
|
update_gallery() |
|
|
|
|
|
st.sidebar.subheader("Action Logs 📜") |
|
for record in log_records: |
|
st.sidebar.write(f"{record.asctime} - {record.levelname} - {record.message}") |
|
|
|
st.sidebar.subheader("History 📜") |
|
for entry in st.session_state.get("history", []): |
|
if entry is not None: |
|
st.sidebar.write(entry) |
|
|