awacke1's picture
Create 033025-1.app.py
d6e5038 verified
import aiofiles
import asyncio
import base64
import fitz
import glob
import logging
import os
import pandas as pd
import pytz
import random
import re
import requests
import shutil
import streamlit as st
import time
import torch
import zipfile
from dataclasses import dataclass
from datetime import datetime
from diffusers import StableDiffusionPipeline
from io import BytesIO
from openai import OpenAI
from PIL import Image
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel
from typing import Optional
# 🤖 OpenAI wizardry: Summon your API magic!
client = OpenAI(
api_key=os.getenv('OPENAI_API_KEY'),
organization=os.getenv('OPENAI_ORG_ID')
)
# 📜 Logging activated: Capturing chaos and calm!
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
log_records = []
class LogCaptureHandler(logging.Handler):
def emit(self, record):
log_records.append(record)
logger.addHandler(LogCaptureHandler())
# 🎨 Streamlit styling: Designing a cosmic interface!
st.set_page_config(
page_title="AI Vision & SFT Titans 🚀",
page_icon="🤖",
layout="wide",
initial_sidebar_state="expanded",
menu_items={
'Get Help': 'https://huggingface.co/awacke1',
'Report a Bug': 'https://huggingface.co/spaces/awacke1',
'About': "AI Vision & SFT Titans: PDFs, OCR, Image Gen, Line Drawings, Custom Diffusion, and SFT on CPU! 🌌"
}
)
# Set up default session state values.
st.session_state.setdefault('history', []) # History: starting fresh if empty!
st.session_state.setdefault('builder', None) # Builder: set up if missing.
st.session_state.setdefault('model_loaded', False) # Model Loaded: not loaded by default.
st.session_state.setdefault('processing', {}) # Processing: initialize as an empty dict.
st.session_state.setdefault('asset_checkboxes', {}) # Asset Checkboxes: default to an empty dict.
st.session_state.setdefault('downloaded_pdfs', {}) # Downloaded PDFs: start with none.
st.session_state.setdefault('unique_counter', 0) # Unique Counter: initialize to zero.
st.session_state.setdefault('selected_model_type', "Causal LM")
st.session_state.setdefault('selected_model', "None")
st.session_state.setdefault('cam0_file', None)
st.session_state.setdefault('cam1_file', None)
# Create a single container for the asset gallery in the sidebar.
if 'asset_gallery_container' not in st.session_state:
st.session_state['asset_gallery_container'] = st.sidebar.empty()
@dataclass # ModelConfig: A blueprint for model configurations.
class ModelConfig:
name: str
base_model: str
size: str
domain: Optional[str] = None
model_type: str = "causal_lm"
@property
def model_path(self):
return f"models/{self.name}"
@dataclass # DiffusionConfig: Where diffusion magic takes shape.
class DiffusionConfig:
name: str
base_model: str
size: str
domain: Optional[str] = None
@property
def model_path(self):
return f"diffusion_models/{self.name}"
class ModelBuilder:
def __init__(self):
self.config = None
self.model = None
self.tokenizer = None
self.jokes = [
"Why did the AI go to therapy? Too many layers to unpack! 😂",
"Training complete! Time for a binary coffee break. ☕",
"I told my neural network a joke; it couldn't stop dropping bits! 🤖",
"I asked the AI for a pun, and it said, 'I'm punning on parallel processing!' 😄",
"Debugging my code is like a stand-up routine—always a series of exceptions! 😆"
]
def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
with st.spinner(f"Loading {model_path}... ⏳"):
self.model = AutoModelForCausalLM.from_pretrained(model_path)
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
if config:
self.config = config
self.model.to("cuda" if torch.cuda.is_available() else "cpu")
st.success(f"Model loaded! 🎉 {random.choice(self.jokes)}")
return self
def save_model(self, path: str):
with st.spinner("Saving model... 💾"):
os.makedirs(os.path.dirname(path), exist_ok=True)
self.model.save_pretrained(path)
self.tokenizer.save_pretrained(path)
st.success(f"Model saved at {path}! ✅")
class DiffusionBuilder:
def __init__(self):
self.config = None
self.pipeline = None
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None):
with st.spinner(f"Loading diffusion model {model_path}... ⏳"):
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cpu")
if config:
self.config = config
st.success("Diffusion model loaded! 🎨")
return self
def save_model(self, path: str):
with st.spinner("Saving diffusion model... 💾"):
os.makedirs(os.path.dirname(path), exist_ok=True)
self.pipeline.save_pretrained(path)
st.success(f"Diffusion model saved at {path}! ✅")
def generate(self, prompt: str):
return self.pipeline(prompt, num_inference_steps=20).images[0]
def generate_filename(sequence, ext="png"):
return f"{sequence}_{time.strftime('%d%m%Y%H%M%S')}.{ext}"
def pdf_url_to_filename(url):
return re.sub(r'[<>:"/\\|?*]', '_', url) + ".pdf"
def get_download_link(file_path, mime_type="application/pdf", label="Download"):
return f'<a href="data:{mime_type};base64,{base64.b64encode(open(file_path, "rb").read()).decode()}" download="{os.path.basename(file_path)}">{label}</a>'
def zip_directory(directory_path, zip_path):
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
[zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path)))
for root, _, files in os.walk(directory_path) for file in files]
def get_model_files(model_type="causal_lm"):
return [d for d in glob.glob("models/*" if model_type == "causal_lm" else "diffusion_models/*") if os.path.isdir(d)] or ["None"]
def get_gallery_files(file_types=["png", "pdf"]):
return sorted(list({f for ext in file_types for f in glob.glob(f"*.{ext}")}))
def get_pdf_files():
return sorted(glob.glob("*.pdf"))
def download_pdf(url, output_path):
try:
response = requests.get(url, stream=True, timeout=10)
if response.status_code == 200:
with open(output_path, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
ret = True
else:
ret = False
except requests.RequestException as e:
logger.error(f"Failed to download {url}: {e}")
ret = False
return ret
# Async PDF Snapshot: Snap your PDF pages without blocking.
async def process_pdf_snapshot(pdf_path, mode="single"):
start_time = time.time()
status = st.empty()
status.text(f"Processing PDF Snapshot ({mode})... (0s)")
try:
doc = fitz.open(pdf_path)
output_files = []
if mode == "single":
page = doc[0]
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
output_file = generate_filename("single", "png")
pix.save(output_file)
output_files.append(output_file)
elif mode == "twopage":
for i in range(min(2, len(doc))):
page = doc[i]
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
output_file = generate_filename(f"twopage_{i}", "png")
pix.save(output_file)
output_files.append(output_file)
elif mode == "allpages":
for i in range(len(doc)):
page = doc[i]
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
output_file = generate_filename(f"page_{i}", "png")
pix.save(output_file)
output_files.append(output_file)
doc.close()
elapsed = int(time.time() - start_time)
status.text(f"PDF Snapshot ({mode}) completed in {elapsed}s!")
return output_files
except Exception as e:
status.error(f"Failed to process PDF: {str(e)}")
return []
# Async OCR: Convert images to text.
async def process_ocr(image, output_file):
start_time = time.time()
status = st.empty()
status.text("Processing GOT-OCR2_0... (0s)")
tokenizer = AutoTokenizer.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True)
model = AutoModel.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval()
temp_file = f"temp_{int(time.time())}.png"
image.save(temp_file)
result = model.chat(tokenizer, temp_file, ocr_type='ocr')
os.remove(temp_file)
elapsed = int(time.time() - start_time)
status.text(f"GOT-OCR2_0 completed in {elapsed}s!")
async with aiofiles.open(output_file, "w") as f:
await f.write(result)
return result
# Async Image Gen: Your image genie.
async def process_image_gen(prompt, output_file):
start_time = time.time()
status = st.empty()
status.text("Processing Image Gen... (0s)")
pipeline = (st.session_state['builder'].pipeline
if st.session_state.get('builder') and isinstance(st.session_state['builder'], DiffusionBuilder)
and st.session_state['builder'].pipeline
else StableDiffusionPipeline.from_pretrained("OFA-Sys/small-stable-diffusion-v0", torch_dtype=torch.float32).to("cpu"))
gen_image = pipeline(prompt, num_inference_steps=20).images[0]
elapsed = int(time.time() - start_time)
status.text(f"Image Gen completed in {elapsed}s!")
gen_image.save(output_file)
return gen_image
# GPT-Image Interpreter: Turning pixels into prose!
def process_image_with_prompt(image, prompt, model="gpt-4o-mini", detail="auto"):
buffered = BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
messages = [{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{img_str}", "detail": detail}}
]
}]
try:
response = client.chat.completions.create(model=model, messages=messages, max_tokens=300)
return response.choices[0].message.content
except Exception as e:
return f"Error processing image with GPT: {str(e)}"
# GPT-Text Alchemist: Merging prompt and text.
def process_text_with_prompt(text, prompt, model="gpt-4o-mini"):
messages = [{"role": "user", "content": f"{prompt}\n\n{text}"}]
try:
response = client.chat.completions.create(model=model, messages=messages, max_tokens=300)
return response.choices[0].message.content
except Exception as e:
return f"Error processing text with GPT: {str(e)}"
# ----------------- SIDEBAR UPDATES -----------------
# Sidebar: Gallery Settings
st.sidebar.subheader("Gallery Settings")
st.session_state.setdefault('gallery_size', 2)
st.session_state['gallery_size'] = st.sidebar.slider("Gallery Size", 1, 10, st.session_state['gallery_size'], key="gallery_size_slider")
# ----------------- TAB SETUP -----------------
tabs = st.tabs([
"Camera Snap 📷", "Download PDFs 📥", "Test OCR 🔍", "Build Titan 🌱",
"Test Image Gen 🎨", "PDF Process 📄", "Image Process 🖼️", "MD Gallery 📚"
])
(tab_camera, tab_download, tab_ocr, tab_build, tab_imggen, tab_pdf_process, tab_image_process, tab_md_gallery) = tabs
# ----------------- TAB: Camera Snap -----------------
with tab_camera:
st.header("Camera Snap 📷")
st.subheader("Single Capture")
cols = st.columns(2)
with cols[0]:
cam0_img = st.camera_input("Take a picture - Cam 0", key="cam0")
if cam0_img:
filename = generate_filename("cam0")
if st.session_state['cam0_file'] and os.path.exists(st.session_state['cam0_file']):
os.remove(st.session_state['cam0_file'])
with open(filename, "wb") as f:
f.write(cam0_img.getvalue())
st.session_state['cam0_file'] = filename
entry = f"Snapshot from Cam 0: {filename}"
st.session_state['history'].append(entry)
st.image(Image.open(filename), caption="Camera 0", use_container_width=True)
logger.info(f"Saved snapshot from Camera 0: {filename}")
with cols[1]:
cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1")
if cam1_img:
filename = generate_filename("cam1")
if st.session_state['cam1_file'] and os.path.exists(st.session_state['cam1_file']):
os.remove(st.session_state['cam1_file'])
with open(filename, "wb") as f:
f.write(cam1_img.getvalue())
st.session_state['cam1_file'] = filename
entry = f"Snapshot from Cam 1: {filename}"
st.session_state['history'].append(entry)
st.image(Image.open(filename), caption="Camera 1", use_container_width=True)
logger.info(f"Saved snapshot from Camera 1: {filename}")
# ----------------- TAB: Download PDFs -----------------
with tab_download:
st.header("Download PDFs 📥")
if st.button("Examples 📚"):
example_urls = [
"https://arxiv.org/pdf/2308.03892",
"https://arxiv.org/pdf/1912.01703",
"https://arxiv.org/pdf/2408.11039",
"https://arxiv.org/pdf/2109.10282",
"https://arxiv.org/pdf/2112.10752",
"https://arxiv.org/pdf/2308.11236",
"https://arxiv.org/pdf/1706.03762",
"https://arxiv.org/pdf/2006.11239",
"https://arxiv.org/pdf/2305.11207",
"https://arxiv.org/pdf/2106.09685",
"https://arxiv.org/pdf/2005.11401",
"https://arxiv.org/pdf/2106.10504"
]
st.session_state['pdf_urls'] = "\n".join(example_urls)
url_input = st.text_area("Enter PDF URLs (one per line)", value=st.session_state.get('pdf_urls', ""), height=200)
if st.button("Robo-Download 🤖"):
urls = url_input.strip().split("\n")
progress_bar = st.progress(0)
status_text = st.empty()
total_urls = len(urls)
existing_pdfs = get_pdf_files()
for idx, url in enumerate(urls):
if url:
output_path = pdf_url_to_filename(url)
status_text.text(f"Fetching {idx + 1}/{total_urls}: {os.path.basename(output_path)}...")
if output_path not in existing_pdfs:
if download_pdf(url, output_path):
st.session_state['downloaded_pdfs'][url] = output_path
logger.info(f"Downloaded PDF from {url} to {output_path}")
entry = f"Downloaded PDF: {output_path}"
st.session_state['history'].append(entry)
st.session_state['asset_checkboxes'][output_path] = True
else:
st.error(f"Failed to nab {url} 😿")
else:
st.info(f"Already got {os.path.basename(output_path)}! Skipping... 🐾")
st.session_state['downloaded_pdfs'][url] = output_path
progress_bar.progress((idx + 1) / total_urls)
status_text.text("Robo-Download complete! 🚀")
mode = st.selectbox("Snapshot Mode", ["Single Page (High-Res)", "Two Pages (High-Res)", "All Pages (High-Res)"], key="download_mode")
if st.button("Snapshot Selected 📸"):
selected_pdfs = [path for path in get_gallery_files() if path.endswith('.pdf') and st.session_state['asset_checkboxes'].get(path, False)]
if selected_pdfs:
for pdf_path in selected_pdfs:
if not os.path.exists(pdf_path):
st.warning(f"File not found: {pdf_path}. Skipping.")
continue
mode_key = {"Single Page (High-Res)": "single",
"Two Pages (High-Res)": "twopage",
"All Pages (High-Res)": "allpages"}[mode]
snapshots = asyncio.run(process_pdf_snapshot(pdf_path, mode_key))
for snapshot in snapshots:
st.image(Image.open(snapshot), caption=snapshot, use_container_width=True)
st.session_state['asset_checkboxes'][snapshot] = True
# No update_gallery() call here; will update once later.
else:
st.warning("No PDFs selected for snapshotting! Check some boxes in the sidebar.")
# ----------------- TAB: Test OCR -----------------
with tab_ocr:
st.header("Test OCR 🔍")
all_files = get_gallery_files()
if all_files:
if st.button("OCR All Assets 🚀"):
full_text = "# OCR Results\n\n"
for file in all_files:
if file.endswith('.png'):
image = Image.open(file)
else:
doc = fitz.open(file)
pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
doc.close()
output_file = generate_filename(f"ocr_{os.path.basename(file)}", "txt")
result = asyncio.run(process_ocr(image, output_file))
full_text += f"## {os.path.basename(file)}\n\n{result}\n\n"
entry = f"OCR Test: {file} -> {output_file}"
st.session_state['history'].append(entry)
md_output_file = f"full_ocr_{int(time.time())}.md"
with open(md_output_file, "w") as f:
f.write(full_text)
st.success(f"Full OCR saved to {md_output_file}")
st.markdown(get_download_link(md_output_file, "text/markdown", "Download Full OCR Markdown"), unsafe_allow_html=True)
selected_file = st.selectbox("Select Image or PDF", all_files, key="ocr_select")
if selected_file:
if selected_file.endswith('.png'):
image = Image.open(selected_file)
else:
doc = fitz.open(selected_file)
pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
doc.close()
st.image(image, caption="Input Image", use_container_width=True)
if st.button("Run OCR 🚀", key="ocr_run"):
output_file = generate_filename("ocr_output", "txt")
st.session_state['processing']['ocr'] = True
result = asyncio.run(process_ocr(image, output_file))
entry = f"OCR Test: {selected_file} -> {output_file}"
st.session_state['history'].append(entry)
st.text_area("OCR Result", result, height=200, key="ocr_result")
st.success(f"OCR output saved to {output_file}")
st.session_state['processing']['ocr'] = False
if selected_file.endswith('.pdf') and st.button("OCR All Pages 🚀", key="ocr_all_pages"):
doc = fitz.open(selected_file)
full_text = f"# OCR Results for {os.path.basename(selected_file)}\n\n"
for i in range(len(doc)):
pix = doc[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
output_file = generate_filename(f"ocr_page_{i}", "txt")
result = asyncio.run(process_ocr(image, output_file))
full_text += f"## Page {i + 1}\n\n{result}\n\n"
entry = f"OCR Test: {selected_file} Page {i + 1} -> {output_file}"
st.session_state['history'].append(entry)
md_output_file = f"full_ocr_{os.path.basename(selected_file)}_{int(time.time())}.md"
with open(md_output_file, "w") as f:
f.write(full_text)
st.success(f"Full OCR saved to {md_output_file}")
st.markdown(get_download_link(md_output_file, "text/markdown", "Download Full OCR Markdown"), unsafe_allow_html=True)
else:
st.warning("No assets in gallery yet. Use Camera Snap or Download PDFs!")
# ----------------- TAB: Build Titan -----------------
with tab_build:
st.header("Build Titan 🌱")
model_type = st.selectbox("Model Type", ["Causal LM", "Diffusion"], key="build_type")
base_model = st.selectbox(
"Select Tiny Model",
["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"] if model_type == "Causal LM"
else ["OFA-Sys/small-stable-diffusion-v0", "stabilityai/stable-diffusion-2-base"]
)
model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}")
domain = st.text_input("Target Domain", "general")
if st.button("Download Model ⬇️"):
config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(
name=model_name, base_model=base_model, size="small", domain=domain
)
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
builder.load_model(base_model, config)
builder.save_model(config.model_path)
st.session_state['builder'] = builder
st.session_state['model_loaded'] = True
st.session_state['selected_model_type'] = model_type
st.session_state['selected_model'] = config.model_path
entry = f"Built {model_type} model: {model_name}"
st.session_state['history'].append(entry)
st.success(f"Model downloaded and saved to {config.model_path}! 🎉")
st.experimental_rerun()
# ----------------- TAB: Test Image Gen -----------------
with tab_imggen:
st.header("Test Image Gen 🎨")
all_files = get_gallery_files()
if all_files:
selected_file = st.selectbox("Select Image or PDF", all_files, key="gen_select")
if selected_file:
if selected_file.endswith('.png'):
image = Image.open(selected_file)
else:
doc = fitz.open(selected_file)
pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
doc.close()
st.image(image, caption="Reference Image", use_container_width=True)
prompt = st.text_area("Prompt", "Generate a neon superhero version of this image", key="gen_prompt")
if st.button("Run Image Gen 🚀", key="gen_run"):
output_file = generate_filename("gen_output", "png")
st.session_state['processing']['gen'] = True
result = asyncio.run(process_image_gen(prompt, output_file))
entry = f"Image Gen Test: {prompt} -> {output_file}"
st.session_state['history'].append(entry)
st.image(result, caption="Generated Image", use_container_width=True)
st.success(f"Image saved to {output_file}")
st.session_state['processing']['gen'] = False
else:
st.warning("No images or PDFs in gallery yet. Use Camera Snap or Download PDFs!")
# ----------------- TAB: PDF Process -----------------
with tab_pdf_process:
st.header("PDF Process")
st.subheader("Upload PDFs for GPT-based text extraction")
gpt_models = ["gpt-4o", "gpt-4o-mini"]
selected_gpt_model = st.selectbox("Select GPT Model", gpt_models, key="pdf_gpt_model")
detail_level = st.selectbox("Detail Level", ["auto", "low", "high"], key="pdf_detail_level")
uploaded_pdfs = st.file_uploader("Upload PDF files", type=["pdf"], accept_multiple_files=True, key="pdf_process_uploader")
view_mode = st.selectbox("View Mode", ["Single Page", "Double Page"], key="pdf_view_mode")
if st.button("Process Uploaded PDFs", key="process_pdfs"):
combined_text = ""
for pdf_file in uploaded_pdfs:
pdf_bytes = pdf_file.read()
temp_pdf_path = f"temp_{pdf_file.name}"
with open(temp_pdf_path, "wb") as f:
f.write(pdf_bytes)
try:
doc = fitz.open(temp_pdf_path)
st.write(f"Processing {pdf_file.name} with {len(doc)} pages")
if view_mode == "Single Page":
for i, page in enumerate(doc):
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
st.image(img, caption=f"{pdf_file.name} Page {i+1}")
gpt_text = process_image_with_prompt(img, "Extract the electronic text from image", model=selected_gpt_model, detail=detail_level)
combined_text += f"\n## {pdf_file.name} - Page {i+1}\n\n{gpt_text}\n"
else:
pages = list(doc)
for i in range(0, len(pages), 2):
if i+1 < len(pages):
pix1 = pages[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
img1 = Image.frombytes("RGB", [pix1.width, pix1.height], pix1.samples)
pix2 = pages[i+1].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
img2 = Image.frombytes("RGB", [pix2.width, pix2.height], pix2.samples)
total_width = img1.width + img2.width
max_height = max(img1.height, img2.height)
combined_img = Image.new("RGB", (total_width, max_height))
combined_img.paste(img1, (0, 0))
combined_img.paste(img2, (img1.width, 0))
st.image(combined_img, caption=f"{pdf_file.name} Pages {i+1}-{i+2}")
gpt_text = process_image_with_prompt(combined_img, "Extract the electronic text from image", model=selected_gpt_model, detail=detail_level)
combined_text += f"\n## {pdf_file.name} - Pages {i+1}-{i+2}\n\n{gpt_text}\n"
else:
pix = pages[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
st.image(img, caption=f"{pdf_file.name} Page {i+1}")
gpt_text = process_image_with_prompt(img, "Extract the electronic text from image", model=selected_gpt_model, detail=detail_level)
combined_text += f"\n## {pdf_file.name} - Page {i+1}\n\n{gpt_text}\n"
doc.close()
except Exception as e:
st.error(f"Error processing {pdf_file.name}: {str(e)}")
finally:
os.remove(temp_pdf_path)
output_filename = generate_filename("processed_pdf", "md")
with open(output_filename, "w", encoding="utf-8") as f:
f.write(combined_text)
st.success(f"PDF processing complete. MD file saved as {output_filename}")
st.markdown(get_download_link(output_filename, "text/markdown", "Download Processed PDF MD"), unsafe_allow_html=True)
# ----------------- TAB: Image Process -----------------
with tab_image_process:
st.header("Image Process")
st.subheader("Upload Images for GPT-based OCR")
gpt_models = ["gpt-4o", "gpt-4o-mini"]
selected_gpt_model = st.selectbox("Select GPT Model", gpt_models, key="img_gpt_model")
detail_level = st.selectbox("Detail Level", ["auto", "low", "high"], key="img_detail_level")
prompt_img = st.text_input("Enter prompt for image processing", "Extract the electronic text from image", key="img_process_prompt")
uploaded_images = st.file_uploader("Upload image files", type=["png", "jpg", "jpeg"], accept_multiple_files=True, key="image_process_uploader")
if st.button("Process Uploaded Images", key="process_images"):
combined_text = ""
for img_file in uploaded_images:
try:
img = Image.open(img_file)
st.image(img, caption=img_file.name)
gpt_text = process_image_with_prompt(img, prompt_img, model=selected_gpt_model, detail=detail_level)
combined_text += f"\n## {img_file.name}\n\n{gpt_text}\n"
except Exception as e:
st.error(f"Error processing image {img_file.name}: {str(e)}")
output_filename = generate_filename("processed_image", "md")
with open(output_filename, "w", encoding="utf-8") as f:
f.write(combined_text)
st.success(f"Image processing complete. MD file saved as {output_filename}")
st.markdown(get_download_link(output_filename, "text/markdown", "Download Processed Image MD"), unsafe_allow_html=True)
# ----------------- TAB: MD Gallery -----------------
with tab_md_gallery:
st.header("MD Gallery and GPT Processing")
gpt_models = ["gpt-4o", "gpt-4o-mini"]
selected_gpt_model = st.selectbox("Select GPT Model", gpt_models, key="md_gpt_model")
md_files = sorted(glob.glob("*.md"))
if md_files:
st.subheader("Individual File Processing")
cols = st.columns(2)
for idx, md_file in enumerate(md_files):
with cols[idx % 2]:
st.write(md_file)
if st.button(f"Process {md_file}", key=f"process_md_{md_file}"):
try:
with open(md_file, "r", encoding="utf-8") as f:
content = f.read()
prompt_md = "Summarize this into markdown outline with emojis and number the topics 1..12"
result_text = process_text_with_prompt(content, prompt_md, model=selected_gpt_model)
st.markdown(result_text)
output_filename = generate_filename(f"processed_{os.path.splitext(md_file)[0]}", "md")
with open(output_filename, "w", encoding="utf-8") as f:
f.write(result_text)
st.markdown(get_download_link(output_filename, "text/markdown", f"Download {output_filename}"), unsafe_allow_html=True)
except Exception as e:
st.error(f"Error processing {md_file}: {str(e)}")
st.subheader("Batch Processing")
st.write("Select MD files to combine and process:")
selected_md = {}
for md_file in md_files:
selected_md[md_file] = st.checkbox(md_file, key=f"checkbox_md_{md_file}")
batch_prompt = st.text_input("Enter batch processing prompt", "Summarize this into markdown outline with emojis and number the topics 1..12", key="batch_prompt")
if st.button("Process Selected MD Files", key="process_batch_md"):
combined_content = ""
for md_file, selected in selected_md.items():
if selected:
try:
with open(md_file, "r", encoding="utf-8") as f:
combined_content += f"\n## {md_file}\n" + f.read() + "\n"
except Exception as e:
st.error(f"Error reading {md_file}: {str(e)}")
if combined_content:
result_text = process_text_with_prompt(combined_content, batch_prompt, model=selected_gpt_model)
st.markdown(result_text)
output_filename = generate_filename("batch_processed_md", "md")
with open(output_filename, "w", encoding="utf-8") as f:
f.write(result_text)
st.success(f"Batch processing complete. MD file saved as {output_filename}")
st.markdown(get_download_link(output_filename, "text/markdown", "Download Batch Processed MD"), unsafe_allow_html=True)
else:
st.warning("No MD files selected.")
else:
st.warning("No MD files found.")
# ----------------- FINAL SIDEBAR UPDATE -----------------
# Update the asset gallery once (using its container).
def update_gallery():
container = st.session_state['asset_gallery_container']
container.empty() # Clear previous gallery content.
all_files = get_gallery_files()
if all_files:
container.markdown("### Asset Gallery 📸📖")
cols = container.columns(2)
for idx, file in enumerate(all_files[:st.session_state['gallery_size']]):
with cols[idx % 2]:
st.session_state['unique_counter'] += 1
unique_id = st.session_state['unique_counter']
if file.endswith('.png'):
st.image(Image.open(file), caption=os.path.basename(file), use_container_width=True)
else:
doc = fitz.open(file)
pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5))
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
st.image(img, caption=os.path.basename(file), use_container_width=True)
doc.close()
checkbox_key = f"asset_{file}_{unique_id}"
st.session_state['asset_checkboxes'][file] = st.checkbox("Use for SFT/Input", value=st.session_state['asset_checkboxes'].get(file, False), key=checkbox_key)
mime_type = "image/png" if file.endswith('.png') else "application/pdf"
st.markdown(get_download_link(file, mime_type, "Snag It! 📥"), unsafe_allow_html=True)
if st.button("Zap It! 🗑️", key=f"delete_{file}_{unique_id}"):
os.remove(file)
st.session_state['asset_checkboxes'].pop(file, None)
st.success(f"Asset {os.path.basename(file)} vaporized! 💨")
st.experimental_rerun()
# Call the gallery update once after all tabs have been processed.
update_gallery()
# Finally, update the Action Logs and History in the sidebar.
st.sidebar.subheader("Action Logs 📜")
for record in log_records:
st.sidebar.write(f"{record.asctime} - {record.levelname} - {record.message}")
st.sidebar.subheader("History 📜")
for entry in st.session_state.get("history", []):
if entry is not None:
st.sidebar.write(entry)