TorchTransformers-Diffusion-CV-SFT / backup03262025.app.py
awacke1's picture
Rename app.py to backup03262025.app.py
5af73ab verified
import aiofiles
import asyncio
import base64
import fitz
import glob
import logging
import os
import pandas as pd
import pytz
import random
import re
import requests
import shutil
import streamlit as st
import time
import torch
import zipfile
from dataclasses import dataclass
from datetime import datetime
from diffusers import StableDiffusionPipeline
from io import BytesIO
from openai import OpenAI
from PIL import Image
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel
from typing import Optional
# 🤖 OpenAI wizardry: Summon your API magic!
client = OpenAI(
api_key=os.getenv('OPENAI_API_KEY'),
organization=os.getenv('OPENAI_ORG_ID')
)
# 📜 Logging activated: Capturing chaos and calm!
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
log_records = []
class LogCaptureHandler(logging.Handler):
def emit(self, record):
log_records.append(record)
logger.addHandler(LogCaptureHandler())
# 🎨 Streamlit styling: Designing a cosmic interface!
st.set_page_config(
page_title="AI Vision & SFT Titans 🚀",
page_icon="🤖",
layout="wide",
initial_sidebar_state="expanded",
menu_items={
'Get Help': 'https://huggingface.co/awacke1',
'Report a Bug': 'https://huggingface.co/spaces/awacke1',
'About': "AI Vision & SFT Titans: PDFs, OCR, Image Gen, Line Drawings, Custom Diffusion, and SFT on CPU! 🌌"
}
)
st.session_state.setdefault('history', []) # 🌱 History: starting fresh if empty!
st.session_state.setdefault('builder', None) # 🛠️ Builder: set up the builder if it's missing!
st.session_state.setdefault('model_loaded', False) # 🚦 Model Loaded: mark as not loaded by default!
st.session_state.setdefault('processing', {}) # ⏳ Processing: initialize processing state as an empty dict!
st.session_state.setdefault('asset_checkboxes', {}) # ✅ Asset Checkboxes: default to an empty dictionary!
st.session_state.setdefault('downloaded_pdfs', {}) # 📄 Downloaded PDFs: start with no PDFs downloaded!
st.session_state.setdefault('unique_counter', 0) # 🔢 Unique Counter: initialize the counter to zero!
st.session_state.setdefault('selected_model_type', "Causal LM") # 🧠 Selected Model Type: default to "Causal LM"!
st.session_state.setdefault('selected_model', "None") # 🤖 Selected Model: set to "None" if not already set!
st.session_state.setdefault('cam0_file', None) # 📸 Cam0 File: no file loaded by default!
st.session_state.setdefault('cam1_file', None) # 📸 Cam1 File: no file loaded by default!
@dataclass # 🎨 ModelConfig: A blueprint for model configurations!
class ModelConfig:
name: str
base_model: str
size: str
domain: Optional[str] = None
model_type: str = "causal_lm"
@property
def model_path(self): return f"models/{self.name}" # 🚀 Model Path: Home base for brilliance!
@dataclass # 🎨 DiffusionConfig: Where diffusion magic takes shape!
class DiffusionConfig:
name: str
base_model: str
size: str
domain: Optional[str] = None
@property
def model_path(self): return f"diffusion_models/{self.name}" # 🚀 Diffusion Path: Let the diffusion begin!
class ModelBuilder: # 🔧 ModelBuilder: Crafting AI wonders with wit!
def __init__(self): # 🚀 Initialize: Setting up the AI factory!
self.config = None # No config yet—waiting for genius!
self.model = None # Model not built until the magic happens!
self.tokenizer = None # Tokenizer: Ready to speak in AI!
self.jokes = [ # 🤣 Jokes to keep the circuits laughing!
"Why did the AI go to therapy? Too many layers to unpack! 😂",
"Training complete! Time for a binary coffee break. ☕",
"I told my neural network a joke; it couldn't stop dropping bits! 🤖",
"I asked the AI for a pun, and it said, 'I'm punning on parallel processing!' 😄",
"Debugging my code is like a stand-up routine—always a series of exceptions! 😆"
]
def load_model(self, model_path: str, config: Optional[ModelConfig] = None): # 🔄 load_model: Booting up genius!
with st.spinner(f"Loading {model_path}... ⏳"): # ⏳ Spinner: Genius loading...
self.model = AutoModelForCausalLM.from_pretrained(model_path)
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
if self.tokenizer.pad_token is None: self.tokenizer.pad_token = self.tokenizer.eos_token # 🔧 Fix pad token if missing!
if config: self.config = config # 🛠️ Config loaded—setting the stage!
self.model.to("cuda" if torch.cuda.is_available() else "cpu") # 💻 Deploying the model to its device!
st.success(f"Model loaded! 🎉 {random.choice(self.jokes)}") # 🎉 Success: Model is now in orbit!
return self
def save_model(self, path: str): # 💾 save_model: Securing your masterpiece!
with st.spinner("Saving model... 💾"): # ⏳ Spinner: Saving brilliance...
os.makedirs(os.path.dirname(path), exist_ok=True); self.model.save_pretrained(path); self.tokenizer.save_pretrained(path) # 📂 Directory magic: Creating and saving!
st.success(f"Model saved at {path}! ✅") # ✅ Success: Your model is safely stored!
class DiffusionBuilder:
def __init__(self):
self.config = None
self.pipeline = None
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None):
with st.spinner(f"Loading diffusion model {model_path}... ⏳"):
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cpu")
if config:
self.config = config
st.success("Diffusion model loaded! 🎨")
return self
def save_model(self, path: str):
with st.spinner("Saving diffusion model... 💾"):
os.makedirs(os.path.dirname(path), exist_ok=True)
self.pipeline.save_pretrained(path)
st.success(f"Diffusion model saved at {path}! ✅")
def generate(self, prompt: str):
return self.pipeline(prompt, num_inference_steps=20).images[0]
def generate_filename(sequence, ext="png"): return f"{sequence}_{time.strftime('%d%m%Y%H%M%S')}.{ext}" # ⏳ Generate filename with timestamp magic!
def pdf_url_to_filename(url):
return re.sub(r'[<>:"/\\|?*]', '_', url) + ".pdf" # 📄 Convert URL to a safe PDF filename – no hackers allowed!
def get_download_link(file_path, mime_type="application/pdf", label="Download"): return f'<a href="data:{mime_type};base64,{base64.b64encode(open(file_path, "rb").read()).decode()}" download="{os.path.basename(file_path)}">{label}</a>' # 🔗 Create a download link – click it like it's hot!
def zip_directory(directory_path, zip_path):
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf: [zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path))) for root, _, files in os.walk(directory_path) for file in files] # 🎁 Zip directory: Packing files faster than Santa on Christmas Eve!
def get_model_files(model_type="causal_lm"): return [d for d in glob.glob("models/*" if model_type == "causal_lm" else "diffusion_models/*") if os.path.isdir(d)] or ["None"] # 📂 Get model files: Hunting directories like a pro!
def get_gallery_files(file_types=["png", "pdf"]): return sorted(list({f for ext in file_types for f in glob.glob(f"*.{ext}")})) # 🖼️ Get gallery files: Finding art in a digital haystack!
def get_pdf_files(): return sorted(glob.glob("*.pdf")) # 📄 Get PDF files: Sorted and served – no paper cuts here!
# 📥 Download PDF: Delivering docs faster than a caffeinated courier!
def download_pdf(url, output_path):
try:
response = requests.get(url, stream=True, timeout=10); [open(output_path, "wb").write(chunk) for chunk in response.iter_content(chunk_size=8192)] if response.status_code == 200 else None; ret = True if response.status_code == 200 else False
except requests.RequestException as e:
logger.error(f"Failed to download {url}: {e}"); ret = False
return ret
# 📚 Async PDF Snapshot: Snap your PDF pages without blocking—juggle pages like a ninja! 🥷
async def process_pdf_snapshot(pdf_path, mode="single"):
start_time = time.time(); status = st.empty(); status.text(f"Processing PDF Snapshot ({mode})... (0s)")
try:
doc = fitz.open(pdf_path); output_files = []
if mode == "single": page = doc[0]; pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); output_file = generate_filename("single", "png"); pix.save(output_file); output_files.append(output_file)
elif mode == "twopage":
for i in range(min(2, len(doc))): page = doc[i]; pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); output_file = generate_filename(f"twopage_{i}", "png"); pix.save(output_file); output_files.append(output_file)
elif mode == "allpages":
for i in range(len(doc)): page = doc[i]; pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); output_file = generate_filename(f"page_{i}", "png"); pix.save(output_file); output_files.append(output_file)
doc.close(); elapsed = int(time.time() - start_time); status.text(f"PDF Snapshot ({mode}) completed in {elapsed}s!"); update_gallery(); return output_files
except Exception as e: status.error(f"Failed to process PDF: {str(e)}"); return []
# 😎 Async OCR: Convert images to text while your app keeps on groovin'—no blocking, just rocking! 🎸
async def process_ocr(image, output_file):
start_time = time.time(); status = st.empty(); status.text("Processing GOT-OCR2_0... (0s)")
tokenizer = AutoTokenizer.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True); model = AutoModel.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval()
temp_file = f"temp_{int(time.time())}.png"; image.save(temp_file)
result = model.chat(tokenizer, temp_file, ocr_type='ocr'); os.remove(temp_file)
elapsed = int(time.time() - start_time); status.text(f"GOT-OCR2_0 completed in {elapsed}s!")
async with aiofiles.open(output_file, "w") as f: await f.write(result)
update_gallery(); return result
# 🧞 Async Image Gen: Your image genie—wishing up pictures while the event loop keeps the party going! 🎉
async def process_image_gen(prompt, output_file):
start_time = time.time(); status = st.empty(); status.text("Processing Image Gen... (0s)")
pipeline = st.session_state['builder'].pipeline if st.session_state.get('builder') and isinstance(st.session_state['builder'], DiffusionBuilder) and st.session_state['builder'].pipeline else StableDiffusionPipeline.from_pretrained("OFA-Sys/small-stable-diffusion-v0", torch_dtype=torch.float32).to("cpu")
gen_image = pipeline(prompt, num_inference_steps=20).images[0]; elapsed = int(time.time() - start_time)
status.text(f"Image Gen completed in {elapsed}s!"); gen_image.save(output_file); update_gallery(); return gen_image
# 🖼️ GPT-Image Interpreter: Turning pixels into prose!
def process_image_with_prompt(image, prompt, model="gpt-4o-mini", detail="auto"):
buffered = BytesIO(); image.save(buffered, format="PNG") # 💾 Save the image in-memory as PNG—no hard drives harmed!
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") # 🔐 Encode image data in Base64 for secure, inline transmission!
messages = [{"role": "user", "content": [{"type": "text", "text": prompt}, {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{img_str}", "detail": detail}}]}] # 💬 Build the GPT conversation with your prompt and image!
try:
response = client.chat.completions.create(model=model, messages=messages, max_tokens=300); return response.choices[0].message.content # 🤖 Invoke GPT’s magic and return its dazzling output!
except Exception as e: return f"Error processing image with GPT: {str(e)}" # ⚠️ Oops—GPT encountered a snag, so we catch and report the error!
# 📝 GPT-Text Alchemist: Merging your prompt and text into digital gold!
def process_text_with_prompt(text, prompt, model="gpt-4o-mini"):
messages = [{"role": "user", "content": f"{prompt}\n\n{text}"}] # 🛠️ Constructing the conversation input like a master wordsmith!
try:
response = client.chat.completions.create(model=model, messages=messages, max_tokens=300); return response.choices[0].message.content # 🤖 Summon GPT’s wisdom and return its brilliant answer!
except Exception as e: return f"Error processing text with GPT: {str(e)}" # ⚠️ Oops, GPT stumbled—catching and reporting the error!
st.sidebar.subheader("Gallery Settings") # 🎨 Sidebar Gallery: Customize your creative space!
st.session_state.setdefault('gallery_size', 2) # 🔧 Setting default gallery size to 2 if it's missing!
st.session_state['gallery_size'] = st.sidebar.slider("Gallery Size", 1, 10, st.session_state['gallery_size'], key="gallery_size_slider") # 🎚️ Slide to adjust your gallery size and bring balance to your art!
# 📸 Gallery Updater: Making your assets dazzle and disappear faster than a magician's rabbit! 🐇✨
def update_gallery():
all_files = get_gallery_files() # 🔍 Grab all gallery files like a digital treasure hunt!
if all_files: # ✅ If assets are found, let the show begin!
st.sidebar.subheader("Asset Gallery 📸📖"); cols = st.sidebar.columns(2) # 🎨 Set up a stylish 2-column layout in the sidebar!
for idx, file in enumerate(all_files[:st.session_state['gallery_size']]): # 🖼️ Loop through your favorite files, limited by gallery size!
with cols[idx % 2]: # 🔄 Alternate columns—because balance is key (and funny)!
st.session_state['unique_counter'] += 1; unique_id = st.session_state['unique_counter'] # 🚀 Increment your asset counter—every asset gets its moment in the spotlight!
if file.endswith('.png'): st.image(Image.open(file), caption=os.path.basename(file), use_container_width=True) # 🖼️ Display the image like a masterpiece!
else: # 📄 For PDFs, we snap their first page like a paparazzo!
doc = fitz.open(file); pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5)); img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); st.image(img, caption=os.path.basename(file), use_container_width=True); doc.close()
checkbox_key = f"asset_{file}_{unique_id}" # 🔑 Create a unique key—because every asset deserves VIP treatment!
st.session_state['asset_checkboxes'][file] = st.checkbox("Use for SFT/Input", value=st.session_state['asset_checkboxes'].get(file, False), key=checkbox_key) # ✅ Checkbox: Pick your asset for magic (or SFT)!
mime_type = "image/png" if file.endswith('.png') else "application/pdf" # 📎 Determine MIME type—like sorting your socks, but cooler!
st.markdown(get_download_link(file, mime_type, "Snag It! 📥"), unsafe_allow_html=True) # 🔗 Provide a download link—grab your asset faster than a flash sale!
if st.button("Zap It! 🗑️", key=f"delete_{file}_{unique_id}"): # ⚡ "Zap It!" button: Because sometimes you just gotta make stuff disappear!
os.remove(file); st.session_state['asset_checkboxes'].pop(file, None); st.sidebar.success(f"Asset {os.path.basename(file)} vaporized! 💨"); st.rerun() # 💥 Delete the file and refresh the gallery—poof, it's gone!
#update_gallery() # 🎉 Launch the gallery update—let the art party commence! (Joke: Why did the asset cross the road? To get zapped on the other side! 😆)
st.sidebar.subheader("Action Logs 📜") # 📝 Action Logs: Where our system whispers its secrets!
with st.sidebar: [st.write(f"{record.asctime} - {record.levelname} - {record.message}") for record in log_records] # 📚 Loop through log records and display them like diary entries!
st.sidebar.subheader("History 📜") # 🕰️ History: A walk down memory lane, one log at a time!
with st.sidebar: [st.write(entry) for entry in st.session_state['history']] # ⏳ Display every historic moment with style!
tabs = st.tabs(["Camera Snap 📷", "Download PDFs 📥", "Test OCR 🔍", "Build Titan 🌱", "Test Image Gen 🎨", "PDF Process 📄", "Image Process 🖼️", "MD Gallery 📚"]) # 🎭 Tabs: Navigate your AI universe like a boss!
(tab_camera, tab_download, tab_ocr, tab_build, tab_imggen, tab_pdf_process, tab_image_process, tab_md_gallery) = tabs # 🚀 Unpack the tabs and get ready to explore—because even tabs need to party!
with tab_camera:
st.header("Camera Snap 📷") # 🎥 Header: Let’s capture those Kodak moments!
st.subheader("Single Capture") # 📸 Subheader: One snap at a time, no double exposure!
cols = st.columns(2) # 🧩 Creating two columns for double-camera action!
with cols[0]:
cam0_img = st.camera_input("Take a picture - Cam 0", key="cam0") # 📷 Cam 0: Say cheese!
if cam0_img:
filename = generate_filename("cam0") # 🏷️ Filename for Cam 0 snapshot generated!
if st.session_state['cam0_file'] and os.path.exists(st.session_state['cam0_file']): os.remove(st.session_state['cam0_file']) # 🗑️ Out with the old Cam 0 snap!
with open(filename, "wb") as f: f.write(cam0_img.getvalue()) # 💾 Saving Cam 0 image like a boss!
st.session_state['cam0_file'] = filename # 🔄 Updating session state for Cam 0 file!
entry = f"Snapshot from Cam 0: {filename}" # 📝 History entry: Cam 0 snapshot recorded!
if entry not in st.session_state['history']:
st.session_state['history'] = [e for e in st.session_state['history'] if not e.startswith("Snapshot from Cam 0:")] + [entry] # 🧹 Cleaning and updating history!
st.image(Image.open(filename), caption="Camera 0", use_container_width=True) # 🖼️ Displaying the fresh Cam 0 image!
logger.info(f"Saved snapshot from Camera 0: {filename}") # 🔍 Logging: Cam 0 snapshot saved!
update_gallery() # 🔄 Refreshing gallery to show the new snap!
with cols[1]:
cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1") # 📷 Cam 1: Capture your best side!
if cam1_img:
filename = generate_filename("cam1") # 🏷️ Filename for Cam 1 snapshot generated!
if st.session_state['cam1_file'] and os.path.exists(st.session_state['cam1_file']): os.remove(st.session_state['cam1_file']) # 🗑️ Out with the old Cam 1 snap!
with open(filename, "wb") as f: f.write(cam1_img.getvalue()) # 💾 Saving Cam 1 image like a pro!
st.session_state['cam1_file'] = filename # 🔄 Updating session state for Cam 1 file!
entry = f"Snapshot from Cam 1: {filename}" # 📝 History entry: Cam 1 snapshot recorded!
if entry not in st.session_state['history']:
st.session_state['history'] = [e for e in st.session_state['history'] if not e.startswith("Snapshot from Cam 1:")] + [entry] # 🧹 Cleaning and updating history!
st.image(Image.open(filename), caption="Camera 1", use_container_width=True) # 🖼️ Displaying the fresh Cam 1 image!
logger.info(f"Saved snapshot from Camera 1: {filename}") # 🔍 Logging: Cam 1 snapshot saved!
update_gallery() # 🔄 Refreshing gallery to show the new snap!
# === Tab: Download PDFs ===
with tab_download:
st.header("Download PDFs 📥") # 📥 Header: Ready to snag PDFs like a digital ninja!
if st.button("Examples 📚"): # 📚 Button: Load up some scholarly URLs for instant fun!
example_urls = ["https://arxiv.org/pdf/2308.03892", "https://arxiv.org/pdf/1912.01703", "https://arxiv.org/pdf/2408.11039", "https://arxiv.org/pdf/2109.10282", "https://arxiv.org/pdf/2112.10752", "https://arxiv.org/pdf/2308.11236", "https://arxiv.org/pdf/1706.03762", "https://arxiv.org/pdf/2006.11239", "https://arxiv.org/pdf/2305.11207", "https://arxiv.org/pdf/2106.09685", "https://arxiv.org/pdf/2005.11401", "https://arxiv.org/pdf/2106.10504"]; st.session_state['pdf_urls'] = "\n".join(example_urls) # 📚 Examples loaded into session!
url_input = st.text_area("Enter PDF URLs (one per line)", value=st.session_state.get('pdf_urls', ""), height=200) # 📝 Text area: Paste your PDF URLs here—no commas needed!
# --- Download PDFs Tab (modified section) ---
if st.button("Robo-Download 🤖"):
urls = url_input.strip().split("\n")
progress_bar = st.progress(0)
status_text = st.empty()
total_urls = len(urls)
existing_pdfs = get_pdf_files()
for idx, url in enumerate(urls):
if url:
output_path = pdf_url_to_filename(url)
status_text.text(f"Fetching {idx + 1}/{total_urls}: {os.path.basename(output_path)}...")
if output_path not in existing_pdfs:
if download_pdf(url, output_path):
st.session_state['downloaded_pdfs'][url] = output_path
logger.info(f"Downloaded PDF from {url} to {output_path}")
entry = f"Downloaded PDF: {output_path}"
if entry not in st.session_state['history']:
st.session_state['history'].append(entry)
st.session_state['asset_checkboxes'][output_path] = True
else:
st.error(f"Failed to nab {url} 😿")
else:
st.info(f"Already got {os.path.basename(output_path)}! Skipping... 🐾")
st.session_state['downloaded_pdfs'][url] = output_path
progress_bar.progress((idx + 1) / total_urls)
status_text.text("Robo-Download complete! 🚀")
update_gallery()
mode = st.selectbox("Snapshot Mode", ["Single Page (High-Res)", "Two Pages (High-Res)", "All Pages (High-Res)"], key="download_mode") # 🎛️ Selectbox: Choose your snapshot resolution!
if st.button("Snapshot Selected 📸"):
selected_pdfs = [path for path in get_gallery_files()
if path.endswith('.pdf') and st.session_state['asset_checkboxes'].get(path, False)]
if selected_pdfs:
for pdf_path in selected_pdfs:
if not os.path.exists(pdf_path):
st.warning(f"File not found: {pdf_path}. Skipping.")
continue
mode_key = {"Single Page (High-Res)": "single",
"Two Pages (High-Res)": "twopage",
"All Pages (High-Res)": "allpages"}[mode]
snapshots = asyncio.run(process_pdf_snapshot(pdf_path, mode_key))
for snapshot in snapshots:
st.image(Image.open(snapshot), caption=snapshot, use_container_width=True)
st.session_state['asset_checkboxes'][snapshot] = True
update_gallery()
else:
st.warning("No PDFs selected for snapshotting! Check some boxes in the sidebar.")
# === Tab: Test OCR ===
with tab_ocr:
st.header("Test OCR 🔍") # 🔍 Header: Time to turn images into text—magic for your eyeballs!
all_files = get_gallery_files(); # 📂 Gathering all assets from the gallery!
if all_files:
if st.button("OCR All Assets 🚀"): # 🚀 Button: Blast OCR on every asset in one go!
full_text = "# OCR Results\n\n"; # 📝 Starting a full OCR report!
for file in all_files:
if file.endswith('.png'): image = Image.open(file) # 🖼️ PNG? Open image directly!
else:
doc = fitz.open(file); pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); doc.close() # 📄 PDF? Grab a snapshot of the first page!
output_file = generate_filename(f"ocr_{os.path.basename(file)}", "txt"); # 💾 Create a unique filename for the OCR text!
result = asyncio.run(process_ocr(image, output_file)); # 🤖 Run OCR asynchronously—non-blocking wizardry!
full_text += f"## {os.path.basename(file)}\n\n{result}\n\n"; # 📝 Append the OCR result to the full report!
entry = f"OCR Test: {file} -> {output_file}"; # 📝 Log this OCR operation!
if entry not in st.session_state['history']: st.session_state['history'].append(entry) # ✅ Update history if this entry is new!
md_output_file = f"full_ocr_{int(time.time())}.md"; # 📝 Generate a markdown filename for the full OCR report!
with open(md_output_file, "w") as f: f.write(full_text); # 💾 Write the full OCR report to disk!
st.success(f"Full OCR saved to {md_output_file}"); # 🎉 Success: Full OCR report is saved!
st.markdown(get_download_link(md_output_file, "text/markdown", "Download Full OCR Markdown"), unsafe_allow_html=True) # 🔗 Provide a download link for your OCR masterpiece!
selected_file = st.selectbox("Select Image or PDF", all_files, key="ocr_select"); # 🔍 Selectbox: Pick an asset for individual OCR!
if selected_file:
if selected_file.endswith('.png'): image = Image.open(selected_file) # 🖼️ Open the selected PNG image!
else:
doc = fitz.open(selected_file); pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); doc.close() # 📄 For PDFs, extract a snapshot from the first page!
st.image(image, caption="Input Image", use_container_width=True); # 🖼️ Display the selected asset for OCR review!
if st.button("Run OCR 🚀", key="ocr_run"): # 🚀 Button: Run OCR on the selected asset!
output_file = generate_filename("ocr_output", "txt"); st.session_state['processing']['ocr'] = True; # 💾 Generate output filename and flag processing!
result = asyncio.run(process_ocr(image, output_file)); # 🤖 Execute OCR asynchronously!
entry = f"OCR Test: {selected_file} -> {output_file}"; # 📝 Create a log entry for this OCR run!
if entry not in st.session_state['history']: st.session_state['history'].append(entry); # ✅ Update history if new!
st.text_area("OCR Result", result, height=200, key="ocr_result"); # 📄 Show the OCR result in a text area!
st.success(f"OCR output saved to {output_file}"); st.session_state['processing']['ocr'] = False # 🎉 Success: OCR result saved and processing flag reset!
if selected_file.endswith('.pdf') and st.button("OCR All Pages 🚀", key="ocr_all_pages"): # 📄 Button: Run OCR on every page of a PDF!
doc = fitz.open(selected_file); full_text = f"# OCR Results for {os.path.basename(selected_file)}\n\n"; # 📝 Start a report for multi-page PDF OCR!
for i in range(len(doc)):
pix = doc[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); # 🖼️ Capture each page as an image!
output_file = generate_filename(f"ocr_page_{i}", "txt"); result = asyncio.run(process_ocr(image, output_file)); # 💾 Generate filename and process OCR for the page!
full_text += f"## Page {i + 1}\n\n{result}\n\n"; # 📝 Append the page's OCR result to the report!
entry = f"OCR Test: {selected_file} Page {i + 1} -> {output_file}"; # 📝 Log this page's OCR operation!
if entry not in st.session_state['history']: st.session_state['history'].append(entry) # ✅ Update history if this entry is new!
md_output_file = f"full_ocr_{os.path.basename(selected_file)}_{int(time.time())}.md"; # 📝 Create a markdown filename for the full multi-page OCR report!
with open(md_output_file, "w") as f: f.write(full_text); # 💾 Write the full multi-page OCR report to disk!
st.success(f"Full OCR saved to {md_output_file}"); # 🎉 Success: Multi-page OCR report is saved!
st.markdown(get_download_link(md_output_file, "text/markdown", "Download Full OCR Markdown"), unsafe_allow_html=True) # 🔗 Provide a download link for the multi-page OCR report!
else:
st.warning("No assets in gallery yet. Use Camera Snap or Download PDFs!") # ⚠️ Warning: Your gallery is empty—capture or download some assets first!
# === Tab: Build Titan ===
with tab_build:
st.header("Build Titan 🌱") # 🌱 Header: Build your own Titan—tiny models, huge ambitions!
model_type = st.selectbox("Model Type", ["Causal LM", "Diffusion"], key="build_type") # 🔍 Choose your model flavor!
base_model = st.selectbox(
"Select Tiny Model",
["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"] if model_type == "Causal LM"
else ["OFA-Sys/small-stable-diffusion-v0", "stabilityai/stable-diffusion-2-base"]
) # 🤖 Pick a tiny model based on your choice!
model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}") # 🏷️ Auto-generate a cool model name with a timestamp!
domain = st.text_input("Target Domain", "general") # 🎯 Specify your target domain (default: general)!
if st.button("Download Model ⬇️"): # ⬇️ Button: Download your model and get ready to unleash the Titan!
config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(
name=model_name, base_model=base_model, size="small", domain=domain
) # 📝 Create model configuration on the fly!
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder() # 🔧 Instantiate the builder for your model type!
builder.load_model(base_model, config); builder.save_model(config.model_path) # 🚀 Load and save the model—instant Titan assembly!
st.session_state['builder'] = builder; st.session_state['model_loaded'] = True # ⚙️ Update session state: model is now loaded!
st.session_state['selected_model_type'] = model_type; st.session_state['selected_model'] = config.model_path # 🔑 Store your selection for posterity!
entry = f"Built {model_type} model: {model_name}" # 📝 Log the build event in history!
if entry not in st.session_state['history']: st.session_state['history'].append(entry)
st.success(f"Model downloaded and saved to {config.model_path}! 🎉"); st.rerun() # 🎉 Success: Titan built, now re-run to refresh the interface!
# === Tab: Test Image Gen ===
with tab_imggen:
st.header("Test Image Gen 🎨") # 🎨 Header: Time to get creative with AI image generation!
all_files = get_gallery_files() # 📂 Retrieve all gallery assets for selection.
if all_files:
selected_file = st.selectbox("Select Image or PDF", all_files, key="gen_select") # 🔍 Select an asset to spark creativity!
if selected_file:
if selected_file.endswith('.png'):
image = Image.open(selected_file) # 🖼️ Directly open PNG images!
else:
doc = fitz.open(selected_file); pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0));
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); doc.close() # 📄 For PDFs, extract the first page as an image!
st.image(image, caption="Reference Image", use_container_width=True) # 🖼️ Display the chosen asset as reference.
prompt = st.text_area("Prompt", "Generate a neon superhero version of this image", key="gen_prompt") # ✍️ Enter a creative prompt to transform the image!
if st.button("Run Image Gen 🚀", key="gen_run"): # 🚀 Button: Ignite the image generator!
output_file = generate_filename("gen_output", "png"); st.session_state['processing']['gen'] = True # 💾 Create output filename and flag processing status.
result = asyncio.run(process_image_gen(prompt, output_file)) # 🤖 Run the async image generation—non-blocking magic in action!
entry = f"Image Gen Test: {prompt} -> {output_file}" # 📝 Log the image generation event!
if entry not in st.session_state['history']: st.session_state['history'].append(entry)
st.image(result, caption="Generated Image", use_container_width=True) # 🖼️ Showcase the newly generated image!
st.success(f"Image saved to {output_file}"); st.session_state['processing']['gen'] = False # 🎉 Success: Your masterpiece is saved and processing is complete!
else:
st.warning("No images or PDFs in gallery yet. Use Camera Snap or Download PDFs!") # ⚠️ Warning: No assets available—capture or download some first!
update_gallery() # 🔄 Refresh the gallery to display any updates!
# === Updated Tab: PDF Process ===
with tab_pdf_process:
st.header("PDF Process") # 📄 Header: Ready to transform your PDFs into text with GPT magic!
st.subheader("Upload PDFs for GPT-based text extraction") # 🚀 Subheader: Upload your PDFs and let the AI do the reading!
gpt_models = ["gpt-4o", "gpt-4o-mini"] # 🤖 GPT Models: Pick your AI wizard—more vision-capable models may join the party!
selected_gpt_model = st.selectbox("Select GPT Model", gpt_models, key="pdf_gpt_model") # 🔍 Select your GPT model and let it work its charm!
detail_level = st.selectbox("Detail Level", ["auto", "low", "high"], key="pdf_detail_level") # 🎚️ Detail Level: Fine-tune your extraction’s precision!
uploaded_pdfs = st.file_uploader("Upload PDF files", type=["pdf"], accept_multiple_files=True, key="pdf_process_uploader") # 📤 Uploader: Drag & drop your PDFs for processing!
view_mode = st.selectbox("View Mode", ["Single Page", "Double Page"], key="pdf_view_mode") # 👀 View Mode: Choose single or double page snapshots!
if st.button("Process Uploaded PDFs", key="process_pdfs"): # ⚙️ Button: Kick off the PDF processing extravaganza!
combined_text = "" # 📝 Initialize a blank slate for the GPT output!
for pdf_file in uploaded_pdfs: # 🔄 Loop through each uploaded PDF file!
pdf_bytes = pdf_file.read() # 📥 Read the PDF bytes into memory!
temp_pdf_path = f"temp_{pdf_file.name}" # 🏷️ Create a temporary filename for processing!
with open(temp_pdf_path, "wb") as f: f.write(pdf_bytes) # 💾 Write the PDF to a temporary file!
try:
doc = fitz.open(temp_pdf_path) # 📄 Open the temporary PDF document!
st.write(f"Processing {pdf_file.name} with {len(doc)} pages") # 🔍 Log: Display file name and page count!
if view_mode == "Single Page": # 📑 Single Page Mode: Process each page separately!
for i, page in enumerate(doc):
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); # 🎞️ Create a high-res pixmap of the page!
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); # 🖼️ Convert the pixmap to an image!
st.image(img, caption=f"{pdf_file.name} Page {i+1}"); # 🖼️ Display the page image!
gpt_text = process_image_with_prompt(
img, "Extract the electronic text from image", model=selected_gpt_model, detail=detail_level
); # 🤖 Run GPT to extract text from the image!
combined_text += f"\n## {pdf_file.name} - Page {i+1}\n\n{gpt_text}\n"; # 📝 Append the result to the combined text!
else: # 📄 Double Page Mode: Process pages in pairs!
pages = list(doc); # 🔢 Convert document pages to a list!
for i in range(0, len(pages), 2):
if i+1 < len(pages): # 👯 Process two pages if available!
pix1 = pages[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); img1 = Image.frombytes("RGB", [pix1.width, pix1.height], pix1.samples); # 🖼️ Process first page!
pix2 = pages[i+1].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); img2 = Image.frombytes("RGB", [pix2.width, pix2.height], pix2.samples); # 🖼️ Process second page!
total_width = img1.width + img2.width; max_height = max(img1.height, img2.height); # 📏 Calculate dimensions for the combined image!
combined_img = Image.new("RGB", (total_width, max_height)); # 🖼️ Create a blank canvas for the two pages!
combined_img.paste(img1, (0, 0)); combined_img.paste(img2, (img1.width, 0)); # 🎨 Paste the images side by side!
st.image(combined_img, caption=f"{pdf_file.name} Pages {i+1}-{i+2}"); # 🖼️ Display the combined image!
gpt_text = process_image_with_prompt(
combined_img, "Extract the electronic text from image", model=selected_gpt_model, detail=detail_level
); # 🤖 Extract text from the combined image!
combined_text += f"\n## {pdf_file.name} - Pages {i+1}-{i+2}\n\n{gpt_text}\n"; # 📝 Append the result to the combined text!
else: # 🔹 If there's an odd page out, process it solo!
pix = pages[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); # 🖼️ Process the single remaining page!
st.image(img, caption=f"{pdf_file.name} Page {i+1}"); # 🖼️ Display the solo page image!
gpt_text = process_image_with_prompt(
img, "Extract the electronic text from image", model=selected_gpt_model, detail=detail_level
); # 🤖 Run GPT extraction on the solo page!
combined_text += f"\n## {pdf_file.name} - Page {i+1}\n\n{gpt_text}\n"; # 📝 Append the result!
doc.close(); # ✅ Close the PDF document to free up resources!
except Exception as e:
st.error(f"Error processing {pdf_file.name}: {str(e)}"); # ⚠️ Error: Report any issues during processing!
finally:
os.remove(temp_pdf_path); # 🧹 Cleanup: Remove the temporary PDF file!
output_filename = generate_filename("processed_pdf", "md"); # 🏷️ Generate a unique filename for the Markdown output!
with open(output_filename, "w", encoding="utf-8") as f: f.write(combined_text); # 💾 Write the combined GPT text to the Markdown file!
st.success(f"PDF processing complete. MD file saved as {output_filename}"); # 🎉 Success: Notify the user of completion!
st.markdown(get_download_link(output_filename, "text/markdown", "Download Processed PDF MD"), unsafe_allow_html=True); # 🔗 Provide a download link for your processed file!
# === Updated Tab: Image Process ===
with tab_image_process:
st.header("Image Process") # 🖼️ Header: Transform images into text with GPT magic!
st.subheader("Upload Images for GPT-based OCR") # 🚀 Subheader: Let your images speak for themselves!
gpt_models = ["gpt-4o", "gpt-4o-mini"] # 🤖 GPT Models: Choose your image wizard!
selected_gpt_model = st.selectbox("Select GPT Model", gpt_models, key="img_gpt_model") # 🔍 Pick your GPT model for image processing!
detail_level = st.selectbox("Detail Level", ["auto", "low", "high"], key="img_detail_level") # 🎚️ Detail Level: Set your extraction precision!
prompt_img = st.text_input("Enter prompt for image processing", "Extract the electronic text from image", key="img_process_prompt") # ✍️ Prompt: Tell GPT what to extract!
uploaded_images = st.file_uploader("Upload image files", type=["png", "jpg", "jpeg"], accept_multiple_files=True, key="image_process_uploader") # 📤 Uploader: Drag & drop your images here!
if st.button("Process Uploaded Images", key="process_images"): # 🚀 Button: Fire up the image processing!
combined_text = "" # 📝 Initialize combined text output!
for img_file in uploaded_images:
try:
img = Image.open(img_file); st.image(img, caption=img_file.name) # 📸 Display each uploaded image!
gpt_text = process_image_with_prompt(img, prompt_img, model=selected_gpt_model, detail=detail_level) # 🤖 Process image with GPT magic!
combined_text += f"\n## {img_file.name}\n\n{gpt_text}\n" # 📝 Append GPT output with file header!
except Exception as e: st.error(f"Error processing image {img_file.name}: {str(e)}") # ⚠️ Oops: Report errors if any!
output_filename = generate_filename("processed_image", "md") # 💾 Generate a unique filename for the Markdown output!
with open(output_filename, "w", encoding="utf-8") as f: f.write(combined_text) # 📝 Save the combined GPT output!
st.success(f"Image processing complete. MD file saved as {output_filename}") # 🎉 Success: Notify the user!
st.markdown(get_download_link(output_filename, "text/markdown", "Download Processed Image MD"), unsafe_allow_html=True) # 🔗 Provide a download link!
# === Updated Tab: MD Gallery ===
with tab_md_gallery:
st.header("MD Gallery and GPT Processing") # 📚 Header: Where markdown meets GPT wizardry!
gpt_models = ["gpt-4o", "gpt-4o-mini"] # 🤖 GPT Models: Pick your processing partner!
selected_gpt_model = st.selectbox("Select GPT Model", gpt_models, key="md_gpt_model") # 🔍 Select a GPT model for MD processing!
md_files = sorted(glob.glob("*.md")) # 📂 Gather all Markdown files in the directory!
if md_files:
st.subheader("Individual File Processing") # 🔍 Subheader: Process files one at a time!
cols = st.columns(2) # 🧩 Set up two columns for a balanced view!
for idx, md_file in enumerate(md_files):
with cols[idx % 2]:
st.write(md_file) # 📄 Show the filename!
if st.button(f"Process {md_file}", key=f"process_md_{md_file}"): # 🚀 Button: Process this file!
try:
with open(md_file, "r", encoding="utf-8") as f: content = f.read() # 📖 Read file content!
prompt_md = "Summarize this into markdown outline with emojis and number the topics 1..12" # ✍️ Prompt: Summarize with style!
result_text = process_text_with_prompt(content, prompt_md, model=selected_gpt_model) # 🤖 Let GPT work its magic!
st.markdown(result_text) # 🎨 Display the GPT output!
output_filename = generate_filename(f"processed_{os.path.splitext(md_file)[0]}", "md") # 💾 Create a unique output filename!
with open(output_filename, "w", encoding="utf-8") as f: f.write(result_text) # 📝 Save the processed content!
st.markdown(get_download_link(output_filename, "text/markdown", f"Download {output_filename}"), unsafe_allow_html=True) # 🔗 Provide a download link!
except Exception as e: st.error(f"Error processing {md_file}: {str(e)}") # ⚠️ Report errors if processing fails!
st.subheader("Batch Processing") # 📚 Subheader: Combine and process multiple files at once!
st.write("Select MD files to combine and process:") # 🔍 Instruction: Choose files for batch processing!
selected_md = {} # 🗂️ Initialize selection dictionary!
for md_file in md_files: selected_md[md_file] = st.checkbox(md_file, key=f"checkbox_md_{md_file}") # ✅ Create checkboxes for each file!
batch_prompt = st.text_input("Enter batch processing prompt", "Summarize this into markdown outline with emojis and number the topics 1..12", key="batch_prompt") # ✍️ Batch prompt: Set your summarization style!
if st.button("Process Selected MD Files", key="process_batch_md"): # 🚀 Button: Process the selected files!
combined_content = "" # 📝 Initialize combined content string!
for md_file, selected in selected_md.items():
if selected:
try:
with open(md_file, "r", encoding="utf-8") as f: combined_content += f"\n## {md_file}\n" + f.read() + "\n" # 📄 Append each selected file's content!
except Exception as e: st.error(f"Error reading {md_file}: {str(e)}") # ⚠️ Report errors if file reading fails!
if combined_content:
result_text = process_text_with_prompt(combined_content, batch_prompt, model=selected_gpt_model) # 🤖 Process the batch with GPT!
st.markdown(result_text) # 🎨 Display the combined GPT output!
output_filename = generate_filename("batch_processed_md", "md") # 💾 Generate a unique filename for the batch output!
with open(output_filename, "w", encoding="utf-8") as f: f.write(result_text) # 📝 Save the batch processed text!
st.success(f"Batch processing complete. MD file saved as {output_filename}") # 🎉 Notify success!
st.markdown(get_download_link(output_filename, "text/markdown", "Download Batch Processed MD"), unsafe_allow_html=True) # 🔗 Provide a download link!
else:
st.warning("No MD files selected.") # ⚠️ Warning: No files were chosen for batch processing!
else:
st.warning("No MD files found.") # ⚠️ Warning: Your gallery is empty—no markdown files available!