Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
#!/usr/bin/env python3 | |
import os | |
import glob | |
import base64 | |
import time | |
import shutil | |
import streamlit as st | |
import pandas as pd | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel | |
from diffusers import StableDiffusionPipeline | |
from torch.utils.data import Dataset, DataLoader | |
import csv | |
import fitz # PyMuPDF | |
import requests | |
from PIL import Image | |
import cv2 | |
import numpy as np | |
import logging | |
import asyncio | |
import aiofiles | |
from io import BytesIO | |
from dataclasses import dataclass | |
from typing import Optional, Tuple | |
import zipfile | |
import math | |
import random | |
import re | |
# Logging setup with custom buffer | |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") | |
logger = logging.getLogger(__name__) | |
log_records = [] | |
class LogCaptureHandler(logging.Handler): | |
def emit(self, record): | |
log_records.append(record) | |
logger.addHandler(LogCaptureHandler()) | |
# Page Configuration | |
st.set_page_config( | |
page_title="AI Vision & SFT Titans 🚀", | |
page_icon="🤖", | |
layout="wide", | |
initial_sidebar_state="expanded", | |
menu_items={ | |
'Get Help': 'https://huggingface.co/awacke1', | |
'Report a Bug': 'https://huggingface.co/spaces/awacke1', | |
'About': "AI Vision & SFT Titans: PDFs, OCR, Image Gen, Line Drawings, Custom Diffusion, and SFT on CPU! 🌌" | |
} | |
) | |
# Initialize st.session_state | |
if 'history' not in st.session_state: | |
st.session_state['history'] = [] # Flat list for history | |
if 'builder' not in st.session_state: | |
st.session_state['builder'] = None | |
if 'model_loaded' not in st.session_state: | |
st.session_state['model_loaded'] = False | |
if 'processing' not in st.session_state: | |
st.session_state['processing'] = {} | |
if 'pdf_checkboxes' not in st.session_state: | |
st.session_state['pdf_checkboxes'] = {} # Shared cache for PDF checkboxes | |
if 'downloaded_pdfs' not in st.session_state: | |
st.session_state['downloaded_pdfs'] = {} # Cache for downloaded PDF paths | |
# Model Configuration Classes | |
class ModelConfig: | |
name: str | |
base_model: str | |
size: str | |
domain: Optional[str] = None | |
model_type: str = "causal_lm" | |
def model_path(self): | |
return f"models/{self.name}" | |
class DiffusionConfig: | |
name: str | |
base_model: str | |
size: str | |
def model_path(self): | |
return f"diffusion_models/{self.name}" | |
# Datasets | |
class SFTDataset(Dataset): | |
def __init__(self, data, tokenizer, max_length=128): | |
self.data = data | |
self.tokenizer = tokenizer | |
self.max_length = max_length | |
def __len__(self): | |
return len(self.data) | |
def __getitem__(self, idx): | |
prompt = self.data[idx]["prompt"] | |
response = self.data[idx]["response"] | |
full_text = f"{prompt} {response}" | |
full_encoding = self.tokenizer(full_text, max_length=self.max_length, padding="max_length", truncation=True, return_tensors="pt") | |
prompt_encoding = self.tokenizer(prompt, max_length=self.max_length, padding=False, truncation=True, return_tensors="pt") | |
input_ids = full_encoding["input_ids"].squeeze() | |
attention_mask = full_encoding["attention_mask"].squeeze() | |
labels = input_ids.clone() | |
prompt_len = prompt_encoding["input_ids"].shape[1] | |
if prompt_len < self.max_length: | |
labels[:prompt_len] = -100 | |
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels} | |
class DiffusionDataset(Dataset): | |
def __init__(self, images, texts): | |
self.images = images | |
self.texts = texts | |
def __len__(self): | |
return len(self.images) | |
def __getitem__(self, idx): | |
return {"image": self.images[idx], "text": self.texts[idx]} | |
class TinyDiffusionDataset(Dataset): | |
def __init__(self, images): | |
self.images = [torch.tensor(np.array(img.convert("RGB")).transpose(2, 0, 1), dtype=torch.float32) / 255.0 for img in images] | |
def __len__(self): | |
return len(self.images) | |
def __getitem__(self, idx): | |
return self.images[idx] | |
# Custom Tiny Diffusion Model | |
class TinyUNet(nn.Module): | |
def __init__(self, in_channels=3, out_channels=3): | |
super(TinyUNet, self).__init__() | |
self.down1 = nn.Conv2d(in_channels, 32, 3, padding=1) | |
self.down2 = nn.Conv2d(32, 64, 3, padding=1, stride=2) | |
self.mid = nn.Conv2d(64, 128, 3, padding=1) | |
self.up1 = nn.ConvTranspose2d(128, 64, 3, stride=2, padding=1, output_padding=1) | |
self.up2 = nn.Conv2d(64 + 32, 32, 3, padding=1) | |
self.out = nn.Conv2d(32, out_channels, 3, padding=1) | |
self.time_embed = nn.Linear(1, 64) | |
def forward(self, x, t): | |
t_embed = F.relu(self.time_embed(t.unsqueeze(-1))) | |
t_embed = t_embed.view(t_embed.size(0), t_embed.size(1), 1, 1) | |
x1 = F.relu(self.down1(x)) | |
x2 = F.relu(self.down2(x1)) | |
x_mid = F.relu(self.mid(x2)) + t_embed | |
x_up1 = F.relu(self.up1(x_mid)) | |
x_up2 = F.relu(self.up2(torch.cat([x_up1, x1], dim=1))) | |
return self.out(x_up2) | |
class TinyDiffusion: | |
def __init__(self, model, timesteps=100): | |
self.model = model | |
self.timesteps = timesteps | |
self.beta = torch.linspace(0.0001, 0.02, timesteps) | |
self.alpha = 1 - self.beta | |
self.alpha_cumprod = torch.cumprod(self.alpha, dim=0) | |
def train(self, images, epochs=50): | |
dataset = TinyDiffusionDataset(images) | |
dataloader = DataLoader(dataset, batch_size=1, shuffle=True) | |
optimizer = torch.optim.Adam(self.model.parameters(), lr=1e-4) | |
device = torch.device("cpu") | |
self.model.to(device) | |
for epoch in range(epochs): | |
total_loss = 0 | |
for x in dataloader: | |
x = x.to(device) | |
t = torch.randint(0, self.timesteps, (x.size(0),), device=device).float() | |
noise = torch.randn_like(x) | |
alpha_t = self.alpha_cumprod[t.long()].view(-1, 1, 1, 1) | |
x_noisy = torch.sqrt(alpha_t) * x + torch.sqrt(1 - alpha_t) * noise | |
pred_noise = self.model(x_noisy, t) | |
loss = F.mse_loss(pred_noise, noise) | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
total_loss += loss.item() | |
logger.info(f"Epoch {epoch + 1}/{epochs}, Loss: {total_loss / len(dataloader):.4f}") | |
return self | |
def generate(self, size=(64, 64), steps=100): | |
device = torch.device("cpu") | |
x = torch.randn(1, 3, size[0], size[1], device=device) | |
for t in reversed(range(steps)): | |
t_tensor = torch.full((1,), t, device=device, dtype=torch.float32) | |
alpha_t = self.alpha_cumprod[t].view(-1, 1, 1, 1) | |
pred_noise = self.model(x, t_tensor) | |
x = (x - (1 - self.alpha[t]) / torch.sqrt(1 - alpha_t) * pred_noise) / torch.sqrt(self.alpha[t]) | |
if t > 0: | |
x += torch.sqrt(self.beta[t]) * torch.randn_like(x) | |
x = torch.clamp(x * 255, 0, 255).byte() | |
return Image.fromarray(x.squeeze(0).permute(1, 2, 0).cpu().numpy()) | |
def upscale(self, image, scale_factor=2): | |
img_tensor = torch.tensor(np.array(image.convert("RGB")).transpose(2, 0, 1), dtype=torch.float32).unsqueeze(0) / 255.0 | |
upscaled = F.interpolate(img_tensor, scale_factor=scale_factor, mode='bilinear', align_corners=False) | |
upscaled = torch.clamp(upscaled * 255, 0, 255).byte() | |
return Image.fromarray(upscaled.squeeze(0).permute(1, 2, 0).cpu().numpy()) | |
# Model Builders | |
class ModelBuilder: | |
def __init__(self): | |
self.config = None | |
self.model = None | |
self.tokenizer = None | |
self.sft_data = None | |
self.jokes = ["Why did the AI go to therapy? Too many layers to unpack! 😂", "Training complete! Time for a binary coffee break. ☕"] | |
def load_model(self, model_path: str, config: Optional[ModelConfig] = None): | |
with st.spinner(f"Loading {model_path}... ⏳"): | |
self.model = AutoModelForCausalLM.from_pretrained(model_path) | |
self.tokenizer = AutoTokenizer.from_pretrained(model_path) | |
if self.tokenizer.pad_token is None: | |
self.tokenizer.pad_token = self.tokenizer.eos_token | |
if config: | |
self.config = config | |
self.model.to("cuda" if torch.cuda.is_available() else "cpu") | |
st.success(f"Model loaded! 🎉 {random.choice(self.jokes)}") | |
return self | |
def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4): | |
self.sft_data = [] | |
with open(csv_path, "r") as f: | |
reader = csv.DictReader(f) | |
for row in reader: | |
self.sft_data.append({"prompt": row["prompt"], "response": row["response"]}) | |
dataset = SFTDataset(self.sft_data, self.tokenizer) | |
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True) | |
optimizer = torch.optim.AdamW(self.model.parameters(), lr=2e-5) | |
self.model.train() | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
self.model.to(device) | |
for epoch in range(epochs): | |
with st.spinner(f"Training epoch {epoch + 1}/{epochs}... ⚙️"): | |
total_loss = 0 | |
for batch in dataloader: | |
optimizer.zero_grad() | |
input_ids = batch["input_ids"].to(device) | |
attention_mask = batch["attention_mask"].to(device) | |
labels = batch["labels"].to(device) | |
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, labels=labels) | |
loss = outputs.loss | |
loss.backward() | |
optimizer.step() | |
total_loss += loss.item() | |
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}") | |
st.success(f"SFT Fine-tuning completed! 🎉 {random.choice(self.jokes)}") | |
return self | |
def save_model(self, path: str): | |
with st.spinner("Saving model... 💾"): | |
os.makedirs(os.path.dirname(path), exist_ok=True) | |
self.model.save_pretrained(path) | |
self.tokenizer.save_pretrained(path) | |
st.success(f"Model saved at {path}! ✅") | |
def evaluate(self, prompt: str, status_container=None): | |
self.model.eval() | |
if status_container: | |
status_container.write("Preparing to evaluate... 🧠") | |
try: | |
with torch.no_grad(): | |
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device) | |
outputs = self.model.generate(**inputs, max_new_tokens=50, do_sample=True, top_p=0.95, temperature=0.7) | |
return self.tokenizer.decode(outputs[0], skip_special_tokens=True) | |
except Exception as e: | |
if status_container: | |
status_container.error(f"Oops! Something broke: {str(e)} 💥") | |
return f"Error: {str(e)}" | |
class DiffusionBuilder: | |
def __init__(self): | |
self.config = None | |
self.pipeline = None | |
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None): | |
with st.spinner(f"Loading diffusion model {model_path}... ⏳"): | |
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cpu") | |
if config: | |
self.config = config | |
st.success(f"Diffusion model loaded! 🎨") | |
return self | |
def fine_tune_sft(self, images, texts, epochs=3): | |
dataset = DiffusionDataset(images, texts) | |
dataloader = DataLoader(dataset, batch_size=1, shuffle=True) | |
optimizer = torch.optim.AdamW(self.pipeline.unet.parameters(), lr=1e-5) | |
self.pipeline.unet.train() | |
for epoch in range(epochs): | |
with st.spinner(f"Training diffusion epoch {epoch + 1}/{epochs}... ⚙️"): | |
total_loss = 0 | |
for batch in dataloader: | |
optimizer.zero_grad() | |
image = batch["image"][0].to(self.pipeline.device) | |
text = batch["text"][0] | |
latents = self.pipeline.vae.encode(torch.tensor(np.array(image)).permute(2, 0, 1).unsqueeze(0).float().to(self.pipeline.device)).latent_dist.sample() | |
noise = torch.randn_like(latents) | |
timesteps = torch.randint(0, self.pipeline.scheduler.num_train_timesteps, (latents.shape[0],), device=latents.device) | |
noisy_latents = self.pipeline.scheduler.add_noise(latents, noise, timesteps) | |
text_embeddings = self.pipeline.text_encoder(self.pipeline.tokenizer(text, return_tensors="pt").input_ids.to(self.pipeline.device))[0] | |
pred_noise = self.pipeline.unet(noisy_latents, timesteps, encoder_hidden_states=text_embeddings).sample | |
loss = torch.nn.functional.mse_loss(pred_noise, noise) | |
loss.backward() | |
optimizer.step() | |
total_loss += loss.item() | |
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}") | |
st.success("Diffusion SFT Fine-tuning completed! 🎨") | |
return self | |
def save_model(self, path: str): | |
with st.spinner("Saving diffusion model... 💾"): | |
os.makedirs(os.path.dirname(path), exist_ok=True) | |
self.pipeline.save_pretrained(path) | |
st.success(f"Diffusion model saved at {path}! ✅") | |
def generate(self, prompt: str): | |
return self.pipeline(prompt, num_inference_steps=20).images[0] | |
# Utility Functions | |
def generate_filename(sequence, ext="png"): | |
timestamp = time.strftime("%d%m%Y%H%M%S") | |
return f"{sequence}_{timestamp}.{ext}" | |
def pdf_url_to_filename(url): | |
# Convert full URL to filename, replacing illegal characters | |
safe_name = re.sub(r'[<>:"/\\|?*]', '_', url) | |
return f"{safe_name}.pdf" | |
def get_download_link(file_path, mime_type="application/pdf", label="Download"): | |
with open(file_path, 'rb') as f: | |
data = f.read() | |
b64 = base64.b64encode(data).decode() | |
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label}</a>' | |
def zip_directory(directory_path, zip_path): | |
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf: | |
for root, _, files in os.walk(directory_path): | |
for file in files: | |
zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path))) | |
def get_model_files(model_type="causal_lm"): | |
path = "models/*" if model_type == "causal_lm" else "diffusion_models/*" | |
return [d for d in glob.glob(path) if os.path.isdir(d)] | |
def get_gallery_files(file_types=["png"]): | |
return sorted([f for ext in file_types for f in glob.glob(f"*.{ext}")]) | |
def get_pdf_files(): | |
return sorted(glob.glob("*.pdf")) | |
def download_pdf(url, output_path): | |
try: | |
response = requests.get(url, stream=True, timeout=10) | |
if response.status_code == 200: | |
with open(output_path, "wb") as f: | |
for chunk in response.iter_content(chunk_size=8192): | |
f.write(chunk) | |
return True | |
except requests.RequestException as e: | |
logger.error(f"Failed to download {url}: {e}") | |
return False | |
# Async Processing Functions | |
async def process_pdf_snapshot(pdf_path, mode="single"): | |
start_time = time.time() | |
status = st.empty() | |
status.text(f"Processing PDF Snapshot ({mode})... (0s)") | |
try: | |
doc = fitz.open(pdf_path) | |
output_files = [] | |
if mode == "single": | |
page = doc[0] | |
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) # High-res: 200% scale | |
output_file = generate_filename("single", "png") | |
pix.save(output_file) | |
output_files.append(output_file) | |
elif mode == "twopage": | |
for i in range(min(2, len(doc))): | |
page = doc[i] | |
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) # High-res: 200% scale | |
output_file = generate_filename(f"twopage_{i}", "png") | |
pix.save(output_file) | |
output_files.append(output_file) | |
elif mode == "allthumbs": | |
for i in range(len(doc)): | |
page = doc[i] | |
pix = page.get_pixmap(matrix=fitz.Matrix(0.5, 0.5)) # Thumbnail: 50% scale | |
output_file = generate_filename(f"thumb_{i}", "png") | |
pix.save(output_file) | |
output_files.append(output_file) | |
doc.close() | |
elapsed = int(time.time() - start_time) | |
status.text(f"PDF Snapshot ({mode}) completed in {elapsed}s!") | |
update_gallery() | |
return output_files | |
except Exception as e: | |
status.error(f"Failed to process PDF: {str(e)}") | |
return [] | |
async def process_ocr(image, output_file): | |
start_time = time.time() | |
status = st.empty() | |
status.text("Processing GOT-OCR2_0... (0s)") | |
tokenizer = AutoTokenizer.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True) | |
model = AutoModel.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval() | |
result = model.chat(tokenizer, image, ocr_type='ocr') | |
elapsed = int(time.time() - start_time) | |
status.text(f"GOT-OCR2_0 completed in {elapsed}s!") | |
async with aiofiles.open(output_file, "w") as f: | |
await f.write(result) | |
update_gallery() | |
return result | |
async def process_image_gen(prompt, output_file): | |
start_time = time.time() | |
status = st.empty() | |
status.text("Processing Image Gen... (0s)") | |
pipeline = StableDiffusionPipeline.from_pretrained("OFA-Sys/small-stable-diffusion-v0", torch_dtype=torch.float32).to("cpu") | |
gen_image = pipeline(prompt, num_inference_steps=20).images[0] | |
elapsed = int(time.time() - start_time) | |
status.text(f"Image Gen completed in {elapsed}s!") | |
gen_image.save(output_file) | |
update_gallery() | |
return gen_image | |
async def process_custom_diffusion(images, output_file, model_name): | |
start_time = time.time() | |
status = st.empty() | |
status.text(f"Training {model_name}... (0s)") | |
unet = TinyUNet() | |
diffusion = TinyDiffusion(unet) | |
diffusion.train(images) | |
gen_image = diffusion.generate() | |
upscaled_image = diffusion.upscale(gen_image, scale_factor=2) | |
elapsed = int(time.time() - start_time) | |
status.text(f"{model_name} completed in {elapsed}s!") | |
upscaled_image.save(output_file) | |
update_gallery() | |
return upscaled_image | |
# Mock Search Tool for RAG | |
def mock_search(query: str) -> str: | |
if "superhero" in query.lower(): | |
return "Latest trends: Gold-plated Batman statues, VR superhero battles." | |
return "No relevant results found." | |
def mock_duckduckgo_search(query: str) -> str: | |
if "superhero party trends" in query.lower(): | |
return """ | |
Latest trends for 2025: | |
- Luxury decorations: Gold-plated Batman statues, holographic Avengers displays. | |
- Entertainment: Live stunt shows with Iron Man suits, VR superhero battles. | |
- Catering: Gourmet kryptonite-green cocktails, Thor’s hammer-shaped appetizers. | |
""" | |
return "No relevant results found." | |
# Agent Classes | |
class PartyPlannerAgent: | |
def __init__(self, model, tokenizer): | |
self.model = model | |
self.tokenizer = tokenizer | |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
self.model.to(self.device) | |
def generate(self, prompt: str) -> str: | |
self.model.eval() | |
with torch.no_grad(): | |
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.device) | |
outputs = self.model.generate(**inputs, max_new_tokens=100, do_sample=True, top_p=0.95, temperature=0.7) | |
return self.tokenizer.decode(outputs[0], skip_special_tokens=True) | |
def plan_party(self, task: str) -> pd.DataFrame: | |
search_result = mock_duckduckgo_search("latest superhero party trends") | |
prompt = f"Given this context: '{search_result}'\n{task}" | |
plan_text = self.generate(prompt) | |
locations = { | |
"Wayne Manor": (42.3601, -71.0589), | |
"New York": (40.7128, -74.0060), | |
"Los Angeles": (34.0522, -118.2437), | |
"London": (51.5074, -0.1278) | |
} | |
wayne_coords = locations["Wayne Manor"] | |
travel_times = {loc: calculate_cargo_travel_time(coords, wayne_coords) for loc, coords in locations.items() if loc != "Wayne Manor"} | |
catchphrases = ["To the Batmobile!", "Avengers, assemble!", "I am Iron Man!", "By the power of Grayskull!"] | |
data = [ | |
{"Location": "New York", "Travel Time (hrs)": travel_times["New York"], "Luxury Idea": "Gold-plated Batman statues", "Catchphrase": random.choice(catchphrases)}, | |
{"Location": "Los Angeles", "Travel Time (hrs)": travel_times["Los Angeles"], "Luxury Idea": "Holographic Avengers displays", "Catchphrase": random.choice(catchphrases)}, | |
{"Location": "London", "Travel Time (hrs)": travel_times["London"], "Luxury Idea": "Live stunt shows with Iron Man suits", "Catchphrase": random.choice(catchphrases)}, | |
{"Location": "Wayne Manor", "Travel Time (hrs)": 0.0, "Luxury Idea": "VR superhero battles", "Catchphrase": random.choice(catchphrases)}, | |
{"Location": "New York", "Travel Time (hrs)": travel_times["New York"], "Luxury Idea": "Gourmet kryptonite-green cocktails", "Catchphrase": random.choice(catchphrases)}, | |
{"Location": "Los Angeles", "Travel Time (hrs)": travel_times["Los Angeles"], "Luxury Idea": "Thor’s hammer-shaped appetizers", "Catchphrase": random.choice(catchphrases)}, | |
] | |
return pd.DataFrame(data) | |
class CVPartyPlannerAgent: | |
def __init__(self, pipeline): | |
self.pipeline = pipeline | |
def generate(self, prompt: str) -> Image.Image: | |
return self.pipeline(prompt, num_inference_steps=20).images[0] | |
def plan_party(self, task: str) -> pd.DataFrame: | |
search_result = mock_search("superhero party trends") | |
prompt = f"Given this context: '{search_result}'\n{task}" | |
data = [ | |
{"Theme": "Batman", "Image Idea": "Gold-plated Batman statue"}, | |
{"Theme": "Avengers", "Image Idea": "VR superhero battle scene"} | |
] | |
return pd.DataFrame(data) | |
def calculate_cargo_travel_time(origin_coords: Tuple[float, float], destination_coords: Tuple[float, float], cruising_speed_kmh: float = 750.0) -> float: | |
def to_radians(degrees: float) -> float: | |
return degrees * (math.pi / 180) | |
lat1, lon1 = map(to_radians, origin_coords) | |
lat2, lon2 = map(to_radians, destination_coords) | |
EARTH_RADIUS_KM = 6371.0 | |
dlon = lon2 - lon1 | |
dlat = lat2 - lat1 | |
a = (math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2) ** 2) | |
c = 2 * math.asin(math.sqrt(a)) | |
distance = EARTH_RADIUS_KM * c | |
actual_distance = distance * 1.1 | |
flight_time = (actual_distance / cruising_speed_kmh) + 1.0 | |
return round(flight_time, 2) | |
# Main App | |
st.title("AI Vision & SFT Titans 🚀") | |
# Sidebar | |
st.sidebar.header("Captured Files 📜") | |
gallery_size = st.sidebar.slider("Gallery Size", 1, 10, 2) # Default to 2 | |
def update_gallery(): | |
media_files = get_gallery_files(["png"]) | |
pdf_files = get_pdf_files() | |
if media_files or pdf_files: | |
st.sidebar.subheader("Images 📸") | |
cols = st.sidebar.columns(2) | |
for idx, file in enumerate(media_files[:gallery_size * 2]): # Limit by gallery size | |
with cols[idx % 2]: | |
st.image(Image.open(file), caption=os.path.basename(file), use_container_width=True) | |
st.sidebar.subheader("PDF Downloads 📖") | |
for pdf_file in pdf_files[:gallery_size * 2]: # Limit by gallery size | |
st.markdown(get_download_link(pdf_file, "application/pdf", f"📥 Grab {os.path.basename(pdf_file)}"), unsafe_allow_html=True) | |
update_gallery() | |
st.sidebar.subheader("Model Management 🗂️") | |
model_type = st.sidebar.selectbox("Model Type", ["Causal LM", "Diffusion"], key="sidebar_model_type") | |
model_dirs = get_model_files(model_type) | |
selected_model = st.sidebar.selectbox("Select Saved Model", ["None"] + model_dirs, key="sidebar_model_select") | |
if selected_model != "None" and st.sidebar.button("Load Model 📂"): | |
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder() | |
config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=os.path.basename(selected_model), base_model="unknown", size="small") | |
builder.load_model(selected_model, config) | |
st.session_state['builder'] = builder | |
st.session_state['model_loaded'] = True | |
st.rerun() | |
st.sidebar.subheader("Action Logs 📜") | |
log_container = st.sidebar.empty() | |
with log_container: | |
for record in log_records: | |
st.write(f"{record.asctime} - {record.levelname} - {record.message}") | |
st.sidebar.subheader("History 📜") | |
history_container = st.sidebar.empty() | |
with history_container: | |
for entry in st.session_state['history'][-gallery_size * 2:]: # Limit by gallery size | |
st.write(entry) | |
# Tabs | |
tab1, tab2, tab3, tab4, tab5, tab6, tab7, tab8, tab9 = st.tabs([ | |
"Camera Snap 📷", "Download PDFs 📥", "Build Titan 🌱", "Fine-Tune Titan 🔧", | |
"Test Titan 🧪", "Agentic RAG Party 🌐", "Test OCR 🔍", "Test Image Gen 🎨", "Custom Diffusion 🎨🤓" | |
]) | |
with tab1: | |
st.header("Camera Snap 📷") | |
st.subheader("Single Capture") | |
cols = st.columns(2) | |
with cols[0]: | |
cam0_img = st.camera_input("Take a picture - Cam 0", key="cam0") | |
if cam0_img: | |
filename = generate_filename("cam0") | |
with open(filename, "wb") as f: | |
f.write(cam0_img.getvalue()) | |
entry = f"Snapshot from Cam 0: {filename}" | |
if entry not in st.session_state['history']: | |
st.session_state['history'] = [e for e in st.session_state['history'] if not e.startswith("Snapshot from Cam 0:")] + [entry] | |
st.image(Image.open(filename), caption="Camera 0", use_container_width=True) | |
logger.info(f"Saved snapshot from Camera 0: {filename}") | |
update_gallery() | |
with cols[1]: | |
cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1") | |
if cam1_img: | |
filename = generate_filename("cam1") | |
with open(filename, "wb") as f: | |
f.write(cam1_img.getvalue()) | |
entry = f"Snapshot from Cam 1: {filename}" | |
if entry not in st.session_state['history']: | |
st.session_state['history'] = [e for e in st.session_state['history'] if not e.startswith("Snapshot from Cam 1:")] + [entry] | |
st.image(Image.open(filename), caption="Camera 1", use_container_width=True) | |
logger.info(f"Saved snapshot from Camera 1: {filename}") | |
update_gallery() | |
with tab2: | |
st.header("Download PDFs 📥") | |
# Examples button with arXiv PDF links from README.md | |
if st.button("Examples 📚"): | |
example_urls = [ | |
"https://arxiv.org/pdf/2308.03892", # Streamlit | |
"https://arxiv.org/pdf/1912.01703", # PyTorch | |
"https://arxiv.org/pdf/2408.11039", # Qwen2-VL | |
"https://arxiv.org/pdf/2109.10282", # TrOCR | |
"https://arxiv.org/pdf/2112.10752", # LDM | |
"https://arxiv.org/pdf/2308.11236", # OpenCV | |
"https://arxiv.org/pdf/1706.03762", # Attention is All You Need | |
"https://arxiv.org/pdf/2006.11239", # DDPM | |
"https://arxiv.org/pdf/2305.11207", # Pandas | |
"https://arxiv.org/pdf/2106.09685", # LoRA | |
"https://arxiv.org/pdf/2005.11401", # RAG | |
"https://arxiv.org/pdf/2106.10504" # Fine-Tuning Vision Transformers | |
] | |
st.session_state['pdf_urls'] = "\n".join(example_urls) | |
# Robo-Downloader | |
url_input = st.text_area("Enter PDF URLs (one per line)", value=st.session_state.get('pdf_urls', ""), height=200) | |
if st.button("Robo-Download 🤖"): | |
urls = url_input.strip().split("\n") | |
progress_bar = st.progress(0) | |
status_text = st.empty() | |
total_urls = len(urls) | |
existing_pdfs = get_pdf_files() | |
for idx, url in enumerate(urls): | |
if url: | |
output_path = pdf_url_to_filename(url) | |
status_text.text(f"Fetching {idx + 1}/{total_urls}: {os.path.basename(output_path)}...") | |
if output_path not in existing_pdfs: | |
if download_pdf(url, output_path): | |
st.session_state['downloaded_pdfs'][url] = output_path | |
logger.info(f"Downloaded PDF from {url} to {output_path}") | |
entry = f"Downloaded PDF: {output_path}" | |
if entry not in st.session_state['history']: | |
st.session_state['history'].append(entry) | |
else: | |
st.error(f"Failed to nab {url} 😿") | |
else: | |
st.info(f"Already got {os.path.basename(output_path)}! Skipping... 🐾") | |
st.session_state['downloaded_pdfs'][url] = output_path | |
progress_bar.progress((idx + 1) / total_urls) | |
status_text.text("Robo-Download complete! 🚀") | |
update_gallery() | |
# PDF Gallery with Thumbnails and Checkboxes | |
st.subheader("PDF Gallery 📖") | |
downloaded_pdfs = list(st.session_state['downloaded_pdfs'].values()) | |
if downloaded_pdfs: | |
cols_per_row = 3 | |
for i in range(0, len(downloaded_pdfs), cols_per_row): | |
cols = st.columns(cols_per_row) | |
for j, pdf_path in enumerate(downloaded_pdfs[i:i + cols_per_row]): | |
with cols[j]: | |
doc = fitz.open(pdf_path) | |
page = doc[0] | |
pix = page.get_pixmap(matrix=fitz.Matrix(0.5, 0.5)) # Thumbnail at 50% scale | |
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) | |
st.image(img, caption=os.path.basename(pdf_path), use_container_width=True) | |
# Checkbox for SFT/Input use | |
checkbox_key = f"pdf_{pdf_path}" | |
st.session_state['pdf_checkboxes'][checkbox_key] = st.checkbox( | |
"Use for SFT/Input", | |
value=st.session_state['pdf_checkboxes'].get(checkbox_key, False), | |
key=checkbox_key | |
) | |
# Download and Delete Buttons | |
st.markdown(get_download_link(pdf_path, "application/pdf", "Snag It! 📥"), unsafe_allow_html=True) | |
if st.button("Zap It! 🗑️", key=f"delete_{pdf_path}"): | |
os.remove(pdf_path) | |
url_key = next((k for k, v in st.session_state['downloaded_pdfs'].items() if v == pdf_path), None) | |
if url_key: | |
del st.session_state['downloaded_pdfs'][url_key] | |
del st.session_state['pdf_checkboxes'][checkbox_key] | |
st.success(f"PDF {os.path.basename(pdf_path)} vaporized! 💨") | |
st.rerun() | |
doc.close() | |
else: | |
st.info("No PDFs captured yet. Feed the robo-downloader some URLs! 🤖") | |
mode = st.selectbox("Snapshot Mode", ["Single Page (High-Res)", "Two Pages (High-Res)", "All Pages (Thumbnails)"], key="download_mode") | |
if st.button("Snapshot Selected 📸"): | |
selected_pdfs = [path for key, path in st.session_state['downloaded_pdfs'].items() if st.session_state['pdf_checkboxes'].get(f"pdf_{path}", False)] | |
if selected_pdfs: | |
for pdf_path in selected_pdfs: | |
mode_key = {"Single Page (High-Res)": "single", "Two Pages (High-Res)": "twopage", "All Pages (Thumbnails)": "allthumbs"}[mode] | |
snapshots = asyncio.run(process_pdf_snapshot(pdf_path, mode_key)) | |
for snapshot in snapshots: | |
st.image(Image.open(snapshot), caption=snapshot, use_container_width=True) | |
else: | |
st.warning("No PDFs selected for snapshotting! Check some boxes first. 📝") | |
with tab3: | |
st.header("Build Titan 🌱") | |
model_type = st.selectbox("Model Type", ["Causal LM", "Diffusion"], key="build_type") | |
base_model = st.selectbox("Select Tiny Model", | |
["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"] if model_type == "Causal LM" else | |
["OFA-Sys/small-stable-diffusion-v0", "stabilityai/stable-diffusion-2-base"]) | |
model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}") | |
domain = st.text_input("Target Domain", "general") | |
if st.button("Download Model ⬇️"): | |
config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=model_name, base_model=base_model, size="small", domain=domain) | |
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder() | |
builder.load_model(base_model, config) | |
builder.save_model(config.model_path) | |
st.session_state['builder'] = builder | |
st.session_state['model_loaded'] = True | |
entry = f"Built {model_type} model: {model_name}" | |
if entry not in st.session_state['history']: | |
st.session_state['history'].append(entry) | |
st.success(f"Model downloaded and saved to {config.model_path}! 🎉") | |
st.rerun() | |
with tab4: | |
st.header("Fine-Tune Titan 🔧") | |
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False): | |
st.warning("Please build or load a Titan first! ⚠️") | |
else: | |
if isinstance(st.session_state['builder'], ModelBuilder): | |
if st.button("Generate Sample CSV 📝"): | |
sample_data = [ | |
{"prompt": "What is AI?", "response": "AI is artificial intelligence, simulating human smarts in machines."}, | |
{"prompt": "Explain machine learning", "response": "Machine learning is AI’s gym where models bulk up on data."}, | |
] | |
csv_path = f"sft_data_{int(time.time())}.csv" | |
with open(csv_path, "w", newline="") as f: | |
writer = csv.DictWriter(f, fieldnames=["prompt", "response"]) | |
writer.writeheader() | |
writer.writerows(sample_data) | |
st.markdown(get_download_link(csv_path, "text/csv", "Download Sample CSV"), unsafe_allow_html=True) | |
st.success(f"Sample CSV generated as {csv_path}! ✅") | |
uploaded_csv = st.file_uploader("Upload CSV for SFT", type="csv") | |
if uploaded_csv and st.button("Fine-Tune with Uploaded CSV 🔄"): | |
csv_path = f"uploaded_sft_data_{int(time.time())}.csv" | |
with open(csv_path, "wb") as f: | |
f.write(uploaded_csv.read()) | |
new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}" | |
new_config = ModelConfig(name=new_model_name, base_model=st.session_state['builder'].config.base_model, size="small", domain=st.session_state['builder'].config.domain) | |
st.session_state['builder'].config = new_config | |
st.session_state['builder'].fine_tune_sft(csv_path) | |
st.session_state['builder'].save_model(new_config.model_path) | |
zip_path = f"{new_config.model_path}.zip" | |
zip_directory(new_config.model_path, zip_path) | |
entry = f"Fine-tuned Causal LM: {new_model_name}" | |
if entry not in st.session_state['history']: | |
st.session_state['history'].append(entry) | |
st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned Titan"), unsafe_allow_html=True) | |
st.rerun() | |
elif isinstance(st.session_state['builder'], DiffusionBuilder): | |
captured_files = get_gallery_files(["png"]) | |
selected_pdfs = [path for key, path in st.session_state['downloaded_pdfs'].items() if st.session_state['pdf_checkboxes'].get(f"pdf_{path}", False)] | |
if len(captured_files) + len(selected_pdfs) >= 2: | |
demo_data = [{"image": img, "text": f"Superhero {os.path.basename(img).split('.')[0]}"} for img in captured_files] | |
for pdf_path in selected_pdfs: | |
demo_data.append({"image": pdf_path, "text": f"PDF {os.path.basename(pdf_path)}"}) | |
edited_data = st.data_editor(pd.DataFrame(demo_data), num_rows="dynamic") | |
if st.button("Fine-Tune with Dataset 🔄"): | |
images = [Image.open(row["image"]) if row["image"].endswith('.png') else Image.frombytes("RGB", fitz.open(row["image"])[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)).size, fitz.open(row["image"])[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)).samples) for _, row in edited_data.iterrows()] | |
texts = [row["text"] for _, row in edited_data.iterrows()] | |
new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}" | |
new_config = DiffusionConfig(name=new_model_name, base_model=st.session_state['builder'].config.base_model, size="small") | |
st.session_state['builder'].config = new_config | |
st.session_state['builder'].fine_tune_sft(images, texts) | |
st.session_state['builder'].save_model(new_config.model_path) | |
zip_path = f"{new_config.model_path}.zip" | |
zip_directory(new_config.model_path, zip_path) | |
entry = f"Fine-tuned Diffusion: {new_model_name}" | |
if entry not in st.session_state['history']: | |
st.session_state['history'].append(entry) | |
st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned Diffusion Model"), unsafe_allow_html=True) | |
csv_path = f"sft_dataset_{int(time.time())}.csv" | |
with open(csv_path, "w", newline="") as f: | |
writer = csv.writer(f) | |
writer.writerow(["image", "text"]) | |
for _, row in edited_data.iterrows(): | |
writer.writerow([row["image"], row["text"]]) | |
st.markdown(get_download_link(csv_path, "text/csv", "Download SFT Dataset CSV"), unsafe_allow_html=True) | |
with tab5: | |
st.header("Test Titan 🧪") | |
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False): | |
st.warning("Please build or load a Titan first! ⚠️") | |
else: | |
if isinstance(st.session_state['builder'], ModelBuilder): | |
if st.session_state['builder'].sft_data: | |
st.write("Testing with SFT Data:") | |
for item in st.session_state['builder'].sft_data[:3]: | |
prompt = item["prompt"] | |
expected = item["response"] | |
status_container = st.empty() | |
generated = st.session_state['builder'].evaluate(prompt, status_container) | |
st.write(f"**Prompt**: {prompt}") | |
st.write(f"**Expected**: {expected}") | |
st.write(f"**Generated**: {generated}") | |
st.write("---") | |
status_container.empty() | |
test_prompt = st.text_area("Enter Test Prompt", "What is AI?") | |
if st.button("Run Test ▶️"): | |
status_container = st.empty() | |
result = st.session_state['builder'].evaluate(test_prompt, status_container) | |
entry = f"Causal LM Test: {test_prompt} -> {result}" | |
if entry not in st.session_state['history']: | |
st.session_state['history'].append(entry) | |
st.write(f"**Generated Response**: {result}") | |
status_container.empty() | |
elif isinstance(st.session_state['builder'], DiffusionBuilder): | |
test_prompt = st.text_area("Enter Test Prompt", "Neon Batman") | |
selected_pdfs = [path for key, path in st.session_state['downloaded_pdfs'].items() if st.session_state['pdf_checkboxes'].get(f"pdf_{path}", False)] | |
if st.button("Run Test ▶️"): | |
image = st.session_state['builder'].generate(test_prompt) | |
output_file = generate_filename("diffusion_test", "png") | |
image.save(output_file) | |
entry = f"Diffusion Test: {test_prompt} -> {output_file}" | |
if entry not in st.session_state['history']: | |
st.session_state['history'].append(entry) | |
st.image(image, caption="Generated Image") | |
update_gallery() | |
with tab6: | |
st.header("Agentic RAG Party 🌐") | |
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False): | |
st.warning("Please build or load a Titan first! ⚠️") | |
else: | |
if isinstance(st.session_state['builder'], ModelBuilder): | |
if st.button("Run NLP RAG Demo 🎉"): | |
agent = PartyPlannerAgent(st.session_state['builder'].model, st.session_state['builder'].tokenizer) | |
task = "Plan a luxury superhero-themed party at Wayne Manor." | |
plan_df = agent.plan_party(task) | |
entry = f"NLP RAG Demo: Planned party at Wayne Manor" | |
if entry not in st.session_state['history']: | |
st.session_state['history'].append(entry) | |
st.dataframe(plan_df) | |
elif isinstance(st.session_state['builder'], DiffusionBuilder): | |
if st.button("Run CV RAG Demo 🎉"): | |
agent = CVPartyPlannerAgent(st.session_state['builder'].pipeline) | |
task = "Generate images for a luxury superhero-themed party." | |
plan_df = agent.plan_party(task) | |
entry = f"CV RAG Demo: Generated party images" | |
if entry not in st.session_state['history']: | |
st.session_state['history'].append(entry) | |
st.dataframe(plan_df) | |
for _, row in plan_df.iterrows(): | |
image = agent.generate(row["Image Idea"]) | |
output_file = generate_filename(f"cv_rag_{row['Theme'].lower()}", "png") | |
image.save(output_file) | |
st.image(image, caption=f"{row['Theme']} - {row['Image Idea']}") | |
update_gallery() | |
with tab7: | |
st.header("Test OCR 🔍") | |
captured_files = get_gallery_files(["png"]) | |
selected_pdfs = [path for key, path in st.session_state['downloaded_pdfs'].items() if st.session_state['pdf_checkboxes'].get(f"pdf_{path}", False)] | |
all_files = captured_files + selected_pdfs | |
if all_files: | |
selected_file = st.selectbox("Select Image or PDF", all_files, key="ocr_select") | |
if selected_file: | |
if selected_file.endswith('.png'): | |
image = Image.open(selected_file) | |
else: | |
doc = fitz.open(selected_file) | |
pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) | |
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) | |
doc.close() | |
st.image(image, caption="Input Image", use_container_width=True) | |
if st.button("Run OCR 🚀", key="ocr_run"): | |
output_file = generate_filename("ocr_output", "txt") | |
st.session_state['processing']['ocr'] = True | |
result = asyncio.run(process_ocr(image, output_file)) | |
entry = f"OCR Test: {selected_file} -> {output_file}" | |
if entry not in st.session_state['history']: | |
st.session_state['history'].append(entry) | |
st.text_area("OCR Result", result, height=200, key="ocr_result") | |
st.success(f"OCR output saved to {output_file}") | |
st.session_state['processing']['ocr'] = False | |
else: | |
st.warning("No images or PDFs captured yet. Use Camera Snap or Download PDFs first!") | |
with tab8: | |
st.header("Test Image Gen 🎨") | |
captured_files = get_gallery_files(["png"]) | |
selected_pdfs = [path for key, path in st.session_state['downloaded_pdfs'].items() if st.session_state['pdf_checkboxes'].get(f"pdf_{path}", False)] | |
all_files = captured_files + selected_pdfs | |
if all_files: | |
selected_file = st.selectbox("Select Image or PDF", all_files, key="gen_select") | |
if selected_file: | |
if selected_file.endswith('.png'): | |
image = Image.open(selected_file) | |
else: | |
doc = fitz.open(selected_file) | |
pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) | |
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) | |
doc.close() | |
st.image(image, caption="Reference Image", use_container_width=True) | |
prompt = st.text_area("Prompt", "Generate a similar superhero image", key="gen_prompt") | |
if st.button("Run Image Gen 🚀", key="gen_run"): | |
output_file = generate_filename("gen_output", "png") | |
st.session_state['processing']['gen'] = True | |
result = asyncio.run(process_image_gen(prompt, output_file)) | |
entry = f"Image Gen Test: {prompt} -> {output_file}" | |
if entry not in st.session_state['history']: | |
st.session_state['history'].append(entry) | |
st.image(result, caption="Generated Image", use_container_width=True) | |
st.success(f"Image saved to {output_file}") | |
st.session_state['processing']['gen'] = False | |
else: | |
st.warning("No images or PDFs captured yet. Use Camera Snap or Download PDFs first WAV!") | |
with tab9: | |
st.header("Custom Diffusion 🎨🤓") | |
st.write("Unleash your inner artist with our tiny diffusion models!") | |
captured_files = get_gallery_files(["png"]) | |
selected_pdfs = [path for key, path in st.session_state['downloaded_pdfs'].items() if st.session_state['pdf_checkboxes'].get(f"pdf_{path}", False)] | |
all_files = captured_files + selected_pdfs | |
if all_files: | |
st.subheader("Select Images or PDFs to Train") | |
selected_files = st.multiselect("Pick Images or PDFs", all_files, key="diffusion_select") | |
images = [] | |
for file in selected_files: | |
if file.endswith('.png'): | |
images.append(Image.open(file)) | |
else: | |
doc = fitz.open(file) | |
pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) | |
images.append(Image.frombytes("RGB", [pix.width, pix.height], pix.samples)) | |
doc.close() | |
model_options = [ | |
("PixelTickler 🎨✨", "OFA-Sys/small-stable-diffusion-v0"), | |
("DreamWeaver 🌙🖌️", "stabilityai/stable-diffusion-2-base"), | |
("TinyArtBot 🤖🖼️", "custom") | |
] | |
model_choice = st.selectbox("Choose Your Diffusion Dynamo", [opt[0] for opt in model_options], key="diffusion_model") | |
model_name = next(opt[1] for opt in model_options if opt[0] == model_choice) | |
if st.button("Train & Generate 🚀", key="diffusion_run"): | |
output_file = generate_filename("custom_diffusion", "png") | |
st.session_state['processing']['diffusion'] = True | |
if model_name == "custom": | |
result = asyncio.run(process_custom_diffusion(images, output_file, model_choice)) | |
else: | |
builder = DiffusionBuilder() | |
builder.load_model(model_name) | |
result = builder.generate("A superhero scene inspired by captured images") | |
result.save(output_file) | |
entry = f"Custom Diffusion: {model_choice} -> {output_file}" | |
if entry not in st.session_state['history']: | |
st.session_state['history'].append(entry) | |
st.image(result, caption=f"{model_choice} Masterpiece", use_container_width=True) | |
st.success(f"Image saved to {output_file}") | |
st.session_state['processing']['diffusion'] = False | |
else: | |
st.warning("No images or PDFs captured yet. Use Camera Snap or Download PDFs first!") | |
# Initial Gallery Update | |
update_gallery() |