Update app.py
Browse files
app.py
CHANGED
@@ -3,9 +3,10 @@ import os
|
|
3 |
import glob
|
4 |
import time
|
5 |
import streamlit as st
|
|
|
|
|
6 |
from PIL import Image
|
7 |
-
import
|
8 |
-
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration, AutoTokenizer, AutoModel, TrOCRProcessor, VisionEncoderDecoderModel
|
9 |
from diffusers import StableDiffusionPipeline
|
10 |
import cv2
|
11 |
import numpy as np
|
@@ -31,21 +32,18 @@ st.set_page_config(
|
|
31 |
page_icon="🤖",
|
32 |
layout="wide",
|
33 |
initial_sidebar_state="expanded",
|
34 |
-
menu_items={'About': "AI Vision Titans: OCR, Image Gen, Line Drawings on CPU! 🌌"}
|
35 |
)
|
36 |
|
37 |
# Initialize st.session_state
|
38 |
-
if '
|
39 |
-
st.session_state['
|
40 |
if 'processing' not in st.session_state:
|
41 |
st.session_state['processing'] = {}
|
42 |
|
43 |
# Utility Functions
|
44 |
def generate_filename(sequence, ext="png"):
|
45 |
-
|
46 |
-
import pytz
|
47 |
-
central = pytz.timezone('US/Central')
|
48 |
-
timestamp = datetime.now(central).strftime("%d%m%Y%H%M%S%p")
|
49 |
return f"{sequence}{timestamp}.{ext}"
|
50 |
|
51 |
def get_gallery_files(file_types):
|
@@ -61,20 +59,27 @@ def update_gallery():
|
|
61 |
st.image(Image.open(file), caption=file, use_container_width=True)
|
62 |
elif file.endswith(".txt"):
|
63 |
with open(file, "r") as f:
|
64 |
-
|
|
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
78 |
|
79 |
def load_image_gen():
|
80 |
model_id = "OFA-Sys/small-stable-diffusion-v0" # ~300 MB
|
@@ -82,37 +87,60 @@ def load_image_gen():
|
|
82 |
return pipeline
|
83 |
|
84 |
def load_line_drawer():
|
85 |
-
|
86 |
-
def edge_detection(image):
|
87 |
img_np = np.array(image.convert("RGB"))
|
88 |
gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY)
|
89 |
-
|
|
|
|
|
|
|
90 |
return Image.fromarray(edges)
|
91 |
return edge_detection
|
92 |
|
93 |
# Async Processing Functions
|
94 |
-
async def
|
95 |
start_time = time.time()
|
96 |
status = st.empty()
|
97 |
-
status.text(f"Processing {
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
111 |
elapsed = int(time.time() - start_time)
|
112 |
-
status.text(f"{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
async with aiofiles.open(output_file, "w") as f:
|
114 |
await f.write(result)
|
115 |
-
st.session_state['
|
|
|
|
|
116 |
return result
|
117 |
|
118 |
async def process_image_gen(prompt, output_file):
|
@@ -120,30 +148,34 @@ async def process_image_gen(prompt, output_file):
|
|
120 |
status = st.empty()
|
121 |
status.text("Processing Image Gen... (0s)")
|
122 |
pipeline = load_image_gen()
|
123 |
-
gen_image = pipeline(prompt, num_inference_steps=20).images[0]
|
124 |
elapsed = int(time.time() - start_time)
|
125 |
status.text(f"Image Gen completed in {elapsed}s!")
|
126 |
gen_image.save(output_file)
|
127 |
-
st.session_state['
|
|
|
|
|
128 |
return gen_image
|
129 |
|
130 |
-
async def process_line_drawing(image, output_file):
|
131 |
start_time = time.time()
|
132 |
status = st.empty()
|
133 |
-
status.text("Processing Line Drawing... (0s)")
|
134 |
edge_fn = load_line_drawer()
|
135 |
-
line_drawing = edge_fn(image)
|
136 |
elapsed = int(time.time() - start_time)
|
137 |
-
status.text(f"Line Drawing completed in {elapsed}s!")
|
138 |
line_drawing.save(output_file)
|
139 |
-
st.session_state['
|
|
|
|
|
140 |
return line_drawing
|
141 |
|
142 |
# Main App
|
143 |
-
st.title("AI Vision Titans 🚀
|
144 |
|
145 |
# Sidebar Gallery
|
146 |
-
st.sidebar.header("Captured
|
147 |
gallery_size = st.sidebar.slider("Gallery Size", 1, 10, 4)
|
148 |
update_gallery()
|
149 |
|
@@ -154,7 +186,7 @@ with log_container:
|
|
154 |
st.write(f"{record.asctime} - {record.levelname} - {record.message}")
|
155 |
|
156 |
# Tabs
|
157 |
-
tab1, tab2, tab3, tab4 = st.tabs(["Camera Snap 📷", "Test OCR 🔍", "Test Image Gen 🎨", "Test Line Drawings ✏️"])
|
158 |
|
159 |
with tab1:
|
160 |
st.header("Camera Snap 📷")
|
@@ -164,23 +196,23 @@ with tab1:
|
|
164 |
cam0_img = st.camera_input("Take a picture - Cam 0", key="cam0")
|
165 |
if cam0_img:
|
166 |
filename = generate_filename(0)
|
167 |
-
if filename not in st.session_state['
|
168 |
with open(filename, "wb") as f:
|
169 |
f.write(cam0_img.getvalue())
|
170 |
st.image(Image.open(filename), caption=filename, use_container_width=True)
|
171 |
logger.info(f"Saved snapshot from Camera 0: {filename}")
|
172 |
-
st.session_state['
|
173 |
update_gallery()
|
174 |
with cols[1]:
|
175 |
cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1")
|
176 |
if cam1_img:
|
177 |
filename = generate_filename(1)
|
178 |
-
if filename not in st.session_state['
|
179 |
with open(filename, "wb") as f:
|
180 |
f.write(cam1_img.getvalue())
|
181 |
st.image(Image.open(filename), caption=filename, use_container_width=True)
|
182 |
logger.info(f"Saved snapshot from Camera 1: {filename}")
|
183 |
-
st.session_state['
|
184 |
update_gallery()
|
185 |
|
186 |
st.subheader("Burst Capture")
|
@@ -194,42 +226,57 @@ with tab1:
|
|
194 |
img = st.camera_input(f"Frame {i}", key=f"burst_{i}_{time.time()}")
|
195 |
if img:
|
196 |
filename = generate_filename(f"burst_{i}")
|
197 |
-
if filename not in st.session_state['
|
198 |
with open(filename, "wb") as f:
|
199 |
f.write(img.getvalue())
|
200 |
st.session_state['burst_frames'].append(filename)
|
201 |
logger.info(f"Saved burst frame {i}: {filename}")
|
202 |
st.image(Image.open(filename), caption=filename, use_container_width=True)
|
203 |
-
time.sleep(0.5)
|
204 |
-
st.session_state['
|
205 |
update_gallery()
|
206 |
placeholder.success(f"Captured {len(st.session_state['burst_frames'])} frames!")
|
207 |
|
208 |
with tab2:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
st.header("Test OCR 🔍")
|
210 |
-
|
211 |
-
if
|
212 |
-
|
213 |
-
image = Image.open(
|
214 |
st.image(image, caption="Input Image", use_container_width=True)
|
215 |
-
ocr_model = st.selectbox("Select OCR Model", ["Qwen2-VL-OCR-2B", "TrOCR-Small"], key="ocr_model_select")
|
216 |
-
prompt = st.text_area("Prompt", "Extract text from the image", key="ocr_prompt")
|
217 |
if st.button("Run OCR 🚀", key="ocr_run"):
|
218 |
output_file = generate_filename("ocr_output", "txt")
|
219 |
st.session_state['processing']['ocr'] = True
|
220 |
-
result = asyncio.run(process_ocr(image,
|
221 |
st.text_area("OCR Result", result, height=200, key="ocr_result")
|
222 |
st.success(f"OCR output saved to {output_file}")
|
223 |
st.session_state['processing']['ocr'] = False
|
224 |
else:
|
225 |
-
st.warning("No images captured yet. Use Camera Snap first!")
|
226 |
|
227 |
-
with
|
228 |
st.header("Test Image Gen 🎨")
|
229 |
-
|
230 |
-
if
|
231 |
-
|
232 |
-
image = Image.open(
|
233 |
st.image(image, caption="Reference Image", use_container_width=True)
|
234 |
prompt = st.text_area("Prompt", "Generate a similar superhero image", key="gen_prompt")
|
235 |
if st.button("Run Image Gen 🚀", key="gen_run"):
|
@@ -240,24 +287,25 @@ with tab3:
|
|
240 |
st.success(f"Image saved to {output_file}")
|
241 |
st.session_state['processing']['gen'] = False
|
242 |
else:
|
243 |
-
st.warning("No images captured yet. Use Camera Snap first!")
|
244 |
|
245 |
-
with
|
246 |
st.header("Test Line Drawings ✏️")
|
247 |
-
|
248 |
-
if
|
249 |
-
|
250 |
-
image = Image.open(
|
251 |
st.image(image, caption="Input Image", use_container_width=True)
|
|
|
252 |
if st.button("Run Line Drawing 🚀", key="line_run"):
|
253 |
-
output_file = generate_filename("
|
254 |
st.session_state['processing']['line'] = True
|
255 |
-
result = asyncio.run(process_line_drawing(image, output_file))
|
256 |
-
st.image(result, caption="Line Drawing", use_container_width=True)
|
257 |
st.success(f"Line drawing saved to {output_file}")
|
258 |
st.session_state['processing']['line'] = False
|
259 |
else:
|
260 |
-
st.warning("No images captured yet. Use Camera Snap first!")
|
261 |
|
262 |
# Initial Gallery Update
|
263 |
update_gallery()
|
|
|
3 |
import glob
|
4 |
import time
|
5 |
import streamlit as st
|
6 |
+
import fitz # PyMuPDF
|
7 |
+
import requests
|
8 |
from PIL import Image
|
9 |
+
from transformers import AutoTokenizer, AutoModel
|
|
|
10 |
from diffusers import StableDiffusionPipeline
|
11 |
import cv2
|
12 |
import numpy as np
|
|
|
32 |
page_icon="🤖",
|
33 |
layout="wide",
|
34 |
initial_sidebar_state="expanded",
|
35 |
+
menu_items={'About': "AI Vision Titans: PDF Snapshots, OCR, Image Gen, Line Drawings on CPU! 🌌"}
|
36 |
)
|
37 |
|
38 |
# Initialize st.session_state
|
39 |
+
if 'captured_files' not in st.session_state:
|
40 |
+
st.session_state['captured_files'] = []
|
41 |
if 'processing' not in st.session_state:
|
42 |
st.session_state['processing'] = {}
|
43 |
|
44 |
# Utility Functions
|
45 |
def generate_filename(sequence, ext="png"):
|
46 |
+
timestamp = time.strftime("%d%m%Y%H%M%S")
|
|
|
|
|
|
|
47 |
return f"{sequence}{timestamp}.{ext}"
|
48 |
|
49 |
def get_gallery_files(file_types):
|
|
|
59 |
st.image(Image.open(file), caption=file, use_container_width=True)
|
60 |
elif file.endswith(".txt"):
|
61 |
with open(file, "r") as f:
|
62 |
+
content = f.read()
|
63 |
+
st.text(content[:50] + "..." if len(content) > 50 else content, help=file)
|
64 |
|
65 |
+
def download_pdf(url, output_path):
|
66 |
+
try:
|
67 |
+
response = requests.get(url, stream=True, timeout=10)
|
68 |
+
if response.status_code == 200:
|
69 |
+
with open(output_path, "wb") as f:
|
70 |
+
for chunk in response.iter_content(chunk_size=8192):
|
71 |
+
f.write(chunk)
|
72 |
+
return True
|
73 |
+
except requests.RequestException as e:
|
74 |
+
logger.error(f"Failed to download {url}: {e}")
|
75 |
+
return False
|
76 |
|
77 |
+
# Model Loaders (CPU-focused)
|
78 |
+
def load_ocr_got():
|
79 |
+
model_id = "ucaslcl/GOT-OCR2_0"
|
80 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
81 |
+
model = AutoModel.from_pretrained(model_id, trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval()
|
82 |
+
return tokenizer, model
|
83 |
|
84 |
def load_image_gen():
|
85 |
model_id = "OFA-Sys/small-stable-diffusion-v0" # ~300 MB
|
|
|
87 |
return pipeline
|
88 |
|
89 |
def load_line_drawer():
|
90 |
+
def edge_detection(image, style="fine"):
|
|
|
91 |
img_np = np.array(image.convert("RGB"))
|
92 |
gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY)
|
93 |
+
if style == "fine":
|
94 |
+
edges = cv2.Canny(gray, 50, 150) # Finer lines
|
95 |
+
else: # "bold"
|
96 |
+
edges = cv2.Canny(gray, 100, 200) # Bolder lines
|
97 |
return Image.fromarray(edges)
|
98 |
return edge_detection
|
99 |
|
100 |
# Async Processing Functions
|
101 |
+
async def process_pdf_snapshot(pdf_path, mode="thumbnail"):
|
102 |
start_time = time.time()
|
103 |
status = st.empty()
|
104 |
+
status.text(f"Processing PDF Snapshot ({mode})... (0s)")
|
105 |
+
doc = fitz.open(pdf_path)
|
106 |
+
output_files = []
|
107 |
+
|
108 |
+
if mode == "thumbnail":
|
109 |
+
page = doc[0]
|
110 |
+
pix = page.get_pixmap(matrix=fitz.Matrix(0.5, 0.5)) # 50% scale
|
111 |
+
output_file = generate_filename("thumbnail", "png")
|
112 |
+
pix.save(output_file)
|
113 |
+
output_files.append(output_file)
|
114 |
+
elif mode == "twopage":
|
115 |
+
for i in range(min(2, len(doc))):
|
116 |
+
page = doc[i]
|
117 |
+
pix = page.get_pixmap(matrix=fitz.Matrix(1.0, 1.0)) # Full scale
|
118 |
+
output_file = generate_filename(f"twopage_{i}", "png")
|
119 |
+
pix.save(output_file)
|
120 |
+
output_files.append(output_file)
|
121 |
+
|
122 |
+
doc.close()
|
123 |
elapsed = int(time.time() - start_time)
|
124 |
+
status.text(f"PDF Snapshot ({mode}) completed in {elapsed}s!")
|
125 |
+
for file in output_files:
|
126 |
+
if file not in st.session_state['captured_files']:
|
127 |
+
st.session_state['captured_files'].append(file)
|
128 |
+
update_gallery()
|
129 |
+
return output_files
|
130 |
+
|
131 |
+
async def process_ocr(image, output_file):
|
132 |
+
start_time = time.time()
|
133 |
+
status = st.empty()
|
134 |
+
status.text("Processing GOT-OCR2_0... (0s)")
|
135 |
+
tokenizer, model = load_ocr_got()
|
136 |
+
result = model.chat(tokenizer, image, ocr_type='ocr')
|
137 |
+
elapsed = int(time.time() - start_time)
|
138 |
+
status.text(f"GOT-OCR2_0 completed in {elapsed}s!")
|
139 |
async with aiofiles.open(output_file, "w") as f:
|
140 |
await f.write(result)
|
141 |
+
if output_file not in st.session_state['captured_files']:
|
142 |
+
st.session_state['captured_files'].append(output_file)
|
143 |
+
update_gallery()
|
144 |
return result
|
145 |
|
146 |
async def process_image_gen(prompt, output_file):
|
|
|
148 |
status = st.empty()
|
149 |
status.text("Processing Image Gen... (0s)")
|
150 |
pipeline = load_image_gen()
|
151 |
+
gen_image = pipeline(prompt, num_inference_steps=20).images[0]
|
152 |
elapsed = int(time.time() - start_time)
|
153 |
status.text(f"Image Gen completed in {elapsed}s!")
|
154 |
gen_image.save(output_file)
|
155 |
+
if output_file not in st.session_state['captured_files']:
|
156 |
+
st.session_state['captured_files'].append(output_file)
|
157 |
+
update_gallery()
|
158 |
return gen_image
|
159 |
|
160 |
+
async def process_line_drawing(image, style, output_file):
|
161 |
start_time = time.time()
|
162 |
status = st.empty()
|
163 |
+
status.text(f"Processing Line Drawing ({style})... (0s)")
|
164 |
edge_fn = load_line_drawer()
|
165 |
+
line_drawing = edge_fn(image, style=style)
|
166 |
elapsed = int(time.time() - start_time)
|
167 |
+
status.text(f"Line Drawing ({style}) completed in {elapsed}s!")
|
168 |
line_drawing.save(output_file)
|
169 |
+
if output_file not in st.session_state['captured_files']:
|
170 |
+
st.session_state['captured_files'].append(output_file)
|
171 |
+
update_gallery()
|
172 |
return line_drawing
|
173 |
|
174 |
# Main App
|
175 |
+
st.title("AI Vision Titans 🚀")
|
176 |
|
177 |
# Sidebar Gallery
|
178 |
+
st.sidebar.header("Captured Files 📜")
|
179 |
gallery_size = st.sidebar.slider("Gallery Size", 1, 10, 4)
|
180 |
update_gallery()
|
181 |
|
|
|
186 |
st.write(f"{record.asctime} - {record.levelname} - {record.message}")
|
187 |
|
188 |
# Tabs
|
189 |
+
tab1, tab2, tab3, tab4, tab5 = st.tabs(["Camera Snap 📷", "Download PDFs 📥", "Test OCR 🔍", "Test Image Gen 🎨", "Test Line Drawings ✏️"])
|
190 |
|
191 |
with tab1:
|
192 |
st.header("Camera Snap 📷")
|
|
|
196 |
cam0_img = st.camera_input("Take a picture - Cam 0", key="cam0")
|
197 |
if cam0_img:
|
198 |
filename = generate_filename(0)
|
199 |
+
if filename not in st.session_state['captured_files']:
|
200 |
with open(filename, "wb") as f:
|
201 |
f.write(cam0_img.getvalue())
|
202 |
st.image(Image.open(filename), caption=filename, use_container_width=True)
|
203 |
logger.info(f"Saved snapshot from Camera 0: {filename}")
|
204 |
+
st.session_state['captured_files'].append(filename)
|
205 |
update_gallery()
|
206 |
with cols[1]:
|
207 |
cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1")
|
208 |
if cam1_img:
|
209 |
filename = generate_filename(1)
|
210 |
+
if filename not in st.session_state['captured_files']:
|
211 |
with open(filename, "wb") as f:
|
212 |
f.write(cam1_img.getvalue())
|
213 |
st.image(Image.open(filename), caption=filename, use_container_width=True)
|
214 |
logger.info(f"Saved snapshot from Camera 1: {filename}")
|
215 |
+
st.session_state['captured_files'].append(filename)
|
216 |
update_gallery()
|
217 |
|
218 |
st.subheader("Burst Capture")
|
|
|
226 |
img = st.camera_input(f"Frame {i}", key=f"burst_{i}_{time.time()}")
|
227 |
if img:
|
228 |
filename = generate_filename(f"burst_{i}")
|
229 |
+
if filename not in st.session_state['captured_files']:
|
230 |
with open(filename, "wb") as f:
|
231 |
f.write(img.getvalue())
|
232 |
st.session_state['burst_frames'].append(filename)
|
233 |
logger.info(f"Saved burst frame {i}: {filename}")
|
234 |
st.image(Image.open(filename), caption=filename, use_container_width=True)
|
235 |
+
time.sleep(0.5)
|
236 |
+
st.session_state['captured_files'].extend([f for f in st.session_state['burst_frames'] if f not in st.session_state['captured_files']])
|
237 |
update_gallery()
|
238 |
placeholder.success(f"Captured {len(st.session_state['burst_frames'])} frames!")
|
239 |
|
240 |
with tab2:
|
241 |
+
st.header("Download PDFs 📥")
|
242 |
+
url_input = st.text_area("Enter PDF URLs (one per line)", height=100)
|
243 |
+
mode = st.selectbox("Snapshot Mode", ["Thumbnail", "Two-Page View"], key="download_mode")
|
244 |
+
if st.button("Download & Snapshot 📸"):
|
245 |
+
urls = url_input.strip().split("\n")
|
246 |
+
for url in urls:
|
247 |
+
if url:
|
248 |
+
pdf_path = generate_filename("downloaded", "pdf")
|
249 |
+
if download_pdf(url, pdf_path):
|
250 |
+
logger.info(f"Downloaded PDF from {url} to {pdf_path}")
|
251 |
+
snapshots = asyncio.run(process_pdf_snapshot(pdf_path, mode.lower().replace(" ", "")))
|
252 |
+
for snapshot in snapshots:
|
253 |
+
st.image(Image.open(snapshot), caption=snapshot, use_container_width=True)
|
254 |
+
else:
|
255 |
+
st.error(f"Failed to download {url}")
|
256 |
+
|
257 |
+
with tab3:
|
258 |
st.header("Test OCR 🔍")
|
259 |
+
captured_files = get_gallery_files(["png"])
|
260 |
+
if captured_files:
|
261 |
+
selected_file = st.selectbox("Select Image", captured_files, key="ocr_select")
|
262 |
+
image = Image.open(selected_file)
|
263 |
st.image(image, caption="Input Image", use_container_width=True)
|
|
|
|
|
264 |
if st.button("Run OCR 🚀", key="ocr_run"):
|
265 |
output_file = generate_filename("ocr_output", "txt")
|
266 |
st.session_state['processing']['ocr'] = True
|
267 |
+
result = asyncio.run(process_ocr(image, output_file))
|
268 |
st.text_area("OCR Result", result, height=200, key="ocr_result")
|
269 |
st.success(f"OCR output saved to {output_file}")
|
270 |
st.session_state['processing']['ocr'] = False
|
271 |
else:
|
272 |
+
st.warning("No images captured yet. Use Camera Snap or Download PDFs first!")
|
273 |
|
274 |
+
with tab4:
|
275 |
st.header("Test Image Gen 🎨")
|
276 |
+
captured_files = get_gallery_files(["png"])
|
277 |
+
if captured_files:
|
278 |
+
selected_file = st.selectbox("Select Image", captured_files, key="gen_select")
|
279 |
+
image = Image.open(selected_file)
|
280 |
st.image(image, caption="Reference Image", use_container_width=True)
|
281 |
prompt = st.text_area("Prompt", "Generate a similar superhero image", key="gen_prompt")
|
282 |
if st.button("Run Image Gen 🚀", key="gen_run"):
|
|
|
287 |
st.success(f"Image saved to {output_file}")
|
288 |
st.session_state['processing']['gen'] = False
|
289 |
else:
|
290 |
+
st.warning("No images captured yet. Use Camera Snap or Download PDFs first!")
|
291 |
|
292 |
+
with tab5:
|
293 |
st.header("Test Line Drawings ✏️")
|
294 |
+
captured_files = get_gallery_files(["png"])
|
295 |
+
if captured_files:
|
296 |
+
selected_file = st.selectbox("Select Image", captured_files, key="line_select")
|
297 |
+
image = Image.open(selected_file)
|
298 |
st.image(image, caption="Input Image", use_container_width=True)
|
299 |
+
style = st.selectbox("Line Style", ["Fine", "Bold"], key="line_style")
|
300 |
if st.button("Run Line Drawing 🚀", key="line_run"):
|
301 |
+
output_file = generate_filename(f"line_{style.lower()}", "png")
|
302 |
st.session_state['processing']['line'] = True
|
303 |
+
result = asyncio.run(process_line_drawing(image, style.lower(), output_file))
|
304 |
+
st.image(result, caption=f"{style} Line Drawing", use_container_width=True)
|
305 |
st.success(f"Line drawing saved to {output_file}")
|
306 |
st.session_state['processing']['line'] = False
|
307 |
else:
|
308 |
+
st.warning("No images captured yet. Use Camera Snap or Download PDFs first!")
|
309 |
|
310 |
# Initial Gallery Update
|
311 |
update_gallery()
|