Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
@@ -45,10 +45,14 @@ st.set_page_config(
|
|
45 |
# Initialize st.session_state
|
46 |
if 'captured_images' not in st.session_state:
|
47 |
st.session_state['captured_images'] = []
|
48 |
-
if '
|
49 |
-
st.session_state['
|
50 |
-
if '
|
51 |
-
st.session_state['
|
|
|
|
|
|
|
|
|
52 |
if 'active_tab' not in st.session_state:
|
53 |
st.session_state['active_tab'] = "Build Titan 🌱"
|
54 |
|
@@ -113,50 +117,76 @@ class ModelBuilder:
|
|
113 |
self.sft_data = None
|
114 |
self.jokes = ["Why did the AI go to therapy? Too many layers to unpack! 😂", "Training complete! Time for a binary coffee break. ☕"]
|
115 |
def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
self.tokenizer.pad_token
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
return self
|
126 |
def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4):
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
return self
|
154 |
def save_model(self, path: str):
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
def evaluate(self, prompt: str, status_container=None):
|
161 |
self.model.eval()
|
162 |
if status_container:
|
@@ -181,46 +211,77 @@ class DiffusionBuilder:
|
|
181 |
self.pipeline = None
|
182 |
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None):
|
183 |
from diffusers import StableDiffusionPipeline
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
return self
|
191 |
def fine_tune_sft(self, images, texts, epochs=3):
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
return self
|
217 |
def save_model(self, path: str):
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
def generate(self, prompt: str):
|
223 |
-
|
|
|
|
|
|
|
|
|
|
|
224 |
|
225 |
# Utility Functions
|
226 |
def generate_filename(sequence, ext="png"):
|
@@ -231,16 +292,24 @@ def generate_filename(sequence, ext="png"):
|
|
231 |
return f"{dt.strftime('%m-%d-%Y-%I-%M-%S-%p')}.{ext}"
|
232 |
|
233 |
def get_download_link(file_path, mime_type="text/plain", label="Download"):
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
|
|
|
|
|
|
|
|
238 |
|
239 |
def zip_directory(directory_path, zip_path):
|
240 |
-
|
241 |
-
|
242 |
-
for
|
243 |
-
|
|
|
|
|
|
|
|
|
244 |
|
245 |
def get_model_files(model_type="causal_lm"):
|
246 |
path = "models/*" if model_type == "causal_lm" else "diffusion_models/*"
|
@@ -321,7 +390,7 @@ def calculate_cargo_travel_time(origin_coords: Tuple[float, float], destination_
|
|
321 |
# Main App
|
322 |
st.title("SFT Tiny Titans 🚀 (Small but Mighty!)")
|
323 |
|
324 |
-
# Sidebar Galleries
|
325 |
st.sidebar.header("Media Gallery 🎨")
|
326 |
gallery_size = st.sidebar.slider("Gallery Size 📸", 1, 10, 4, help="Adjust how many epic captures you see! 🌟")
|
327 |
update_gallery()
|
@@ -333,10 +402,21 @@ selected_model = st.sidebar.selectbox("Select Saved Model", ["None"] + model_dir
|
|
333 |
if selected_model != "None" and st.sidebar.button("Load Model 📂"):
|
334 |
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
|
335 |
config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=os.path.basename(selected_model), base_model="unknown", size="small")
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
|
341 |
# Tabs
|
342 |
tabs = [
|
@@ -364,11 +444,18 @@ with tab1:
|
|
364 |
if st.button("Download Model ⬇️"):
|
365 |
config = ModelConfig(name=model_name, base_model=base_model, size="small", domain=domain) if model_type == "Causal LM" else DiffusionConfig(name=model_name, base_model=base_model, size="small")
|
366 |
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
372 |
|
373 |
with tab2:
|
374 |
st.header("Camera Snap 📷 (Dual Capture!)")
|
@@ -402,7 +489,7 @@ with tab2:
|
|
402 |
|
403 |
with tab3: # Fine-Tune Titan (NLP)
|
404 |
st.header("Fine-Tune Titan (NLP) 🔧 (Teach Your Word Wizard Some Tricks!)")
|
405 |
-
if
|
406 |
st.warning("Please build or load an NLP Titan first! ⚠️ (No word wizard, no magic!)")
|
407 |
else:
|
408 |
if st.button("Generate Sample CSV 📝"):
|
@@ -423,12 +510,12 @@ with tab3: # Fine-Tune Titan (NLP)
|
|
423 |
csv_path = f"uploaded_sft_data_{int(time.time())}.csv"
|
424 |
with open(csv_path, "wb") as f:
|
425 |
f.write(uploaded_csv.read())
|
426 |
-
new_model_name = f"{st.session_state['
|
427 |
-
new_config = ModelConfig(name=new_model_name, base_model=st.session_state['
|
428 |
-
st.session_state['
|
429 |
with st.status("Fine-tuning NLP Titan... ⏳ (Whipping words into shape!)", expanded=True) as status:
|
430 |
-
st.session_state['
|
431 |
-
st.session_state['
|
432 |
status.update(label="Fine-tuning completed! 🎉 (Wordsmith Titan unleashed!)", state="complete")
|
433 |
zip_path = f"{new_config.model_path}.zip"
|
434 |
zip_directory(new_config.model_path, zip_path)
|
@@ -436,17 +523,17 @@ with tab3: # Fine-Tune Titan (NLP)
|
|
436 |
|
437 |
with tab4: # Test Titan (NLP)
|
438 |
st.header("Test Titan (NLP) 🧪 (Put Your Word Wizard to the Test!)")
|
439 |
-
if
|
440 |
st.warning("Please build or load an NLP Titan first! ⚠️ (No word wizard, no test drive!)")
|
441 |
else:
|
442 |
-
if st.session_state['
|
443 |
st.write("Testing with SFT Data:")
|
444 |
with st.spinner("Running SFT data tests... ⏳ (Titan’s flexing its word muscles!)"):
|
445 |
-
for item in st.session_state['
|
446 |
prompt = item["prompt"]
|
447 |
expected = item["response"]
|
448 |
status_container = st.empty()
|
449 |
-
generated = st.session_state['
|
450 |
st.write(f"**Prompt**: {prompt}")
|
451 |
st.write(f"**Expected**: {expected}")
|
452 |
st.write(f"**Generated**: {generated} (Titan says: '{random.choice(['Bleep bloop!', 'I am groot!', '42!'])}')")
|
@@ -456,19 +543,19 @@ with tab4: # Test Titan (NLP)
|
|
456 |
if st.button("Run Test ▶️"):
|
457 |
with st.spinner("Testing your prompt... ⏳ (Titan’s pondering deeply!)"):
|
458 |
status_container = st.empty()
|
459 |
-
result = st.session_state['
|
460 |
st.write(f"**Generated Response**: {result} (Titan’s wisdom unleashed!)")
|
461 |
status_container.empty()
|
462 |
|
463 |
with tab5: # Agentic RAG Party (NLP)
|
464 |
st.header("Agentic RAG Party (NLP) 🌐 (Party Like It’s 2099!)")
|
465 |
st.write("This demo uses your SFT-tuned NLP Titan to plan a superhero party with mock retrieval!")
|
466 |
-
if
|
467 |
st.warning("Please build or load an NLP Titan first! ⚠️ (No word wizard, no party!)")
|
468 |
else:
|
469 |
if st.button("Run NLP RAG Demo 🎉"):
|
470 |
with st.spinner("Loading your SFT-tuned NLP Titan... ⏳ (Titan’s suiting up!)"):
|
471 |
-
agent = PartyPlannerAgent(st.session_state['
|
472 |
st.write("Agent ready! 🦸♂️ (Time to plan an epic bash!)")
|
473 |
task = """
|
474 |
Plan a luxury superhero-themed party at Wayne Manor (42.3601° N, 71.0589° W).
|
@@ -508,10 +595,11 @@ with tab5: # Agentic RAG Party (NLP)
|
|
508 |
st.write("Party on, Wayne! 🦸♂️🎉")
|
509 |
except Exception as e:
|
510 |
st.error(f"Error planning party: {str(e)} (Even Superman has kryptonite days!)")
|
|
|
511 |
|
512 |
with tab6: # Fine-Tune Titan (CV)
|
513 |
st.header("Fine-Tune Titan (CV) 🔧 (Paint Your Titan’s Masterpiece!)")
|
514 |
-
if
|
515 |
st.warning("Please build or load a CV Titan first! ⚠️ (No artist, no canvas!)")
|
516 |
else:
|
517 |
captured_images = get_gallery_files(["png"])
|
@@ -521,12 +609,12 @@ with tab6: # Fine-Tune Titan (CV)
|
|
521 |
if st.button("Fine-Tune with Dataset 🔄"):
|
522 |
images = [Image.open(row["image"]) for _, row in edited_data.iterrows()]
|
523 |
texts = [row["text"] for _, row in edited_data.iterrows()]
|
524 |
-
new_model_name = f"{st.session_state['
|
525 |
-
new_config = DiffusionConfig(name=new_model_name, base_model=st.session_state['
|
526 |
-
st.session_state['
|
527 |
with st.status("Fine-tuning CV Titan... ⏳ (Brushing up those pixels!)", expanded=True) as status:
|
528 |
-
st.session_state['
|
529 |
-
st.session_state['
|
530 |
status.update(label="Fine-tuning completed! 🎉 (Pixel Titan unleashed!)", state="complete")
|
531 |
zip_path = f"{new_config.model_path}.zip"
|
532 |
zip_directory(new_config.model_path, zip_path)
|
@@ -541,32 +629,36 @@ with tab6: # Fine-Tune Titan (CV)
|
|
541 |
|
542 |
with tab7: # Test Titan (CV)
|
543 |
st.header("Test Titan (CV) 🧪 (Unleash Your Pixel Power!)")
|
544 |
-
if
|
545 |
st.warning("Please build or load a CV Titan first! ⚠️ (No artist, no masterpiece!)")
|
546 |
else:
|
547 |
test_prompt = st.text_area("Enter Test Prompt 🎨", "Neon Batman", help="Dream up a wild image—your Titan’s got the brush! 🖌️")
|
548 |
if st.button("Run Test ▶️"):
|
549 |
with st.spinner("Painting your masterpiece... ⏳ (Titan’s mixing colors!)"):
|
550 |
-
image = st.session_state['
|
551 |
st.image(image, caption="Generated Image", use_container_width=True)
|
552 |
|
553 |
with tab8: # Agentic RAG Party (CV)
|
554 |
st.header("Agentic RAG Party (CV) 🌐 (Party with Pixels!)")
|
555 |
st.write("This demo uses your SFT-tuned CV Titan to generate superhero party images with mock retrieval!")
|
556 |
-
if
|
557 |
st.warning("Please build or load a CV Titan first! ⚠️ (No artist, no party!)")
|
558 |
else:
|
559 |
if st.button("Run CV RAG Demo 🎉"):
|
560 |
with st.spinner("Loading your SFT-tuned CV Titan... ⏳ (Titan’s grabbing its paintbrush!)"):
|
561 |
-
agent = CVPartyPlannerAgent(st.session_state['
|
562 |
st.write("Agent ready! 🎨 (Time to paint an epic bash!)")
|
563 |
task = "Generate images for a luxury superhero-themed party."
|
564 |
with st.spinner("Crafting superhero party visuals... ⏳ (Pixels assemble!)"):
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
|
|
|
|
|
|
|
|
570 |
|
571 |
# Display Logs
|
572 |
st.sidebar.subheader("Action Logs 📜")
|
|
|
45 |
# Initialize st.session_state
|
46 |
if 'captured_images' not in st.session_state:
|
47 |
st.session_state['captured_images'] = []
|
48 |
+
if 'nlp_builder' not in st.session_state:
|
49 |
+
st.session_state['nlp_builder'] = None
|
50 |
+
if 'cv_builder' not in st.session_state:
|
51 |
+
st.session_state['cv_builder'] = None
|
52 |
+
if 'nlp_loaded' not in st.session_state:
|
53 |
+
st.session_state['nlp_loaded'] = False
|
54 |
+
if 'cv_loaded' not in st.session_state:
|
55 |
+
st.session_state['cv_loaded'] = False
|
56 |
if 'active_tab' not in st.session_state:
|
57 |
st.session_state['active_tab'] = "Build Titan 🌱"
|
58 |
|
|
|
117 |
self.sft_data = None
|
118 |
self.jokes = ["Why did the AI go to therapy? Too many layers to unpack! 😂", "Training complete! Time for a binary coffee break. ☕"]
|
119 |
def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
|
120 |
+
try:
|
121 |
+
with st.spinner(f"Loading {model_path}... ⏳ (Patience, young padawan!)"):
|
122 |
+
self.model = AutoModelForCausalLM.from_pretrained(model_path)
|
123 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
124 |
+
if self.tokenizer.pad_token is None:
|
125 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
126 |
+
if config:
|
127 |
+
self.config = config
|
128 |
+
self.model.to("cuda" if torch.cuda.is_available() else "cpu")
|
129 |
+
st.success(f"Model loaded! 🎉 {random.choice(self.jokes)}")
|
130 |
+
logger.info(f"Successfully loaded Causal LM model: {model_path}")
|
131 |
+
except torch.cuda.OutOfMemoryError as e:
|
132 |
+
st.error(f"GPU memory error loading {model_path}: {str(e)} 💥 (Out of GPU juice!)")
|
133 |
+
logger.error(f"GPU memory error loading {model_path}: {str(e)}")
|
134 |
+
raise
|
135 |
+
except MemoryError as e:
|
136 |
+
st.error(f"CPU memory error loading {model_path}: {str(e)} 💥 (RAM ran away!)")
|
137 |
+
logger.error(f"CPU memory error loading {model_path}: {str(e)}")
|
138 |
+
raise
|
139 |
+
except Exception as e:
|
140 |
+
st.error(f"Failed to load {model_path}: {str(e)} 💥 (Something broke—check the logs!)")
|
141 |
+
logger.error(f"Failed to load {model_path}: {str(e)}")
|
142 |
+
raise
|
143 |
return self
|
144 |
def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4):
|
145 |
+
try:
|
146 |
+
self.sft_data = []
|
147 |
+
with open(csv_path, "r") as f:
|
148 |
+
reader = csv.DictReader(f)
|
149 |
+
for row in reader:
|
150 |
+
self.sft_data.append({"prompt": row["prompt"], "response": row["response"]})
|
151 |
+
dataset = SFTDataset(self.sft_data, self.tokenizer)
|
152 |
+
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
|
153 |
+
optimizer = torch.optim.AdamW(self.model.parameters(), lr=2e-5)
|
154 |
+
self.model.train()
|
155 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
156 |
+
self.model.to(device)
|
157 |
+
for epoch in range(epochs):
|
158 |
+
with st.spinner(f"Training epoch {epoch + 1}/{epochs}... ⚙️ (The AI is lifting weights!)"):
|
159 |
+
total_loss = 0
|
160 |
+
for batch in dataloader:
|
161 |
+
optimizer.zero_grad()
|
162 |
+
input_ids = batch["input_ids"].to(device)
|
163 |
+
attention_mask = batch["attention_mask"].to(device)
|
164 |
+
labels = batch["labels"].to(device)
|
165 |
+
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
|
166 |
+
loss = outputs.loss
|
167 |
+
loss.backward()
|
168 |
+
optimizer.step()
|
169 |
+
total_loss += loss.item()
|
170 |
+
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
|
171 |
+
st.success(f"SFT Fine-tuning completed! 🎉 {random.choice(self.jokes)}")
|
172 |
+
logger.info(f"Successfully fine-tuned Causal LM model: {self.config.name}")
|
173 |
+
except Exception as e:
|
174 |
+
st.error(f"Fine-tuning failed: {str(e)} 💥 (Training hit a snag!)")
|
175 |
+
logger.error(f"Fine-tuning failed: {str(e)}")
|
176 |
+
raise
|
177 |
return self
|
178 |
def save_model(self, path: str):
|
179 |
+
try:
|
180 |
+
with st.spinner("Saving model... 💾 (Packing the AI’s suitcase!)"):
|
181 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
182 |
+
self.model.save_pretrained(path)
|
183 |
+
self.tokenizer.save_pretrained(path)
|
184 |
+
st.success(f"Model saved at {path}! ✅ May the force be with it.")
|
185 |
+
logger.info(f"Model saved at {path}")
|
186 |
+
except Exception as e:
|
187 |
+
st.error(f"Failed to save model: {str(e)} 💥 (Save operation crashed!)")
|
188 |
+
logger.error(f"Failed to save model: {str(e)}")
|
189 |
+
raise
|
190 |
def evaluate(self, prompt: str, status_container=None):
|
191 |
self.model.eval()
|
192 |
if status_container:
|
|
|
211 |
self.pipeline = None
|
212 |
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None):
|
213 |
from diffusers import StableDiffusionPipeline
|
214 |
+
try:
|
215 |
+
with st.spinner(f"Loading diffusion model {model_path}... ⏳"):
|
216 |
+
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path)
|
217 |
+
self.pipeline.to("cuda" if torch.cuda.is_available() else "cpu")
|
218 |
+
if config:
|
219 |
+
self.config = config
|
220 |
+
st.success(f"Diffusion model loaded! 🎨")
|
221 |
+
logger.info(f"Successfully loaded Diffusion model: {model_path}")
|
222 |
+
except torch.cuda.OutOfMemoryError as e:
|
223 |
+
st.error(f"GPU memory error loading {model_path}: {str(e)} 💥 (Out of GPU juice!)")
|
224 |
+
logger.error(f"GPU memory error loading {model_path}: {str(e)}")
|
225 |
+
raise
|
226 |
+
except MemoryError as e:
|
227 |
+
st.error(f"CPU memory error loading {model_path}: {str(e)} 💥 (RAM ran away!)")
|
228 |
+
logger.error(f"CPU memory error loading {model_path}: {str(e)}")
|
229 |
+
raise
|
230 |
+
except Exception as e:
|
231 |
+
st.error(f"Failed to load {model_path}: {str(e)} 💥 (Something broke—check the logs!)")
|
232 |
+
logger.error(f"Failed to load {model_path}: {str(e)}")
|
233 |
+
raise
|
234 |
return self
|
235 |
def fine_tune_sft(self, images, texts, epochs=3):
|
236 |
+
try:
|
237 |
+
dataset = DiffusionDataset(images, texts)
|
238 |
+
dataloader = DataLoader(dataset, batch_size=1, shuffle=True)
|
239 |
+
optimizer = torch.optim.AdamW(self.pipeline.unet.parameters(), lr=1e-5)
|
240 |
+
self.pipeline.unet.train()
|
241 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
242 |
+
for epoch in range(epochs):
|
243 |
+
with st.spinner(f"Training diffusion epoch {epoch + 1}/{epochs}... ⚙️"):
|
244 |
+
total_loss = 0
|
245 |
+
for batch in dataloader:
|
246 |
+
optimizer.zero_grad()
|
247 |
+
image = batch["image"][0].to(device)
|
248 |
+
text = batch["text"][0]
|
249 |
+
latents = self.pipeline.vae.encode(torch.tensor(np.array(image)).permute(2, 0, 1).unsqueeze(0).float().to(device)).latent_dist.sample()
|
250 |
+
noise = torch.randn_like(latents)
|
251 |
+
timesteps = torch.randint(0, self.pipeline.scheduler.num_train_timesteps, (latents.shape[0],), device=latents.device)
|
252 |
+
noisy_latents = self.pipeline.scheduler.add_noise(latents, noise, timesteps)
|
253 |
+
text_embeddings = self.pipeline.text_encoder(self.pipeline.tokenizer(text, return_tensors="pt").input_ids.to(device))[0]
|
254 |
+
pred_noise = self.pipeline.unet(noisy_latents, timesteps, encoder_hidden_states=text_embeddings).sample
|
255 |
+
loss = torch.nn.functional.mse_loss(pred_noise, noise)
|
256 |
+
loss.backward()
|
257 |
+
optimizer.step()
|
258 |
+
total_loss += loss.item()
|
259 |
+
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
|
260 |
+
st.success("Diffusion SFT Fine-tuning completed! 🎨")
|
261 |
+
logger.info(f"Successfully fine-tuned Diffusion model: {self.config.name}")
|
262 |
+
except Exception as e:
|
263 |
+
st.error(f"Fine-tuning failed: {str(e)} 💥 (Training hit a snag!)")
|
264 |
+
logger.error(f"Fine-tuning failed: {str(e)}")
|
265 |
+
raise
|
266 |
return self
|
267 |
def save_model(self, path: str):
|
268 |
+
try:
|
269 |
+
with st.spinner("Saving diffusion model... 💾"):
|
270 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
271 |
+
self.pipeline.save_pretrained(path)
|
272 |
+
st.success(f"Diffusion model saved at {path}! ✅")
|
273 |
+
logger.info(f"Diffusion model saved at {path}")
|
274 |
+
except Exception as e:
|
275 |
+
st.error(f"Failed to save model: {str(e)} 💥 (Save operation crashed!)")
|
276 |
+
logger.error(f"Failed to save model: {str(e)}")
|
277 |
+
raise
|
278 |
def generate(self, prompt: str):
|
279 |
+
try:
|
280 |
+
return self.pipeline(prompt, num_inference_steps=50).images[0]
|
281 |
+
except Exception as e:
|
282 |
+
st.error(f"Image generation failed: {str(e)} 💥 (Pixel party pooper!)")
|
283 |
+
logger.error(f"Image generation failed: {str(e)}")
|
284 |
+
raise
|
285 |
|
286 |
# Utility Functions
|
287 |
def generate_filename(sequence, ext="png"):
|
|
|
292 |
return f"{dt.strftime('%m-%d-%Y-%I-%M-%S-%p')}.{ext}"
|
293 |
|
294 |
def get_download_link(file_path, mime_type="text/plain", label="Download"):
|
295 |
+
try:
|
296 |
+
with open(file_path, 'rb') as f:
|
297 |
+
data = f.read()
|
298 |
+
b64 = base64.b64encode(data).decode()
|
299 |
+
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label} 📥</a>'
|
300 |
+
except Exception as e:
|
301 |
+
logger.error(f"Failed to generate download link for {file_path}: {str(e)}")
|
302 |
+
return f"Error: Could not generate link for {file_path}"
|
303 |
|
304 |
def zip_directory(directory_path, zip_path):
|
305 |
+
try:
|
306 |
+
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
307 |
+
for root, _, files in os.walk(directory_path):
|
308 |
+
for file in files:
|
309 |
+
zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path)))
|
310 |
+
except Exception as e:
|
311 |
+
logger.error(f"Failed to zip directory {directory_path}: {str(e)}")
|
312 |
+
raise
|
313 |
|
314 |
def get_model_files(model_type="causal_lm"):
|
315 |
path = "models/*" if model_type == "causal_lm" else "diffusion_models/*"
|
|
|
390 |
# Main App
|
391 |
st.title("SFT Tiny Titans 🚀 (Small but Mighty!)")
|
392 |
|
393 |
+
# Sidebar Galleries and Status
|
394 |
st.sidebar.header("Media Gallery 🎨")
|
395 |
gallery_size = st.sidebar.slider("Gallery Size 📸", 1, 10, 4, help="Adjust how many epic captures you see! 🌟")
|
396 |
update_gallery()
|
|
|
402 |
if selected_model != "None" and st.sidebar.button("Load Model 📂"):
|
403 |
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
|
404 |
config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=os.path.basename(selected_model), base_model="unknown", size="small")
|
405 |
+
try:
|
406 |
+
builder.load_model(selected_model, config)
|
407 |
+
if model_type == "Causal LM":
|
408 |
+
st.session_state['nlp_builder'] = builder
|
409 |
+
st.session_state['nlp_loaded'] = True
|
410 |
+
else:
|
411 |
+
st.session_state['cv_builder'] = builder
|
412 |
+
st.session_state['cv_loaded'] = True
|
413 |
+
st.rerun()
|
414 |
+
except Exception as e:
|
415 |
+
st.error(f"Model load failed: {str(e)} 💥 (Check logs for details!)")
|
416 |
+
|
417 |
+
st.sidebar.subheader("Model Status 🚦")
|
418 |
+
st.sidebar.write(f"**NLP Model**: {'Loaded' if st.session_state['nlp_loaded'] else 'Not Loaded'} {'(Active)' if st.session_state['nlp_loaded'] and isinstance(st.session_state.get('nlp_builder'), ModelBuilder) else ''}")
|
419 |
+
st.sidebar.write(f"**CV Model**: {'Loaded' if st.session_state['cv_loaded'] else 'Not Loaded'} {'(Active)' if st.session_state['cv_loaded'] and isinstance(st.session_state.get('cv_builder'), DiffusionBuilder) else ''}")
|
420 |
|
421 |
# Tabs
|
422 |
tabs = [
|
|
|
444 |
if st.button("Download Model ⬇️"):
|
445 |
config = ModelConfig(name=model_name, base_model=base_model, size="small", domain=domain) if model_type == "Causal LM" else DiffusionConfig(name=model_name, base_model=base_model, size="small")
|
446 |
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
|
447 |
+
try:
|
448 |
+
builder.load_model(base_model, config)
|
449 |
+
builder.save_model(config.model_path)
|
450 |
+
if model_type == "Causal LM":
|
451 |
+
st.session_state['nlp_builder'] = builder
|
452 |
+
st.session_state['nlp_loaded'] = True
|
453 |
+
else:
|
454 |
+
st.session_state['cv_builder'] = builder
|
455 |
+
st.session_state['cv_loaded'] = True
|
456 |
+
st.rerun()
|
457 |
+
except Exception as e:
|
458 |
+
st.error(f"Model build failed: {str(e)} 💥 (Check logs for details!)")
|
459 |
|
460 |
with tab2:
|
461 |
st.header("Camera Snap 📷 (Dual Capture!)")
|
|
|
489 |
|
490 |
with tab3: # Fine-Tune Titan (NLP)
|
491 |
st.header("Fine-Tune Titan (NLP) 🔧 (Teach Your Word Wizard Some Tricks!)")
|
492 |
+
if not st.session_state['nlp_loaded'] or not isinstance(st.session_state['nlp_builder'], ModelBuilder):
|
493 |
st.warning("Please build or load an NLP Titan first! ⚠️ (No word wizard, no magic!)")
|
494 |
else:
|
495 |
if st.button("Generate Sample CSV 📝"):
|
|
|
510 |
csv_path = f"uploaded_sft_data_{int(time.time())}.csv"
|
511 |
with open(csv_path, "wb") as f:
|
512 |
f.write(uploaded_csv.read())
|
513 |
+
new_model_name = f"{st.session_state['nlp_builder'].config.name}-sft-{int(time.time())}"
|
514 |
+
new_config = ModelConfig(name=new_model_name, base_model=st.session_state['nlp_builder'].config.base_model, size="small", domain=st.session_state['nlp_builder'].config.domain)
|
515 |
+
st.session_state['nlp_builder'].config = new_config
|
516 |
with st.status("Fine-tuning NLP Titan... ⏳ (Whipping words into shape!)", expanded=True) as status:
|
517 |
+
st.session_state['nlp_builder'].fine_tune_sft(csv_path)
|
518 |
+
st.session_state['nlp_builder'].save_model(new_config.model_path)
|
519 |
status.update(label="Fine-tuning completed! 🎉 (Wordsmith Titan unleashed!)", state="complete")
|
520 |
zip_path = f"{new_config.model_path}.zip"
|
521 |
zip_directory(new_config.model_path, zip_path)
|
|
|
523 |
|
524 |
with tab4: # Test Titan (NLP)
|
525 |
st.header("Test Titan (NLP) 🧪 (Put Your Word Wizard to the Test!)")
|
526 |
+
if not st.session_state['nlp_loaded'] or not isinstance(st.session_state['nlp_builder'], ModelBuilder):
|
527 |
st.warning("Please build or load an NLP Titan first! ⚠️ (No word wizard, no test drive!)")
|
528 |
else:
|
529 |
+
if st.session_state['nlp_builder'].sft_data:
|
530 |
st.write("Testing with SFT Data:")
|
531 |
with st.spinner("Running SFT data tests... ⏳ (Titan’s flexing its word muscles!)"):
|
532 |
+
for item in st.session_state['nlp_builder'].sft_data[:3]:
|
533 |
prompt = item["prompt"]
|
534 |
expected = item["response"]
|
535 |
status_container = st.empty()
|
536 |
+
generated = st.session_state['nlp_builder'].evaluate(prompt, status_container)
|
537 |
st.write(f"**Prompt**: {prompt}")
|
538 |
st.write(f"**Expected**: {expected}")
|
539 |
st.write(f"**Generated**: {generated} (Titan says: '{random.choice(['Bleep bloop!', 'I am groot!', '42!'])}')")
|
|
|
543 |
if st.button("Run Test ▶️"):
|
544 |
with st.spinner("Testing your prompt... ⏳ (Titan’s pondering deeply!)"):
|
545 |
status_container = st.empty()
|
546 |
+
result = st.session_state['nlp_builder'].evaluate(test_prompt, status_container)
|
547 |
st.write(f"**Generated Response**: {result} (Titan’s wisdom unleashed!)")
|
548 |
status_container.empty()
|
549 |
|
550 |
with tab5: # Agentic RAG Party (NLP)
|
551 |
st.header("Agentic RAG Party (NLP) 🌐 (Party Like It’s 2099!)")
|
552 |
st.write("This demo uses your SFT-tuned NLP Titan to plan a superhero party with mock retrieval!")
|
553 |
+
if not st.session_state['nlp_loaded'] or not isinstance(st.session_state['nlp_builder'], ModelBuilder):
|
554 |
st.warning("Please build or load an NLP Titan first! ⚠️ (No word wizard, no party!)")
|
555 |
else:
|
556 |
if st.button("Run NLP RAG Demo 🎉"):
|
557 |
with st.spinner("Loading your SFT-tuned NLP Titan... ⏳ (Titan’s suiting up!)"):
|
558 |
+
agent = PartyPlannerAgent(st.session_state['nlp_builder'].model, st.session_state['nlp_builder'].tokenizer)
|
559 |
st.write("Agent ready! 🦸♂️ (Time to plan an epic bash!)")
|
560 |
task = """
|
561 |
Plan a luxury superhero-themed party at Wayne Manor (42.3601° N, 71.0589° W).
|
|
|
595 |
st.write("Party on, Wayne! 🦸♂️🎉")
|
596 |
except Exception as e:
|
597 |
st.error(f"Error planning party: {str(e)} (Even Superman has kryptonite days!)")
|
598 |
+
logger.error(f"Error in NLP RAG demo: {str(e)}")
|
599 |
|
600 |
with tab6: # Fine-Tune Titan (CV)
|
601 |
st.header("Fine-Tune Titan (CV) 🔧 (Paint Your Titan’s Masterpiece!)")
|
602 |
+
if not st.session_state['cv_loaded'] or not isinstance(st.session_state['cv_builder'], DiffusionBuilder):
|
603 |
st.warning("Please build or load a CV Titan first! ⚠️ (No artist, no canvas!)")
|
604 |
else:
|
605 |
captured_images = get_gallery_files(["png"])
|
|
|
609 |
if st.button("Fine-Tune with Dataset 🔄"):
|
610 |
images = [Image.open(row["image"]) for _, row in edited_data.iterrows()]
|
611 |
texts = [row["text"] for _, row in edited_data.iterrows()]
|
612 |
+
new_model_name = f"{st.session_state['cv_builder'].config.name}-sft-{int(time.time())}"
|
613 |
+
new_config = DiffusionConfig(name=new_model_name, base_model=st.session_state['cv_builder'].config.base_model, size="small")
|
614 |
+
st.session_state['cv_builder'].config = new_config
|
615 |
with st.status("Fine-tuning CV Titan... ⏳ (Brushing up those pixels!)", expanded=True) as status:
|
616 |
+
st.session_state['cv_builder'].fine_tune_sft(images, texts)
|
617 |
+
st.session_state['cv_builder'].save_model(new_config.model_path)
|
618 |
status.update(label="Fine-tuning completed! 🎉 (Pixel Titan unleashed!)", state="complete")
|
619 |
zip_path = f"{new_config.model_path}.zip"
|
620 |
zip_directory(new_config.model_path, zip_path)
|
|
|
629 |
|
630 |
with tab7: # Test Titan (CV)
|
631 |
st.header("Test Titan (CV) 🧪 (Unleash Your Pixel Power!)")
|
632 |
+
if not st.session_state['cv_loaded'] or not isinstance(st.session_state['cv_builder'], DiffusionBuilder):
|
633 |
st.warning("Please build or load a CV Titan first! ⚠️ (No artist, no masterpiece!)")
|
634 |
else:
|
635 |
test_prompt = st.text_area("Enter Test Prompt 🎨", "Neon Batman", help="Dream up a wild image—your Titan’s got the brush! 🖌️")
|
636 |
if st.button("Run Test ▶️"):
|
637 |
with st.spinner("Painting your masterpiece... ⏳ (Titan’s mixing colors!)"):
|
638 |
+
image = st.session_state['cv_builder'].generate(test_prompt)
|
639 |
st.image(image, caption="Generated Image", use_container_width=True)
|
640 |
|
641 |
with tab8: # Agentic RAG Party (CV)
|
642 |
st.header("Agentic RAG Party (CV) 🌐 (Party with Pixels!)")
|
643 |
st.write("This demo uses your SFT-tuned CV Titan to generate superhero party images with mock retrieval!")
|
644 |
+
if not st.session_state['cv_loaded'] or not isinstance(st.session_state['cv_builder'], DiffusionBuilder):
|
645 |
st.warning("Please build or load a CV Titan first! ⚠️ (No artist, no party!)")
|
646 |
else:
|
647 |
if st.button("Run CV RAG Demo 🎉"):
|
648 |
with st.spinner("Loading your SFT-tuned CV Titan... ⏳ (Titan’s grabbing its paintbrush!)"):
|
649 |
+
agent = CVPartyPlannerAgent(st.session_state['cv_builder'].pipeline)
|
650 |
st.write("Agent ready! 🎨 (Time to paint an epic bash!)")
|
651 |
task = "Generate images for a luxury superhero-themed party."
|
652 |
with st.spinner("Crafting superhero party visuals... ⏳ (Pixels assemble!)"):
|
653 |
+
try:
|
654 |
+
plan_df = agent.plan_party(task)
|
655 |
+
st.dataframe(plan_df)
|
656 |
+
for _, row in plan_df.iterrows():
|
657 |
+
image = agent.generate(row["Image Idea"])
|
658 |
+
st.image(image, caption=f"{row['Theme']} - {row['Image Idea']}", use_container_width=True)
|
659 |
+
except Exception as e:
|
660 |
+
st.error(f"Error in CV RAG demo: {str(e)} 💥 (Pixel party crashed!)")
|
661 |
+
logger.error(f"Error in CV RAG demo: {str(e)}")
|
662 |
|
663 |
# Display Logs
|
664 |
st.sidebar.subheader("Action Logs 📜")
|