Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ import streamlit as st
|
|
5 |
import csv
|
6 |
import time
|
7 |
from dataclasses import dataclass
|
|
|
8 |
|
9 |
st.set_page_config(page_title="SFT Tiny Titans 🚀", page_icon="🤖", layout="wide", initial_sidebar_state="expanded")
|
10 |
|
@@ -41,6 +42,37 @@ class ModelBuilder:
|
|
41 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
42 |
self.config = config
|
43 |
self.model.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
def evaluate(self, prompt: str):
|
45 |
import torch
|
46 |
self.model.eval()
|
@@ -59,6 +91,25 @@ class DiffusionBuilder:
|
|
59 |
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path)
|
60 |
self.pipeline.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
|
61 |
self.config = config
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
def generate(self, prompt: str):
|
63 |
return self.pipeline(prompt, num_inference_steps=20).images[0]
|
64 |
|
@@ -69,18 +120,23 @@ def get_download_link(file_path, mime_type="text/plain", label="Download"):
|
|
69 |
b64 = base64.b64encode(data).decode()
|
70 |
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label} 📥</a>'
|
71 |
|
72 |
-
def generate_filename(
|
73 |
from datetime import datetime
|
74 |
import pytz
|
75 |
central = pytz.timezone('US/Central')
|
76 |
-
timestamp = datetime.now(central).strftime("%
|
77 |
-
|
78 |
-
return f"{timestamp}_{safe_text}.png"
|
79 |
|
80 |
def get_gallery_files(file_types):
|
81 |
import glob
|
82 |
return sorted([f for ext in file_types for f in glob.glob(f"*.{ext}")])
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
# Video Processor for WebRTC
|
85 |
class VideoSnapshot:
|
86 |
def __init__(self):
|
@@ -94,28 +150,26 @@ class VideoSnapshot:
|
|
94 |
return self.snapshot
|
95 |
|
96 |
# Main App
|
97 |
-
st.title("SFT Tiny Titans 🚀 (
|
98 |
|
99 |
# Sidebar Galleries
|
100 |
-
st.sidebar.header("
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
cols
|
106 |
-
|
107 |
-
|
108 |
-
if "Images" in gallery_type:
|
109 |
-
from PIL import Image
|
110 |
-
st.image(Image.open(file), caption=file.split('/')[-1], use_container_width=True)
|
111 |
-
elif "Videos" in gallery_type:
|
112 |
-
st.video(file)
|
113 |
|
114 |
# Sidebar Model Management
|
115 |
st.sidebar.subheader("Model Hub 🗂️")
|
116 |
model_type = st.sidebar.selectbox("Model Type", ["NLP (Causal LM)", "CV (Diffusion)"])
|
117 |
-
model_options = {
|
118 |
-
|
|
|
|
|
|
|
119 |
if selected_model != "None" and st.sidebar.button("Load Model 📂"):
|
120 |
builder = ModelBuilder() if "NLP" in model_type else DiffusionBuilder()
|
121 |
config = (ModelConfig if "NLP" in model_type else DiffusionConfig)(name=f"titan_{int(time.time())}", base_model=selected_model)
|
@@ -130,7 +184,7 @@ tab1, tab2, tab3, tab4 = st.tabs(["Build Titan 🌱", "Fine-Tune Titans 🔧", "
|
|
130 |
with tab1:
|
131 |
st.header("Build Titan 🌱 (Quick Start!)")
|
132 |
model_type = st.selectbox("Model Type", ["NLP (Causal LM)", "CV (Diffusion)"], key="build_type")
|
133 |
-
base_model = st.selectbox("Select Model",
|
134 |
if st.button("Download Model ⬇️"):
|
135 |
config = (ModelConfig if "NLP" in model_type else DiffusionConfig)(name=f"titan_{int(time.time())}", base_model=base_model)
|
136 |
builder = ModelBuilder() if "NLP" in model_type else DiffusionBuilder()
|
@@ -149,67 +203,22 @@ with tab2:
|
|
149 |
st.subheader("NLP Tune 🧠")
|
150 |
uploaded_csv = st.file_uploader("Upload CSV", type="csv", key="nlp_csv")
|
151 |
if uploaded_csv and st.button("Tune NLP 🔄"):
|
152 |
-
from torch.utils.data import Dataset, DataLoader
|
153 |
-
import torch
|
154 |
-
class SFTDataset(Dataset):
|
155 |
-
def __init__(self, data, tokenizer):
|
156 |
-
self.data = data
|
157 |
-
self.tokenizer = tokenizer
|
158 |
-
def __len__(self):
|
159 |
-
return len(self.data)
|
160 |
-
def __getitem__(self, idx):
|
161 |
-
prompt = self.data[idx]["prompt"]
|
162 |
-
response = self.data[idx]["response"]
|
163 |
-
inputs = self.tokenizer(f"{prompt} {response}", return_tensors="pt", padding="max_length", max_length=128, truncation=True)
|
164 |
-
labels = inputs["input_ids"].clone()
|
165 |
-
labels[0, :len(self.tokenizer(prompt)["input_ids"][0])] = -100
|
166 |
-
return {"input_ids": inputs["input_ids"][0], "attention_mask": inputs["attention_mask"][0], "labels": labels[0]}
|
167 |
-
data = []
|
168 |
with open("temp.csv", "wb") as f:
|
169 |
f.write(uploaded_csv.read())
|
170 |
-
|
171 |
-
reader = csv.DictReader(f)
|
172 |
-
for row in reader:
|
173 |
-
data.append({"prompt": row["prompt"], "response": row["response"]})
|
174 |
-
dataset = SFTDataset(data, st.session_state['builder'].tokenizer)
|
175 |
-
dataloader = DataLoader(dataset, batch_size=2)
|
176 |
-
optimizer = torch.optim.AdamW(st.session_state['builder'].model.parameters(), lr=2e-5)
|
177 |
-
st.session_state['builder'].model.train()
|
178 |
-
for _ in range(1):
|
179 |
-
for batch in dataloader:
|
180 |
-
optimizer.zero_grad()
|
181 |
-
outputs = st.session_state['builder'].model(**{k: v.to(st.session_state['builder'].model.device) for k, v in batch.items()})
|
182 |
-
outputs.loss.backward()
|
183 |
-
optimizer.step()
|
184 |
st.success("NLP sharpened! 🎉")
|
185 |
elif isinstance(st.session_state['builder'], DiffusionBuilder):
|
186 |
st.subheader("CV Tune 🎨")
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
st.
|
197 |
-
for _ in range(1):
|
198 |
-
for img, text in zip(images, texts):
|
199 |
-
optimizer.zero_grad()
|
200 |
-
latents = st.session_state['builder'].pipeline.vae.encode(torch.tensor(np.array(img)).permute(2, 0, 1).unsqueeze(0).float().to(st.session_state['builder'].pipeline.device)).latent_dist.sample()
|
201 |
-
noise = torch.randn_like(latents)
|
202 |
-
timesteps = torch.randint(0, 1000, (1,), device=latents.device)
|
203 |
-
noisy_latents = st.session_state['builder'].pipeline.scheduler.add_noise(latents, noise, timesteps)
|
204 |
-
text_emb = st.session_state['builder'].pipeline.text_encoder(st.session_state['builder'].pipeline.tokenizer(text, return_tensors="pt").input_ids.to(st.session_state['builder'].pipeline.device))[0]
|
205 |
-
pred_noise = st.session_state['builder'].pipeline.unet(noisy_latents, timesteps, encoder_hidden_states=text_emb).sample
|
206 |
-
loss = torch.nn.functional.mse_loss(pred_noise, noise)
|
207 |
-
loss.backward()
|
208 |
-
optimizer.step()
|
209 |
-
for img, text in zip(images, texts):
|
210 |
-
filename = generate_filename(text)
|
211 |
-
img.save(filename)
|
212 |
-
st.success("CV polished! 🎉")
|
213 |
|
214 |
with tab3:
|
215 |
st.header("Test Titans 🧪 (Quick Check!)")
|
@@ -228,10 +237,10 @@ with tab3:
|
|
228 |
if st.button("Test CV ▶️"):
|
229 |
with st.spinner("Generating... ⏳"):
|
230 |
img = st.session_state['builder'].generate(prompt)
|
231 |
-
st.image(img, caption="Generated Art")
|
232 |
|
233 |
with tab4:
|
234 |
-
st.header("Camera Snap 📷 (
|
235 |
from streamlit_webrtc import webrtc_streamer
|
236 |
ctx = webrtc_streamer(
|
237 |
key="camera",
|
@@ -239,29 +248,36 @@ with tab4:
|
|
239 |
frontend_rtc_configuration={"iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]}
|
240 |
)
|
241 |
if ctx.video_processor:
|
242 |
-
|
243 |
-
if st.button("
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
snapshot
|
248 |
-
|
249 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
|
251 |
-
#
|
252 |
-
st.
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
|
|
|
5 |
import csv
|
6 |
import time
|
7 |
from dataclasses import dataclass
|
8 |
+
import zipfile
|
9 |
|
10 |
st.set_page_config(page_title="SFT Tiny Titans 🚀", page_icon="🤖", layout="wide", initial_sidebar_state="expanded")
|
11 |
|
|
|
42 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
43 |
self.config = config
|
44 |
self.model.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
|
45 |
+
def fine_tune(self, csv_path):
|
46 |
+
from torch.utils.data import Dataset, DataLoader
|
47 |
+
import torch
|
48 |
+
class SFTDataset(Dataset):
|
49 |
+
def __init__(self, data, tokenizer):
|
50 |
+
self.data = data
|
51 |
+
self.tokenizer = tokenizer
|
52 |
+
def __len__(self):
|
53 |
+
return len(self.data)
|
54 |
+
def __getitem__(self, idx):
|
55 |
+
prompt = self.data[idx]["prompt"]
|
56 |
+
response = self.data[idx]["response"]
|
57 |
+
inputs = self.tokenizer(f"{prompt} {response}", return_tensors="pt", padding="max_length", max_length=128, truncation=True)
|
58 |
+
labels = inputs["input_ids"].clone()
|
59 |
+
labels[0, :len(self.tokenizer(prompt)["input_ids"][0])] = -100
|
60 |
+
return {"input_ids": inputs["input_ids"][0], "attention_mask": inputs["attention_mask"][0], "labels": labels[0]}
|
61 |
+
data = []
|
62 |
+
with open(csv_path, "r") as f:
|
63 |
+
reader = csv.DictReader(f)
|
64 |
+
for row in reader:
|
65 |
+
data.append({"prompt": row["prompt"], "response": row["response"]})
|
66 |
+
dataset = SFTDataset(data, self.tokenizer)
|
67 |
+
dataloader = DataLoader(dataset, batch_size=2)
|
68 |
+
optimizer = torch.optim.AdamW(self.model.parameters(), lr=2e-5)
|
69 |
+
self.model.train()
|
70 |
+
for _ in range(1):
|
71 |
+
for batch in dataloader:
|
72 |
+
optimizer.zero_grad()
|
73 |
+
outputs = self.model(**{k: v.to(self.model.device) for k, v in batch.items()})
|
74 |
+
outputs.loss.backward()
|
75 |
+
optimizer.step()
|
76 |
def evaluate(self, prompt: str):
|
77 |
import torch
|
78 |
self.model.eval()
|
|
|
91 |
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path)
|
92 |
self.pipeline.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
|
93 |
self.config = config
|
94 |
+
def fine_tune(self, images, texts):
|
95 |
+
import torch
|
96 |
+
from PIL import Image
|
97 |
+
import numpy as np
|
98 |
+
optimizer = torch.optim.AdamW(self.pipeline.unet.parameters(), lr=1e-5)
|
99 |
+
self.pipeline.unet.train()
|
100 |
+
for _ in range(1):
|
101 |
+
for img, text in zip(images, texts):
|
102 |
+
optimizer.zero_grad()
|
103 |
+
img_tensor = torch.tensor(np.array(img)).permute(2, 0, 1).unsqueeze(0).float().to(self.pipeline.device)
|
104 |
+
latents = self.pipeline.vae.encode(img_tensor).latent_dist.sample()
|
105 |
+
noise = torch.randn_like(latents)
|
106 |
+
timesteps = torch.randint(0, 1000, (1,), device=latents.device)
|
107 |
+
noisy_latents = self.pipeline.scheduler.add_noise(latents, noise, timesteps)
|
108 |
+
text_emb = self.pipeline.text_encoder(self.pipeline.tokenizer(text, return_tensors="pt").input_ids.to(self.pipeline.device))[0]
|
109 |
+
pred_noise = self.pipeline.unet(noisy_latents, timesteps, encoder_hidden_states=text_emb).sample
|
110 |
+
loss = torch.nn.functional.mse_loss(pred_noise, noise)
|
111 |
+
loss.backward()
|
112 |
+
optimizer.step()
|
113 |
def generate(self, prompt: str):
|
114 |
return self.pipeline(prompt, num_inference_steps=20).images[0]
|
115 |
|
|
|
120 |
b64 = base64.b64encode(data).decode()
|
121 |
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label} 📥</a>'
|
122 |
|
123 |
+
def generate_filename(sequence):
|
124 |
from datetime import datetime
|
125 |
import pytz
|
126 |
central = pytz.timezone('US/Central')
|
127 |
+
timestamp = datetime.now(central).strftime("%d%m%Y%H%M%S%p")
|
128 |
+
return f"{sequence}{timestamp}.png"
|
|
|
129 |
|
130 |
def get_gallery_files(file_types):
|
131 |
import glob
|
132 |
return sorted([f for ext in file_types for f in glob.glob(f"*.{ext}")])
|
133 |
|
134 |
+
def zip_files(files, zip_name):
|
135 |
+
with zipfile.ZipFile(zip_name, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
136 |
+
for file in files:
|
137 |
+
zipf.write(file, os.path.basename(file))
|
138 |
+
return zip_name
|
139 |
+
|
140 |
# Video Processor for WebRTC
|
141 |
class VideoSnapshot:
|
142 |
def __init__(self):
|
|
|
150 |
return self.snapshot
|
151 |
|
152 |
# Main App
|
153 |
+
st.title("SFT Tiny Titans 🚀 (Capture & Tune!)")
|
154 |
|
155 |
# Sidebar Galleries
|
156 |
+
st.sidebar.header("Captured Images 🎨")
|
157 |
+
image_files = get_gallery_files(["png"])
|
158 |
+
if image_files:
|
159 |
+
cols = st.sidebar.columns(2)
|
160 |
+
for idx, file in enumerate(image_files[:4]):
|
161 |
+
with cols[idx % 2]:
|
162 |
+
from PIL import Image
|
163 |
+
st.image(Image.open(file), caption=file.split('/')[-1], use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
164 |
|
165 |
# Sidebar Model Management
|
166 |
st.sidebar.subheader("Model Hub 🗂️")
|
167 |
model_type = st.sidebar.selectbox("Model Type", ["NLP (Causal LM)", "CV (Diffusion)"])
|
168 |
+
model_options = {
|
169 |
+
"NLP (Causal LM)": "HuggingFaceTB/SmolLM-135M",
|
170 |
+
"CV (Diffusion)": ["CompVis/stable-diffusion-v1-4", "stabilityai/stable-diffusion-2-base", "runwayml/stable-diffusion-v1-5"]
|
171 |
+
}
|
172 |
+
selected_model = st.sidebar.selectbox("Select Model", ["None"] + ([model_options[model_type]] if "NLP" in model_type else model_options[model_type]))
|
173 |
if selected_model != "None" and st.sidebar.button("Load Model 📂"):
|
174 |
builder = ModelBuilder() if "NLP" in model_type else DiffusionBuilder()
|
175 |
config = (ModelConfig if "NLP" in model_type else DiffusionConfig)(name=f"titan_{int(time.time())}", base_model=selected_model)
|
|
|
184 |
with tab1:
|
185 |
st.header("Build Titan 🌱 (Quick Start!)")
|
186 |
model_type = st.selectbox("Model Type", ["NLP (Causal LM)", "CV (Diffusion)"], key="build_type")
|
187 |
+
base_model = st.selectbox("Select Model", model_options[model_type], key="build_model")
|
188 |
if st.button("Download Model ⬇️"):
|
189 |
config = (ModelConfig if "NLP" in model_type else DiffusionConfig)(name=f"titan_{int(time.time())}", base_model=base_model)
|
190 |
builder = ModelBuilder() if "NLP" in model_type else DiffusionBuilder()
|
|
|
203 |
st.subheader("NLP Tune 🧠")
|
204 |
uploaded_csv = st.file_uploader("Upload CSV", type="csv", key="nlp_csv")
|
205 |
if uploaded_csv and st.button("Tune NLP 🔄"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
with open("temp.csv", "wb") as f:
|
207 |
f.write(uploaded_csv.read())
|
208 |
+
st.session_state['builder'].fine_tune("temp.csv")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
st.success("NLP sharpened! 🎉")
|
210 |
elif isinstance(st.session_state['builder'], DiffusionBuilder):
|
211 |
st.subheader("CV Tune 🎨")
|
212 |
+
captured_images = get_gallery_files(["png"])
|
213 |
+
if len(captured_images) >= 2:
|
214 |
+
texts = ["Superhero Neon", "Hero Glow", "Cape Spark"][:len(captured_images)]
|
215 |
+
if st.button("Tune CV 🔄"):
|
216 |
+
from PIL import Image
|
217 |
+
images = [Image.open(img) for img in captured_images]
|
218 |
+
st.session_state['builder'].fine_tune(images, texts)
|
219 |
+
st.success("CV polished! 🎉")
|
220 |
+
else:
|
221 |
+
st.warning("Capture at least 2 images first! ⚠️")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
|
223 |
with tab3:
|
224 |
st.header("Test Titans 🧪 (Quick Check!)")
|
|
|
237 |
if st.button("Test CV ▶️"):
|
238 |
with st.spinner("Generating... ⏳"):
|
239 |
img = st.session_state['builder'].generate(prompt)
|
240 |
+
st.image(img, caption="Generated Art", use_container_width=True)
|
241 |
|
242 |
with tab4:
|
243 |
+
st.header("Camera Snap 📷 (Sequence Shots!)")
|
244 |
from streamlit_webrtc import webrtc_streamer
|
245 |
ctx = webrtc_streamer(
|
246 |
key="camera",
|
|
|
248 |
frontend_rtc_configuration={"iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]}
|
249 |
)
|
250 |
if ctx.video_processor:
|
251 |
+
delay = st.slider("Delay between captures (seconds)", 0, 10, 2)
|
252 |
+
if st.button("Capture 6 Frames 📸"):
|
253 |
+
captured_images = []
|
254 |
+
for i in range(6):
|
255 |
+
snapshot = ctx.video_processor.take_snapshot()
|
256 |
+
if snapshot:
|
257 |
+
filename = generate_filename(i)
|
258 |
+
snapshot.save(filename)
|
259 |
+
st.image(snapshot, caption=filename, use_container_width=True)
|
260 |
+
captured_images.append(filename)
|
261 |
+
time.sleep(delay)
|
262 |
+
st.success("6 frames captured! 🎉")
|
263 |
+
if len(captured_images) >= 2:
|
264 |
+
st.session_state['captured_images'] = captured_images
|
265 |
|
266 |
+
# Dataset and ZIP Download
|
267 |
+
if 'captured_images' in st.session_state and len(st.session_state['captured_images']) >= 2:
|
268 |
+
st.subheader("Diffusion SFT Dataset 🎨")
|
269 |
+
sample_texts = ["Neon Hero", "Glowing Cape", "Spark Flyer", "Dark Knight", "Iron Shine", "Thunder Bolt"]
|
270 |
+
dataset = list(zip(st.session_state['captured_images'], sample_texts[:len(st.session_state['captured_images'])]))
|
271 |
+
st.code("\n".join([f"{i+1}. {text} -> {img}" for i, (img, text) in enumerate(dataset)]), language="text")
|
272 |
+
if st.button("Download Dataset CSV 📝"):
|
273 |
+
csv_path = f"diffusion_sft_{int(time.time())}.csv"
|
274 |
+
with open(csv_path, "w", newline="") as f:
|
275 |
+
writer = csv.writer(f)
|
276 |
+
writer.writerow(["image", "text"])
|
277 |
+
for img, text in dataset:
|
278 |
+
writer.writerow([img, text])
|
279 |
+
st.markdown(get_download_link(csv_path, "text/csv", "Download Dataset CSV"), unsafe_allow_html=True)
|
280 |
+
if st.button("Download Images ZIP 📦"):
|
281 |
+
zip_path = f"captured_images_{int(time.time())}.zip"
|
282 |
+
zip_files(st.session_state['captured_images'], zip_path)
|
283 |
+
st.markdown(get_download_link(zip_path, "application/zip", "Download Images ZIP"), unsafe_allow_html=True)
|