Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
@@ -1,25 +1,16 @@
|
|
1 |
#!/usr/bin/env python3
|
2 |
import os
|
3 |
-
import glob
|
4 |
-
import base64
|
5 |
import streamlit as st
|
6 |
-
import pandas as pd
|
7 |
-
import torch
|
8 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
9 |
-
from torch.utils.data import Dataset, DataLoader
|
10 |
-
import csv
|
11 |
-
import time
|
12 |
-
from dataclasses import dataclass
|
13 |
-
from typing import Optional, Tuple
|
14 |
-
import zipfile
|
15 |
-
import math
|
16 |
from PIL import Image
|
17 |
-
import
|
18 |
-
import
|
|
|
|
|
19 |
import numpy as np
|
20 |
-
|
|
|
21 |
|
22 |
-
# Logging setup
|
23 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
24 |
logger = logging.getLogger(__name__)
|
25 |
log_records = []
|
@@ -32,196 +23,16 @@ logger.addHandler(LogCaptureHandler())
|
|
32 |
|
33 |
# Page Configuration
|
34 |
st.set_page_config(
|
35 |
-
page_title="
|
36 |
page_icon="🤖",
|
37 |
layout="wide",
|
38 |
initial_sidebar_state="expanded",
|
39 |
-
menu_items={
|
40 |
-
'Get Help': 'https://huggingface.co/awacke1',
|
41 |
-
'Report a Bug': 'https://huggingface.co/spaces/awacke1',
|
42 |
-
'About': "Tiny Titans: Small models, big dreams, and a sprinkle of chaos! 🌌"
|
43 |
-
}
|
44 |
)
|
45 |
|
46 |
# Initialize st.session_state
|
47 |
if 'captured_images' not in st.session_state:
|
48 |
st.session_state['captured_images'] = []
|
49 |
-
if 'builder' not in st.session_state:
|
50 |
-
st.session_state['builder'] = None
|
51 |
-
if 'model_loaded' not in st.session_state:
|
52 |
-
st.session_state['model_loaded'] = False
|
53 |
-
|
54 |
-
# Model Configuration Classes
|
55 |
-
@dataclass
|
56 |
-
class ModelConfig:
|
57 |
-
name: str
|
58 |
-
base_model: str
|
59 |
-
size: str
|
60 |
-
domain: Optional[str] = None
|
61 |
-
model_type: str = "causal_lm"
|
62 |
-
@property
|
63 |
-
def model_path(self):
|
64 |
-
return f"models/{self.name}"
|
65 |
-
|
66 |
-
@dataclass
|
67 |
-
class DiffusionConfig:
|
68 |
-
name: str
|
69 |
-
base_model: str
|
70 |
-
size: str
|
71 |
-
@property
|
72 |
-
def model_path(self):
|
73 |
-
return f"diffusion_models/{self.name}"
|
74 |
-
|
75 |
-
# Datasets
|
76 |
-
class SFTDataset(Dataset):
|
77 |
-
def __init__(self, data, tokenizer, max_length=128):
|
78 |
-
self.data = data
|
79 |
-
self.tokenizer = tokenizer
|
80 |
-
self.max_length = max_length
|
81 |
-
def __len__(self):
|
82 |
-
return len(self.data)
|
83 |
-
def __getitem__(self, idx):
|
84 |
-
prompt = self.data[idx]["prompt"]
|
85 |
-
response = self.data[idx]["response"]
|
86 |
-
full_text = f"{prompt} {response}"
|
87 |
-
full_encoding = self.tokenizer(full_text, max_length=self.max_length, padding="max_length", truncation=True, return_tensors="pt")
|
88 |
-
prompt_encoding = self.tokenizer(prompt, max_length=self.max_length, padding=False, truncation=True, return_tensors="pt")
|
89 |
-
input_ids = full_encoding["input_ids"].squeeze()
|
90 |
-
attention_mask = full_encoding["attention_mask"].squeeze()
|
91 |
-
labels = input_ids.clone()
|
92 |
-
prompt_len = prompt_encoding["input_ids"].shape[1]
|
93 |
-
if prompt_len < self.max_length:
|
94 |
-
labels[:prompt_len] = -100
|
95 |
-
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels}
|
96 |
-
|
97 |
-
class DiffusionDataset(Dataset):
|
98 |
-
def __init__(self, images, texts):
|
99 |
-
self.images = images
|
100 |
-
self.texts = texts
|
101 |
-
def __len__(self):
|
102 |
-
return len(self.images)
|
103 |
-
def __getitem__(self, idx):
|
104 |
-
return {"image": self.images[idx], "text": self.texts[idx]}
|
105 |
-
|
106 |
-
# Model Builders
|
107 |
-
class ModelBuilder:
|
108 |
-
def __init__(self):
|
109 |
-
self.config = None
|
110 |
-
self.model = None
|
111 |
-
self.tokenizer = None
|
112 |
-
self.sft_data = None
|
113 |
-
self.jokes = ["Why did the AI go to therapy? Too many layers to unpack! 😂", "Training complete! Time for a binary coffee break. ☕"]
|
114 |
-
def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
|
115 |
-
with st.spinner(f"Loading {model_path}... ⏳"):
|
116 |
-
self.model = AutoModelForCausalLM.from_pretrained(model_path)
|
117 |
-
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
118 |
-
if self.tokenizer.pad_token is None:
|
119 |
-
self.tokenizer.pad_token = self.tokenizer.eos_token
|
120 |
-
if config:
|
121 |
-
self.config = config
|
122 |
-
self.model.to("cuda" if torch.cuda.is_available() else "cpu")
|
123 |
-
st.success(f"Model loaded! 🎉 {random.choice(self.jokes)}")
|
124 |
-
return self
|
125 |
-
def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4):
|
126 |
-
self.sft_data = []
|
127 |
-
with open(csv_path, "r") as f:
|
128 |
-
reader = csv.DictReader(f)
|
129 |
-
for row in reader:
|
130 |
-
self.sft_data.append({"prompt": row["prompt"], "response": row["response"]})
|
131 |
-
dataset = SFTDataset(self.sft_data, self.tokenizer)
|
132 |
-
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
|
133 |
-
optimizer = torch.optim.AdamW(self.model.parameters(), lr=2e-5)
|
134 |
-
self.model.train()
|
135 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
136 |
-
self.model.to(device)
|
137 |
-
for epoch in range(epochs):
|
138 |
-
with st.spinner(f"Training epoch {epoch + 1}/{epochs}... ⚙️"):
|
139 |
-
total_loss = 0
|
140 |
-
for batch in dataloader:
|
141 |
-
optimizer.zero_grad()
|
142 |
-
input_ids = batch["input_ids"].to(device)
|
143 |
-
attention_mask = batch["attention_mask"].to(device)
|
144 |
-
labels = batch["labels"].to(device)
|
145 |
-
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
|
146 |
-
loss = outputs.loss
|
147 |
-
loss.backward()
|
148 |
-
optimizer.step()
|
149 |
-
total_loss += loss.item()
|
150 |
-
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
|
151 |
-
st.success(f"SFT Fine-tuning completed! 🎉 {random.choice(self.jokes)}")
|
152 |
-
return self
|
153 |
-
def save_model(self, path: str):
|
154 |
-
with st.spinner("Saving model... 💾"):
|
155 |
-
os.makedirs(os.path.dirname(path), exist_ok=True)
|
156 |
-
self.model.save_pretrained(path)
|
157 |
-
self.tokenizer.save_pretrained(path)
|
158 |
-
st.success(f"Model saved at {path}! ✅")
|
159 |
-
def evaluate(self, prompt: str, status_container=None):
|
160 |
-
self.model.eval()
|
161 |
-
if status_container:
|
162 |
-
status_container.write("Preparing to evaluate... 🧠")
|
163 |
-
try:
|
164 |
-
with torch.no_grad():
|
165 |
-
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device)
|
166 |
-
outputs = self.model.generate(**inputs, max_new_tokens=50, do_sample=True, top_p=0.95, temperature=0.7)
|
167 |
-
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
168 |
-
except Exception as e:
|
169 |
-
if status_container:
|
170 |
-
status_container.error(f"Oops! Something broke: {str(e)} 💥")
|
171 |
-
return f"Error: {str(e)}"
|
172 |
-
|
173 |
-
class DiffusionBuilder:
|
174 |
-
def __init__(self):
|
175 |
-
self.config = None
|
176 |
-
self.pipeline = None
|
177 |
-
self.model_type = None
|
178 |
-
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None, model_type: str = "StableDiffusion", download: bool = True):
|
179 |
-
with st.spinner(f"{'Downloading' if download else 'Loading'} {model_path}... ⏳"):
|
180 |
-
if model_type == "StableDiffusion":
|
181 |
-
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float32, local_files_only=not download).to("cpu")
|
182 |
-
elif model_type == "DDPM":
|
183 |
-
self.pipeline = DDPMPipeline.from_pretrained(model_path, torch_dtype=torch.float32, local_files_only=not download).to("cpu")
|
184 |
-
self.pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipeline.scheduler.config)
|
185 |
-
if config:
|
186 |
-
self.config = config
|
187 |
-
self.model_type = model_type
|
188 |
-
st.success(f"Diffusion model {'downloaded' if download else 'loaded'}! 🎨")
|
189 |
-
return self
|
190 |
-
def fine_tune_sft(self, images, texts, epochs=3):
|
191 |
-
dataset = DiffusionDataset(images, texts)
|
192 |
-
dataloader = DataLoader(dataset, batch_size=1, shuffle=True)
|
193 |
-
optimizer = torch.optim.AdamW(self.pipeline.unet.parameters(), lr=1e-5)
|
194 |
-
self.pipeline.unet.train()
|
195 |
-
for epoch in range(epochs):
|
196 |
-
with st.spinner(f"Training diffusion epoch {epoch + 1}/{epochs}... ⚙️"):
|
197 |
-
total_loss = 0
|
198 |
-
for batch in dataloader:
|
199 |
-
optimizer.zero_grad()
|
200 |
-
image = batch["image"][0].to(self.pipeline.device)
|
201 |
-
text = batch["text"][0]
|
202 |
-
latents = self.pipeline.vae.encode(torch.tensor(np.array(image)).permute(2, 0, 1).unsqueeze(0).float().to(self.pipeline.device)).latent_dist.sample()
|
203 |
-
noise = torch.randn_like(latents)
|
204 |
-
timesteps = torch.randint(0, self.pipeline.scheduler.num_train_timesteps, (latents.shape[0],), device=latents.device)
|
205 |
-
noisy_latents = self.pipeline.scheduler.add_noise(latents, noise, timesteps)
|
206 |
-
text_embeddings = self.pipeline.text_encoder(self.pipeline.tokenizer(text, return_tensors="pt").input_ids.to(self.pipeline.device))[0]
|
207 |
-
pred_noise = self.pipeline.unet(noisy_latents, timesteps, encoder_hidden_states=text_embeddings).sample
|
208 |
-
loss = torch.nn.functional.mse_loss(pred_noise, noise)
|
209 |
-
loss.backward()
|
210 |
-
optimizer.step()
|
211 |
-
total_loss += loss.item()
|
212 |
-
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
|
213 |
-
st.success("Diffusion SFT Fine-tuning completed! 🎨")
|
214 |
-
return self
|
215 |
-
def save_model(self, path: str):
|
216 |
-
with st.spinner("Saving diffusion model... 💾"):
|
217 |
-
os.makedirs(os.path.dirname(path), exist_ok=True)
|
218 |
-
self.pipeline.save_pretrained(path)
|
219 |
-
st.success(f"Diffusion model saved at {path}! ✅")
|
220 |
-
def generate(self, prompt: str, image=None):
|
221 |
-
if self.model_type == "StableDiffusion":
|
222 |
-
return self.pipeline(prompt, num_inference_steps=50).images[0]
|
223 |
-
elif self.model_type == "DDPM":
|
224 |
-
return self.pipeline(num_inference_steps=50).images[0]
|
225 |
|
226 |
# Utility Functions
|
227 |
def generate_filename(sequence, ext="png"):
|
@@ -231,22 +42,6 @@ def generate_filename(sequence, ext="png"):
|
|
231 |
timestamp = datetime.now(central).strftime("%d%m%Y%H%M%S%p")
|
232 |
return f"{sequence}{timestamp}.{ext}"
|
233 |
|
234 |
-
def get_download_link(file_path, mime_type="text/plain", label="Download"):
|
235 |
-
with open(file_path, 'rb') as f:
|
236 |
-
data = f.read()
|
237 |
-
b64 = base64.b64encode(data).decode()
|
238 |
-
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label} 📥</a>'
|
239 |
-
|
240 |
-
def zip_directory(directory_path, zip_path):
|
241 |
-
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
242 |
-
for root, _, files in os.walk(directory_path):
|
243 |
-
for file in files:
|
244 |
-
zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path)))
|
245 |
-
|
246 |
-
def get_model_files(model_type="causal_lm"):
|
247 |
-
path = "models/*" if model_type == "causal_lm" else "diffusion_models/*"
|
248 |
-
return [d for d in glob.glob(path) if os.path.isdir(d)]
|
249 |
-
|
250 |
def get_gallery_files(file_types):
|
251 |
return sorted([f for ext in file_types for f in glob.glob(f"*.{ext}")])
|
252 |
|
@@ -257,119 +52,55 @@ def update_gallery():
|
|
257 |
for idx, file in enumerate(media_files[:gallery_size * 2]):
|
258 |
with cols[idx % 2]:
|
259 |
st.image(Image.open(file), caption=file, use_container_width=True)
|
260 |
-
st.markdown(get_download_link(file, "image/png", "Download Image"), unsafe_allow_html=True)
|
261 |
-
|
262 |
-
# Mock Search Tool for RAG
|
263 |
-
def mock_search(query: str) -> str:
|
264 |
-
if "superhero" in query.lower():
|
265 |
-
return "Latest trends: Gold-plated Batman statues, VR superhero battles."
|
266 |
-
return "No relevant results found."
|
267 |
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
self.pipeline = pipeline
|
296 |
-
def generate(self, prompt: str) -> Image.Image:
|
297 |
-
return self.pipeline(prompt, num_inference_steps=50).images[0]
|
298 |
-
def plan_party(self, task: str) -> pd.DataFrame:
|
299 |
-
search_result = mock_search("superhero party trends")
|
300 |
-
prompt = f"Given this context: '{search_result}'\n{task}"
|
301 |
-
data = [
|
302 |
-
{"Theme": "Batman", "Image Idea": "Gold-plated Batman statue"},
|
303 |
-
{"Theme": "Avengers", "Image Idea": "VR superhero battle scene"}
|
304 |
-
]
|
305 |
-
return pd.DataFrame(data)
|
306 |
-
|
307 |
-
def calculate_cargo_travel_time(origin_coords: Tuple[float, float], destination_coords: Tuple[float, float], cruising_speed_kmh: float = 750.0) -> float:
|
308 |
-
def to_radians(degrees: float) -> float:
|
309 |
-
return degrees * (math.pi / 180)
|
310 |
-
lat1, lon1 = map(to_radians, origin_coords)
|
311 |
-
lat2, lon2 = map(to_radians, destination_coords)
|
312 |
-
EARTH_RADIUS_KM = 6371.0
|
313 |
-
dlon = lon2 - lon1
|
314 |
-
dlat = lat2 - lat1
|
315 |
-
a = (math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2) ** 2)
|
316 |
-
c = 2 * math.asin(math.sqrt(a))
|
317 |
-
distance = EARTH_RADIUS_KM * c
|
318 |
-
actual_distance = distance * 1.1
|
319 |
-
flight_time = (actual_distance / cruising_speed_kmh) + 1.0
|
320 |
-
return round(flight_time, 2)
|
321 |
|
322 |
# Main App
|
323 |
-
st.title("
|
324 |
|
325 |
-
# Sidebar
|
326 |
-
st.sidebar.header("
|
327 |
gallery_size = st.sidebar.slider("Gallery Size", 1, 10, 4)
|
328 |
update_gallery()
|
329 |
|
330 |
-
st.sidebar.subheader("
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
|
336 |
-
config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=os.path.basename(selected_model), base_model="unknown", size="small")
|
337 |
-
builder.load_model(selected_model, config)
|
338 |
-
st.session_state['builder'] = builder
|
339 |
-
st.session_state['model_loaded'] = True
|
340 |
-
st.rerun()
|
341 |
|
342 |
# Tabs
|
343 |
-
tab1, tab2, tab3, tab4 = st.tabs(["
|
344 |
|
345 |
with tab1:
|
346 |
-
st.header("
|
347 |
-
st.subheader("Build Titan 🌱")
|
348 |
-
model_type = st.selectbox("Model Type", ["Causal LM", "Diffusion"], key="build_type")
|
349 |
-
base_model_options = {
|
350 |
-
"Causal LM": ["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"],
|
351 |
-
"Diffusion": [
|
352 |
-
"OFA-Sys/small-stable-diffusion-v0 (LDM/Conditional, ~300 MB)",
|
353 |
-
"google/ddpm-ema-celebahq-256 (DDPM/SDE/Autoregressive Proxy, ~280 MB)"
|
354 |
-
]
|
355 |
-
}
|
356 |
-
base_model = st.selectbox("Select Tiny Model", base_model_options[model_type])
|
357 |
-
action = st.radio("Action", ["Use Model", "Download Model"], index=0 if "Causal LM" in model_type else 1)
|
358 |
-
model_name = st.text_input("Model Name (for Download)", f"tiny-titan-{int(time.time())}") if action == "Download Model" else None
|
359 |
-
if st.button(f"{action} ⬇️"):
|
360 |
-
config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=model_name or base_model.split(" ")[0], base_model=base_model.split(" ")[0], size="small")
|
361 |
-
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
|
362 |
-
model_type_for_diffusion = "StableDiffusion" if "small-stable-diffusion" in base_model else "DDPM"
|
363 |
-
builder.load_model(base_model.split(" ")[0], config, model_type_for_diffusion, download=action == "Download Model")
|
364 |
-
if action == "Download Model":
|
365 |
-
builder.save_model(config.model_path)
|
366 |
-
st.session_state['builder'] = builder
|
367 |
-
st.session_state['model_loaded'] = True
|
368 |
-
st.rerun()
|
369 |
-
|
370 |
-
st.subheader("Camera Snap 📷")
|
371 |
slice_count = st.number_input("Image Slice Count", min_value=1, max_value=20, value=10)
|
372 |
-
video_length = st.number_input("Video Length (seconds)", min_value=1, max_value=30, value=10)
|
373 |
cols = st.columns(2)
|
374 |
with cols[0]:
|
375 |
st.subheader("Camera 0")
|
@@ -429,97 +160,52 @@ with tab1:
|
|
429 |
st.image(Image.open(frame), caption=frame, use_container_width=True)
|
430 |
|
431 |
with tab2:
|
432 |
-
st.header("
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
demo_data = [{"image": img, "text": f"Superhero {os.path.basename(img).split('.')[0]}"} for img in captured_images[:min(len(captured_images), slice_count)]]
|
454 |
-
edited_data = st.data_editor(pd.DataFrame(demo_data), num_rows="dynamic")
|
455 |
-
if st.button("Fine-Tune with Dataset 🔄"):
|
456 |
-
images = [Image.open(row["image"]) for _, row in edited_data.iterrows()]
|
457 |
-
texts = [row["text"] for _, row in edited_data.iterrows()]
|
458 |
-
new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}"
|
459 |
-
new_config = DiffusionConfig(name=new_model_name, base_model=st.session_state['builder'].config.base_model, size="small")
|
460 |
-
st.session_state['builder'].config = new_config
|
461 |
-
st.session_state['builder'].fine_tune_sft(images, texts)
|
462 |
-
st.session_state['builder'].save_model(new_config.model_path)
|
463 |
-
zip_path = f"{new_config.model_path}.zip"
|
464 |
-
zip_directory(new_config.model_path, zip_path)
|
465 |
-
st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned Diffusion Model"), unsafe_allow_html=True)
|
466 |
-
csv_path = f"sft_dataset_{int(time.time())}.csv"
|
467 |
-
with open(csv_path, "w", newline="") as f:
|
468 |
-
writer = csv.writer(f)
|
469 |
-
writer.writerow(["image", "text"])
|
470 |
-
for _, row in edited_data.iterrows():
|
471 |
-
writer.writerow([row["image"], row["text"]])
|
472 |
-
st.markdown(get_download_link(csv_path, "text/csv", "Download SFT Dataset CSV"), unsafe_allow_html=True)
|
473 |
|
474 |
with tab3:
|
475 |
-
st.header("Test
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
if isinstance(st.session_state['builder'], ModelBuilder):
|
487 |
-
result = st.session_state['builder'].evaluate(prompt)
|
488 |
-
st.write(f"**Generated Response**: {result}")
|
489 |
-
elif isinstance(st.session_state['builder'], DiffusionBuilder):
|
490 |
-
if selected_pipeline == "Stable Diffusion (LDM/Conditional)":
|
491 |
-
image = st.session_state['builder'].generate(prompt)
|
492 |
-
else: # DDPM
|
493 |
-
image = st.session_state['builder'].generate(prompt)
|
494 |
-
st.image(image, caption=f"Generated from {selected_pipeline}")
|
495 |
|
496 |
with tab4:
|
497 |
-
st.header("
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
elif isinstance(st.session_state['builder'], DiffusionBuilder):
|
508 |
-
if st.button("Run CV RAG Demo 🎉"):
|
509 |
-
agent = CVPartyPlannerAgent(st.session_state['builder'].pipeline)
|
510 |
-
task = "Generate images for a luxury superhero-themed party."
|
511 |
-
plan_df = agent.plan_party(task)
|
512 |
-
st.dataframe(plan_df)
|
513 |
-
for _, row in plan_df.iterrows():
|
514 |
-
image = agent.generate(row["Image Idea"])
|
515 |
-
st.image(image, caption=f"{row['Theme']} - {row['Image Idea']}")
|
516 |
-
|
517 |
-
# Display Logs
|
518 |
-
st.sidebar.subheader("Action Logs 📜")
|
519 |
-
log_container = st.sidebar.empty()
|
520 |
-
with log_container:
|
521 |
-
for record in log_records:
|
522 |
-
st.write(f"{record.asctime} - {record.levelname} - {record.message}")
|
523 |
|
524 |
# Initial Gallery Update
|
525 |
update_gallery()
|
|
|
1 |
#!/usr/bin/env python3
|
2 |
import os
|
|
|
|
|
3 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from PIL import Image
|
5 |
+
import torch
|
6 |
+
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration, AutoTokenizer, AutoModel
|
7 |
+
from diffusers import StableDiffusionPipeline
|
8 |
+
import cv2
|
9 |
import numpy as np
|
10 |
+
import logging
|
11 |
+
from io import BytesIO
|
12 |
|
13 |
+
# Logging setup
|
14 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
15 |
logger = logging.getLogger(__name__)
|
16 |
log_records = []
|
|
|
23 |
|
24 |
# Page Configuration
|
25 |
st.set_page_config(
|
26 |
+
page_title="AI Vision Titans 🚀",
|
27 |
page_icon="🤖",
|
28 |
layout="wide",
|
29 |
initial_sidebar_state="expanded",
|
30 |
+
menu_items={'About': "AI Vision Titans: OCR, Image Gen, Line Drawings on CPU! 🌌"}
|
|
|
|
|
|
|
|
|
31 |
)
|
32 |
|
33 |
# Initialize st.session_state
|
34 |
if 'captured_images' not in st.session_state:
|
35 |
st.session_state['captured_images'] = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
# Utility Functions
|
38 |
def generate_filename(sequence, ext="png"):
|
|
|
42 |
timestamp = datetime.now(central).strftime("%d%m%Y%H%M%S%p")
|
43 |
return f"{sequence}{timestamp}.{ext}"
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
def get_gallery_files(file_types):
|
46 |
return sorted([f for ext in file_types for f in glob.glob(f"*.{ext}")])
|
47 |
|
|
|
52 |
for idx, file in enumerate(media_files[:gallery_size * 2]):
|
53 |
with cols[idx % 2]:
|
54 |
st.image(Image.open(file), caption=file, use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
# Model Loaders (Simplified, CPU-focused)
|
57 |
+
def load_ocr_qwen2vl():
|
58 |
+
model_id = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
59 |
+
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
60 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(model_id, trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval()
|
61 |
+
return processor, model
|
62 |
+
|
63 |
+
def load_ocr_got():
|
64 |
+
model_id = "ucaslcl/GOT-OCR2_0"
|
65 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
66 |
+
model = AutoModel.from_pretrained(model_id, trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval()
|
67 |
+
return tokenizer, model
|
68 |
+
|
69 |
+
def load_image_gen():
|
70 |
+
model_id = "OFA-Sys/small-stable-diffusion-v0" # Small, CPU-friendly
|
71 |
+
pipeline = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32).to("cpu")
|
72 |
+
return pipeline
|
73 |
+
|
74 |
+
def load_line_drawer():
|
75 |
+
# Simplified from your Torch Space (assuming a UNet-like model for edge detection)
|
76 |
+
# Placeholder: Using OpenCV edge detection as a minimal CPU example
|
77 |
+
def edge_detection(image):
|
78 |
+
img_np = np.array(image.convert("RGB"))
|
79 |
+
gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY)
|
80 |
+
edges = cv2.Canny(gray, 100, 200)
|
81 |
+
return Image.fromarray(edges)
|
82 |
+
return edge_detection
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
# Main App
|
85 |
+
st.title("AI Vision Titans 🚀 (OCR, Gen, Drawings!)")
|
86 |
|
87 |
+
# Sidebar Gallery
|
88 |
+
st.sidebar.header("Captured Images 🎨")
|
89 |
gallery_size = st.sidebar.slider("Gallery Size", 1, 10, 4)
|
90 |
update_gallery()
|
91 |
|
92 |
+
st.sidebar.subheader("Action Logs 📜")
|
93 |
+
log_container = st.sidebar.empty()
|
94 |
+
with log_container:
|
95 |
+
for record in log_records:
|
96 |
+
st.write(f"{record.asctime} - {record.levelname} - {record.message}")
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
# Tabs
|
99 |
+
tab1, tab2, tab3, tab4 = st.tabs(["Camera Snap 📷", "Test OCR 🔍", "Test Image Gen 🎨", "Test Line Drawings ✏️"])
|
100 |
|
101 |
with tab1:
|
102 |
+
st.header("Camera Snap 📷")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
slice_count = st.number_input("Image Slice Count", min_value=1, max_value=20, value=10)
|
|
|
104 |
cols = st.columns(2)
|
105 |
with cols[0]:
|
106 |
st.subheader("Camera 0")
|
|
|
160 |
st.image(Image.open(frame), caption=frame, use_container_width=True)
|
161 |
|
162 |
with tab2:
|
163 |
+
st.header("Test OCR 🔍")
|
164 |
+
captured_images = get_gallery_files(["png"])
|
165 |
+
if captured_images:
|
166 |
+
selected_image = st.selectbox("Select Image", captured_images)
|
167 |
+
image = Image.open(selected_image)
|
168 |
+
st.image(image, caption="Input Image", use_container_width=True)
|
169 |
+
ocr_model = st.selectbox("Select OCR Model", ["Qwen2-VL-OCR-2B", "GOT-OCR2_0"])
|
170 |
+
prompt = st.text_area("Prompt", "Extract text from the image")
|
171 |
+
if st.button("Run OCR 🚀"):
|
172 |
+
if ocr_model == "Qwen2-VL-OCR-2B":
|
173 |
+
processor, model = load_ocr_qwen2vl()
|
174 |
+
inputs = processor(text=[prompt], images=[image], return_tensors="pt").to("cpu")
|
175 |
+
outputs = model.generate(**inputs, max_new_tokens=1024)
|
176 |
+
text = processor.decode(outputs[0], skip_special_tokens=True)
|
177 |
+
else: # GOT-OCR2_0
|
178 |
+
tokenizer, model = load_ocr_got()
|
179 |
+
with open(selected_image, "rb") as f:
|
180 |
+
img_bytes = f.read()
|
181 |
+
img = Image.open(BytesIO(img_bytes))
|
182 |
+
text = model.chat(tokenizer, img, ocr_type='ocr')
|
183 |
+
st.text_area("OCR Result", text, height=200)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
with tab3:
|
186 |
+
st.header("Test Image Gen 🎨")
|
187 |
+
captured_images = get_gallery_files(["png"])
|
188 |
+
if captured_images:
|
189 |
+
selected_image = st.selectbox("Select Image", captured_images)
|
190 |
+
image = Image.open(selected_image)
|
191 |
+
st.image(image, caption="Reference Image", use_container_width=True)
|
192 |
+
prompt = st.text_area("Prompt", "Generate a similar superhero image")
|
193 |
+
if st.button("Run Image Gen 🚀"):
|
194 |
+
pipeline = load_image_gen()
|
195 |
+
gen_image = pipeline(prompt, num_inference_steps=50).images[0]
|
196 |
+
st.image(gen_image, caption="Generated Image", use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
with tab4:
|
199 |
+
st.header("Test Line Drawings ✏️")
|
200 |
+
captured_images = get_gallery_files(["png"])
|
201 |
+
if captured_images:
|
202 |
+
selected_image = st.selectbox("Select Image", captured_images)
|
203 |
+
image = Image.open(selected_image)
|
204 |
+
st.image(image, caption="Input Image", use_container_width=True)
|
205 |
+
if st.button("Run Line Drawing 🚀"):
|
206 |
+
edge_fn = load_line_drawer()
|
207 |
+
line_drawing = edge_fn(image)
|
208 |
+
st.image(line_drawing, caption="Line Drawing", use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
|
210 |
# Initial Gallery Update
|
211 |
update_gallery()
|