awacke1 commited on
Commit
12df6ee
·
verified ·
1 Parent(s): 81afc2a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +98 -60
app.py CHANGED
@@ -5,12 +5,15 @@ import time
5
  import streamlit as st
6
  from PIL import Image
7
  import torch
8
- from transformers import AutoProcessor, Qwen2VLForConditionalGeneration, AutoTokenizer, AutoModel
9
  from diffusers import StableDiffusionPipeline
10
  import cv2
11
  import numpy as np
12
  import logging
 
 
13
  from io import BytesIO
 
14
 
15
  # Logging setup
16
  logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
@@ -35,6 +38,8 @@ st.set_page_config(
35
  # Initialize st.session_state
36
  if 'captured_images' not in st.session_state:
37
  st.session_state['captured_images'] = []
 
 
38
 
39
  # Utility Functions
40
  def generate_filename(sequence, ext="png"):
@@ -55,26 +60,26 @@ def update_gallery():
55
  with cols[idx % 2]:
56
  st.image(Image.open(file), caption=file, use_container_width=True)
57
 
58
- # Model Loaders (Simplified, CPU-focused)
59
  def load_ocr_qwen2vl():
60
  model_id = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
61
  processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
62
  model = Qwen2VLForConditionalGeneration.from_pretrained(model_id, trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval()
63
  return processor, model
64
 
65
- def load_ocr_got():
66
- model_id = "ucaslcl/GOT-OCR2_0"
67
- tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
68
- model = AutoModel.from_pretrained(model_id, trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval()
69
- return tokenizer, model
70
 
71
  def load_image_gen():
72
- model_id = "OFA-Sys/small-stable-diffusion-v0" # Small, CPU-friendly
73
  pipeline = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32).to("cpu")
74
  return pipeline
75
 
76
  def load_line_drawer():
77
- # Simplified OpenCV-based edge detection (CPU-friendly substitute for Torch Space UNet)
78
  def edge_detection(image):
79
  img_np = np.array(image.convert("RGB"))
80
  gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY)
@@ -82,6 +87,52 @@ def load_line_drawer():
82
  return Image.fromarray(edges)
83
  return edge_detection
84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85
  # Main App
86
  st.title("AI Vision Titans 🚀 (OCR, Gen, Drawings!)")
87
 
@@ -101,10 +152,9 @@ tab1, tab2, tab3, tab4 = st.tabs(["Camera Snap 📷", "Test OCR 🔍", "Test Ima
101
 
102
  with tab1:
103
  st.header("Camera Snap 📷")
104
- slice_count = st.number_input("Image Slice Count", min_value=1, max_value=20, value=10)
105
  cols = st.columns(2)
106
  with cols[0]:
107
- st.subheader("Camera 0")
108
  cam0_img = st.camera_input("Take a picture - Cam 0", key="cam0")
109
  if cam0_img:
110
  filename = generate_filename(0)
@@ -115,24 +165,7 @@ with tab1:
115
  logger.info(f"Saved snapshot from Camera 0: {filename}")
116
  st.session_state['captured_images'].append(filename)
117
  update_gallery()
118
- if st.button(f"Capture {slice_count} Frames - Cam 0 📸"):
119
- st.session_state['cam0_frames'] = []
120
- for i in range(slice_count):
121
- img = st.camera_input(f"Frame {i} - Cam 0", key=f"cam0_frame_{i}_{time.time()}")
122
- if img:
123
- filename = generate_filename(f"0_{i}")
124
- if filename not in st.session_state['captured_images']:
125
- with open(filename, "wb") as f:
126
- f.write(img.getvalue())
127
- st.session_state['cam0_frames'].append(filename)
128
- logger.info(f"Saved frame {i} from Camera 0: {filename}")
129
- time.sleep(1.0 / slice_count)
130
- st.session_state['captured_images'].extend([f for f in st.session_state['cam0_frames'] if f not in st.session_state['captured_images']])
131
- update_gallery()
132
- for frame in st.session_state['cam0_frames']:
133
- st.image(Image.open(frame), caption=frame, use_container_width=True)
134
  with cols[1]:
135
- st.subheader("Camera 1")
136
  cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1")
137
  if cam1_img:
138
  filename = generate_filename(1)
@@ -143,22 +176,28 @@ with tab1:
143
  logger.info(f"Saved snapshot from Camera 1: {filename}")
144
  st.session_state['captured_images'].append(filename)
145
  update_gallery()
146
- if st.button(f"Capture {slice_count} Frames - Cam 1 📸"):
147
- st.session_state['cam1_frames'] = []
148
- for i in range(slice_count):
149
- img = st.camera_input(f"Frame {i} - Cam 1", key=f"cam1_frame_{i}_{time.time()}")
 
 
 
 
 
 
150
  if img:
151
- filename = generate_filename(f"1_{i}")
152
  if filename not in st.session_state['captured_images']:
153
  with open(filename, "wb") as f:
154
  f.write(img.getvalue())
155
- st.session_state['cam1_frames'].append(filename)
156
- logger.info(f"Saved frame {i} from Camera 1: {filename}")
157
- time.sleep(1.0 / slice_count)
158
- st.session_state['captured_images'].extend([f for f in st.session_state['cam1_frames'] if f not in st.session_state['captured_images']])
159
- update_gallery()
160
- for frame in st.session_state['cam1_frames']:
161
- st.image(Image.open(frame), caption=frame, use_container_width=True)
162
 
163
  with tab2:
164
  st.header("Test OCR 🔍")
@@ -167,22 +206,15 @@ with tab2:
167
  selected_image = st.selectbox("Select Image", captured_images, key="ocr_select")
168
  image = Image.open(selected_image)
169
  st.image(image, caption="Input Image", use_container_width=True)
170
- ocr_model = st.selectbox("Select OCR Model", ["Qwen2-VL-OCR-2B", "GOT-OCR2_0"], key="ocr_model_select")
171
  prompt = st.text_area("Prompt", "Extract text from the image", key="ocr_prompt")
172
  if st.button("Run OCR 🚀", key="ocr_run"):
173
- if ocr_model == "Qwen2-VL-OCR-2B":
174
- processor, model = load_ocr_qwen2vl()
175
- # Simplified input: pass image and text directly
176
- inputs = processor(text=prompt, images=image, return_tensors="pt").to("cpu")
177
- outputs = model.generate(**inputs, max_new_tokens=1024)
178
- text = processor.batch_decode(outputs, skip_special_tokens=True)[0]
179
- else: # GOT-OCR2_0
180
- tokenizer, model = load_ocr_got()
181
- with open(selected_image, "rb") as f:
182
- img_bytes = f.read()
183
- img = Image.open(BytesIO(img_bytes))
184
- text = model.chat(tokenizer, img, ocr_type='ocr')
185
- st.text_area("OCR Result", text, height=200, key="ocr_result")
186
  else:
187
  st.warning("No images captured yet. Use Camera Snap first!")
188
 
@@ -195,9 +227,12 @@ with tab3:
195
  st.image(image, caption="Reference Image", use_container_width=True)
196
  prompt = st.text_area("Prompt", "Generate a similar superhero image", key="gen_prompt")
197
  if st.button("Run Image Gen 🚀", key="gen_run"):
198
- pipeline = load_image_gen()
199
- gen_image = pipeline(prompt, num_inference_steps=50).images[0]
200
- st.image(gen_image, caption="Generated Image", use_container_width=True)
 
 
 
201
  else:
202
  st.warning("No images captured yet. Use Camera Snap first!")
203
 
@@ -209,9 +244,12 @@ with tab4:
209
  image = Image.open(selected_image)
210
  st.image(image, caption="Input Image", use_container_width=True)
211
  if st.button("Run Line Drawing 🚀", key="line_run"):
212
- edge_fn = load_line_drawer()
213
- line_drawing = edge_fn(image)
214
- st.image(line_drawing, caption="Line Drawing", use_container_width=True)
 
 
 
215
  else:
216
  st.warning("No images captured yet. Use Camera Snap first!")
217
 
 
5
  import streamlit as st
6
  from PIL import Image
7
  import torch
8
+ from transformers import AutoProcessor, Qwen2VLForConditionalGeneration, AutoTokenizer, AutoModel, TrOCRProcessor, VisionEncoderDecoderModel
9
  from diffusers import StableDiffusionPipeline
10
  import cv2
11
  import numpy as np
12
  import logging
13
+ import asyncio
14
+ import aiofiles
15
  from io import BytesIO
16
+ import threading
17
 
18
  # Logging setup
19
  logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
 
38
  # Initialize st.session_state
39
  if 'captured_images' not in st.session_state:
40
  st.session_state['captured_images'] = []
41
+ if 'processing' not in st.session_state:
42
+ st.session_state['processing'] = {}
43
 
44
  # Utility Functions
45
  def generate_filename(sequence, ext="png"):
 
60
  with cols[idx % 2]:
61
  st.image(Image.open(file), caption=file, use_container_width=True)
62
 
63
+ # Model Loaders (Smaller, CPU-focused)
64
  def load_ocr_qwen2vl():
65
  model_id = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
66
  processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
67
  model = Qwen2VLForConditionalGeneration.from_pretrained(model_id, trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval()
68
  return processor, model
69
 
70
+ def load_ocr_trocr():
71
+ model_id = "microsoft/trocr-small-handwritten" # Smaller, ~250 MB
72
+ processor = TrOCRProcessor.from_pretrained(model_id)
73
+ model = VisionEncoderDecoderModel.from_pretrained(model_id, torch_dtype=torch.float32).to("cpu").eval()
74
+ return processor, model
75
 
76
  def load_image_gen():
77
+ model_id = "OFA-Sys/small-stable-diffusion-v0" # ~300 MB
78
  pipeline = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32).to("cpu")
79
  return pipeline
80
 
81
  def load_line_drawer():
82
+ # Simplified from your Torch Space (assuming edge detection)
83
  def edge_detection(image):
84
  img_np = np.array(image.convert("RGB"))
85
  gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY)
 
87
  return Image.fromarray(edges)
88
  return edge_detection
89
 
90
+ # Async Processing Functions
91
+ async def process_ocr(image, prompt, model_name, output_file):
92
+ start_time = time.time()
93
+ status = st.empty()
94
+ status.text(f"Processing {model_name} OCR... (0s)")
95
+ if model_name == "Qwen2-VL-OCR-2B":
96
+ processor, model = load_ocr_qwen2vl()
97
+ inputs = processor(text=prompt, images=image, return_tensors="pt").to("cpu")
98
+ outputs = model.generate(**inputs, max_new_tokens=1024)
99
+ text = processor.batch_decode(outputs, skip_special_tokens=True)[0]
100
+ else: # TrOCR
101
+ processor, model = load_ocr_trocr()
102
+ pixel_values = processor(images=image, return_tensors="pt").pixel_values.to("cpu")
103
+ outputs = model.generate(pixel_values)
104
+ text = processor.batch_decode(outputs, skip_special_tokens=True)[0]
105
+ elapsed = int(time.time() - start_time)
106
+ status.text(f"{model_name} OCR completed in {elapsed}s!")
107
+ async with aiofiles.open(output_file, "w") as f:
108
+ await f.write(text)
109
+ st.session_state['captured_images'].append(output_file)
110
+ return text
111
+
112
+ async def process_image_gen(prompt, output_file):
113
+ start_time = time.time()
114
+ status = st.empty()
115
+ status.text("Processing Image Gen... (0s)")
116
+ pipeline = load_image_gen()
117
+ gen_image = pipeline(prompt, num_inference_steps=20).images[0] # Reduced steps for speed
118
+ elapsed = int(time.time() - start_time)
119
+ status.text(f"Image Gen completed in {elapsed}s!")
120
+ gen_image.save(output_file)
121
+ st.session_state['captured_images'].append(output_file)
122
+ return gen_image
123
+
124
+ async def process_line_drawing(image, output_file):
125
+ start_time = time.time()
126
+ status = st.empty()
127
+ status.text("Processing Line Drawing... (0s)")
128
+ edge_fn = load_line_drawer()
129
+ line_drawing = edge_fn(image)
130
+ elapsed = int(time.time() - start_time)
131
+ status.text(f"Line Drawing completed in {elapsed}s!")
132
+ line_drawing.save(output_file)
133
+ st.session_state['captured_images'].append(output_file)
134
+ return line_drawing
135
+
136
  # Main App
137
  st.title("AI Vision Titans 🚀 (OCR, Gen, Drawings!)")
138
 
 
152
 
153
  with tab1:
154
  st.header("Camera Snap 📷")
155
+ st.subheader("Single Capture")
156
  cols = st.columns(2)
157
  with cols[0]:
 
158
  cam0_img = st.camera_input("Take a picture - Cam 0", key="cam0")
159
  if cam0_img:
160
  filename = generate_filename(0)
 
165
  logger.info(f"Saved snapshot from Camera 0: {filename}")
166
  st.session_state['captured_images'].append(filename)
167
  update_gallery()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168
  with cols[1]:
 
169
  cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1")
170
  if cam1_img:
171
  filename = generate_filename(1)
 
176
  logger.info(f"Saved snapshot from Camera 1: {filename}")
177
  st.session_state['captured_images'].append(filename)
178
  update_gallery()
179
+
180
+ st.subheader("Burst Capture")
181
+ slice_count = st.number_input("Number of Frames", min_value=1, max_value=20, value=10, key="burst_count")
182
+ if st.button("Start Burst Capture 📸"):
183
+ st.session_state['burst_frames'] = []
184
+ placeholder = st.empty()
185
+ for i in range(slice_count):
186
+ with placeholder.container():
187
+ st.write(f"Capturing frame {i+1}/{slice_count}...")
188
+ img = st.camera_input(f"Frame {i}", key=f"burst_{i}_{time.time()}")
189
  if img:
190
+ filename = generate_filename(f"burst_{i}")
191
  if filename not in st.session_state['captured_images']:
192
  with open(filename, "wb") as f:
193
  f.write(img.getvalue())
194
+ st.session_state['burst_frames'].append(filename)
195
+ logger.info(f"Saved burst frame {i}: {filename}")
196
+ st.image(Image.open(filename), caption=filename, use_container_width=True)
197
+ time.sleep(0.5) # Small delay for visibility
198
+ st.session_state['captured_images'].extend([f for f in st.session_state['burst_frames'] if f not in st.session_state['captured_images']])
199
+ update_gallery()
200
+ placeholder.success(f"Captured {len(st.session_state['burst_frames'])} frames!")
201
 
202
  with tab2:
203
  st.header("Test OCR 🔍")
 
206
  selected_image = st.selectbox("Select Image", captured_images, key="ocr_select")
207
  image = Image.open(selected_image)
208
  st.image(image, caption="Input Image", use_container_width=True)
209
+ ocr_model = st.selectbox("Select OCR Model", ["Qwen2-VL-OCR-2B", "TrOCR-Small"], key="ocr_model_select")
210
  prompt = st.text_area("Prompt", "Extract text from the image", key="ocr_prompt")
211
  if st.button("Run OCR 🚀", key="ocr_run"):
212
+ output_file = generate_filename("ocr_output", "txt")
213
+ st.session_state['processing']['ocr'] = True
214
+ result = asyncio.run(process_ocr(image, prompt, ocr_model, output_file))
215
+ st.text_area("OCR Result", result, height=200, key="ocr_result")
216
+ st.success(f"OCR output saved to {output_file}")
217
+ st.session_state['processing']['ocr'] = False
 
 
 
 
 
 
 
218
  else:
219
  st.warning("No images captured yet. Use Camera Snap first!")
220
 
 
227
  st.image(image, caption="Reference Image", use_container_width=True)
228
  prompt = st.text_area("Prompt", "Generate a similar superhero image", key="gen_prompt")
229
  if st.button("Run Image Gen 🚀", key="gen_run"):
230
+ output_file = generate_filename("gen_output", "png")
231
+ st.session_state['processing']['gen'] = True
232
+ result = asyncio.run(process_image_gen(prompt, output_file))
233
+ st.image(result, caption="Generated Image", use_container_width=True)
234
+ st.success(f"Image saved to {output_file}")
235
+ st.session_state['processing']['gen'] = False
236
  else:
237
  st.warning("No images captured yet. Use Camera Snap first!")
238
 
 
244
  image = Image.open(selected_image)
245
  st.image(image, caption="Input Image", use_container_width=True)
246
  if st.button("Run Line Drawing 🚀", key="line_run"):
247
+ output_file = generate_filename("line_output", "png")
248
+ st.session_state['processing']['line'] = True
249
+ result = asyncio.run(process_line_drawing(image, output_file))
250
+ st.image(result, caption="Line Drawing", use_container_width=True)
251
+ st.success(f"Line drawing saved to {output_file}")
252
+ st.session_state['processing']['line'] = False
253
  else:
254
  st.warning("No images captured yet. Use Camera Snap first!")
255