Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Create backup5.app.py
Browse files- backup5.app.py +263 -0
backup5.app.py
ADDED
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import os
|
3 |
+
import glob
|
4 |
+
import time
|
5 |
+
import streamlit as st
|
6 |
+
from PIL import Image
|
7 |
+
import torch
|
8 |
+
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration, AutoTokenizer, AutoModel, TrOCRProcessor, VisionEncoderDecoderModel
|
9 |
+
from diffusers import StableDiffusionPipeline
|
10 |
+
import cv2
|
11 |
+
import numpy as np
|
12 |
+
import logging
|
13 |
+
import asyncio
|
14 |
+
import aiofiles
|
15 |
+
from io import BytesIO
|
16 |
+
|
17 |
+
# Logging setup
|
18 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
19 |
+
logger = logging.getLogger(__name__)
|
20 |
+
log_records = []
|
21 |
+
|
22 |
+
class LogCaptureHandler(logging.Handler):
|
23 |
+
def emit(self, record):
|
24 |
+
log_records.append(record)
|
25 |
+
|
26 |
+
logger.addHandler(LogCaptureHandler())
|
27 |
+
|
28 |
+
# Page Configuration
|
29 |
+
st.set_page_config(
|
30 |
+
page_title="AI Vision Titans 🚀",
|
31 |
+
page_icon="🤖",
|
32 |
+
layout="wide",
|
33 |
+
initial_sidebar_state="expanded",
|
34 |
+
menu_items={'About': "AI Vision Titans: OCR, Image Gen, Line Drawings on CPU! 🌌"}
|
35 |
+
)
|
36 |
+
|
37 |
+
# Initialize st.session_state
|
38 |
+
if 'captured_images' not in st.session_state:
|
39 |
+
st.session_state['captured_images'] = []
|
40 |
+
if 'processing' not in st.session_state:
|
41 |
+
st.session_state['processing'] = {}
|
42 |
+
|
43 |
+
# Utility Functions
|
44 |
+
def generate_filename(sequence, ext="png"):
|
45 |
+
from datetime import datetime
|
46 |
+
import pytz
|
47 |
+
central = pytz.timezone('US/Central')
|
48 |
+
timestamp = datetime.now(central).strftime("%d%m%Y%H%M%S%p")
|
49 |
+
return f"{sequence}{timestamp}.{ext}"
|
50 |
+
|
51 |
+
def get_gallery_files(file_types):
|
52 |
+
return sorted([f for ext in file_types for f in glob.glob(f"*.{ext}")])
|
53 |
+
|
54 |
+
def update_gallery():
|
55 |
+
media_files = get_gallery_files(["png", "txt"])
|
56 |
+
if media_files:
|
57 |
+
cols = st.sidebar.columns(2)
|
58 |
+
for idx, file in enumerate(media_files[:gallery_size * 2]):
|
59 |
+
with cols[idx % 2]:
|
60 |
+
if file.endswith(".png"):
|
61 |
+
st.image(Image.open(file), caption=file, use_container_width=True)
|
62 |
+
elif file.endswith(".txt"):
|
63 |
+
with open(file, "r") as f:
|
64 |
+
st.text(f.read()[:50] + "..." if len(f.read()) > 50 else f.read(), help=file)
|
65 |
+
|
66 |
+
# Model Loaders (Smaller, CPU-focused)
|
67 |
+
def load_ocr_qwen2vl():
|
68 |
+
model_id = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
69 |
+
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
70 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(model_id, trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval()
|
71 |
+
return processor, model
|
72 |
+
|
73 |
+
def load_ocr_trocr():
|
74 |
+
model_id = "microsoft/trocr-small-handwritten" # ~250 MB
|
75 |
+
processor = TrOCRProcessor.from_pretrained(model_id)
|
76 |
+
model = VisionEncoderDecoderModel.from_pretrained(model_id, torch_dtype=torch.float32).to("cpu").eval()
|
77 |
+
return processor, model
|
78 |
+
|
79 |
+
def load_image_gen():
|
80 |
+
model_id = "OFA-Sys/small-stable-diffusion-v0" # ~300 MB
|
81 |
+
pipeline = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32).to("cpu")
|
82 |
+
return pipeline
|
83 |
+
|
84 |
+
def load_line_drawer():
|
85 |
+
# Simplified OpenCV-based edge detection (CPU-friendly substitute for Torch Space UNet)
|
86 |
+
def edge_detection(image):
|
87 |
+
img_np = np.array(image.convert("RGB"))
|
88 |
+
gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY)
|
89 |
+
edges = cv2.Canny(gray, 100, 200)
|
90 |
+
return Image.fromarray(edges)
|
91 |
+
return edge_detection
|
92 |
+
|
93 |
+
# Async Processing Functions
|
94 |
+
async def process_ocr(image, prompt, model_name, output_file):
|
95 |
+
start_time = time.time()
|
96 |
+
status = st.empty()
|
97 |
+
status.text(f"Processing {model_name} OCR... (0s)")
|
98 |
+
if model_name == "Qwen2-VL-OCR-2B":
|
99 |
+
processor, model = load_ocr_qwen2vl()
|
100 |
+
# Corrected input format: apply chat template
|
101 |
+
messages = [{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": prompt}]}]
|
102 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
103 |
+
inputs = processor(text=[text], images=[image], return_tensors="pt", padding=True).to("cpu")
|
104 |
+
outputs = model.generate(**inputs, max_new_tokens=1024)
|
105 |
+
result = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
106 |
+
else: # TrOCR
|
107 |
+
processor, model = load_ocr_trocr()
|
108 |
+
pixel_values = processor(images=image, return_tensors="pt").pixel_values.to("cpu")
|
109 |
+
outputs = model.generate(pixel_values)
|
110 |
+
result = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
111 |
+
elapsed = int(time.time() - start_time)
|
112 |
+
status.text(f"{model_name} OCR completed in {elapsed}s!")
|
113 |
+
async with aiofiles.open(output_file, "w") as f:
|
114 |
+
await f.write(result)
|
115 |
+
st.session_state['captured_images'].append(output_file)
|
116 |
+
return result
|
117 |
+
|
118 |
+
async def process_image_gen(prompt, output_file):
|
119 |
+
start_time = time.time()
|
120 |
+
status = st.empty()
|
121 |
+
status.text("Processing Image Gen... (0s)")
|
122 |
+
pipeline = load_image_gen()
|
123 |
+
gen_image = pipeline(prompt, num_inference_steps=20).images[0] # Reduced steps for speed
|
124 |
+
elapsed = int(time.time() - start_time)
|
125 |
+
status.text(f"Image Gen completed in {elapsed}s!")
|
126 |
+
gen_image.save(output_file)
|
127 |
+
st.session_state['captured_images'].append(output_file)
|
128 |
+
return gen_image
|
129 |
+
|
130 |
+
async def process_line_drawing(image, output_file):
|
131 |
+
start_time = time.time()
|
132 |
+
status = st.empty()
|
133 |
+
status.text("Processing Line Drawing... (0s)")
|
134 |
+
edge_fn = load_line_drawer()
|
135 |
+
line_drawing = edge_fn(image)
|
136 |
+
elapsed = int(time.time() - start_time)
|
137 |
+
status.text(f"Line Drawing completed in {elapsed}s!")
|
138 |
+
line_drawing.save(output_file)
|
139 |
+
st.session_state['captured_images'].append(output_file)
|
140 |
+
return line_drawing
|
141 |
+
|
142 |
+
# Main App
|
143 |
+
st.title("AI Vision Titans 🚀 (OCR, Gen, Drawings!)")
|
144 |
+
|
145 |
+
# Sidebar Gallery
|
146 |
+
st.sidebar.header("Captured Images 🎨")
|
147 |
+
gallery_size = st.sidebar.slider("Gallery Size", 1, 10, 4)
|
148 |
+
update_gallery()
|
149 |
+
|
150 |
+
st.sidebar.subheader("Action Logs 📜")
|
151 |
+
log_container = st.sidebar.empty()
|
152 |
+
with log_container:
|
153 |
+
for record in log_records:
|
154 |
+
st.write(f"{record.asctime} - {record.levelname} - {record.message}")
|
155 |
+
|
156 |
+
# Tabs
|
157 |
+
tab1, tab2, tab3, tab4 = st.tabs(["Camera Snap 📷", "Test OCR 🔍", "Test Image Gen 🎨", "Test Line Drawings ✏️"])
|
158 |
+
|
159 |
+
with tab1:
|
160 |
+
st.header("Camera Snap 📷")
|
161 |
+
st.subheader("Single Capture")
|
162 |
+
cols = st.columns(2)
|
163 |
+
with cols[0]:
|
164 |
+
cam0_img = st.camera_input("Take a picture - Cam 0", key="cam0")
|
165 |
+
if cam0_img:
|
166 |
+
filename = generate_filename(0)
|
167 |
+
if filename not in st.session_state['captured_images']:
|
168 |
+
with open(filename, "wb") as f:
|
169 |
+
f.write(cam0_img.getvalue())
|
170 |
+
st.image(Image.open(filename), caption=filename, use_container_width=True)
|
171 |
+
logger.info(f"Saved snapshot from Camera 0: {filename}")
|
172 |
+
st.session_state['captured_images'].append(filename)
|
173 |
+
update_gallery()
|
174 |
+
with cols[1]:
|
175 |
+
cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1")
|
176 |
+
if cam1_img:
|
177 |
+
filename = generate_filename(1)
|
178 |
+
if filename not in st.session_state['captured_images']:
|
179 |
+
with open(filename, "wb") as f:
|
180 |
+
f.write(cam1_img.getvalue())
|
181 |
+
st.image(Image.open(filename), caption=filename, use_container_width=True)
|
182 |
+
logger.info(f"Saved snapshot from Camera 1: {filename}")
|
183 |
+
st.session_state['captured_images'].append(filename)
|
184 |
+
update_gallery()
|
185 |
+
|
186 |
+
st.subheader("Burst Capture")
|
187 |
+
slice_count = st.number_input("Number of Frames", min_value=1, max_value=20, value=10, key="burst_count")
|
188 |
+
if st.button("Start Burst Capture 📸"):
|
189 |
+
st.session_state['burst_frames'] = []
|
190 |
+
placeholder = st.empty()
|
191 |
+
for i in range(slice_count):
|
192 |
+
with placeholder.container():
|
193 |
+
st.write(f"Capturing frame {i+1}/{slice_count}...")
|
194 |
+
img = st.camera_input(f"Frame {i}", key=f"burst_{i}_{time.time()}")
|
195 |
+
if img:
|
196 |
+
filename = generate_filename(f"burst_{i}")
|
197 |
+
if filename not in st.session_state['captured_images']:
|
198 |
+
with open(filename, "wb") as f:
|
199 |
+
f.write(img.getvalue())
|
200 |
+
st.session_state['burst_frames'].append(filename)
|
201 |
+
logger.info(f"Saved burst frame {i}: {filename}")
|
202 |
+
st.image(Image.open(filename), caption=filename, use_container_width=True)
|
203 |
+
time.sleep(0.5) # Small delay for visibility
|
204 |
+
st.session_state['captured_images'].extend([f for f in st.session_state['burst_frames'] if f not in st.session_state['captured_images']])
|
205 |
+
update_gallery()
|
206 |
+
placeholder.success(f"Captured {len(st.session_state['burst_frames'])} frames!")
|
207 |
+
|
208 |
+
with tab2:
|
209 |
+
st.header("Test OCR 🔍")
|
210 |
+
captured_images = get_gallery_files(["png"])
|
211 |
+
if captured_images:
|
212 |
+
selected_image = st.selectbox("Select Image", captured_images, key="ocr_select")
|
213 |
+
image = Image.open(selected_image)
|
214 |
+
st.image(image, caption="Input Image", use_container_width=True)
|
215 |
+
ocr_model = st.selectbox("Select OCR Model", ["Qwen2-VL-OCR-2B", "TrOCR-Small"], key="ocr_model_select")
|
216 |
+
prompt = st.text_area("Prompt", "Extract text from the image", key="ocr_prompt")
|
217 |
+
if st.button("Run OCR 🚀", key="ocr_run"):
|
218 |
+
output_file = generate_filename("ocr_output", "txt")
|
219 |
+
st.session_state['processing']['ocr'] = True
|
220 |
+
result = asyncio.run(process_ocr(image, prompt, ocr_model, output_file))
|
221 |
+
st.text_area("OCR Result", result, height=200, key="ocr_result")
|
222 |
+
st.success(f"OCR output saved to {output_file}")
|
223 |
+
st.session_state['processing']['ocr'] = False
|
224 |
+
else:
|
225 |
+
st.warning("No images captured yet. Use Camera Snap first!")
|
226 |
+
|
227 |
+
with tab3:
|
228 |
+
st.header("Test Image Gen 🎨")
|
229 |
+
captured_images = get_gallery_files(["png"])
|
230 |
+
if captured_images:
|
231 |
+
selected_image = st.selectbox("Select Image", captured_images, key="gen_select")
|
232 |
+
image = Image.open(selected_image)
|
233 |
+
st.image(image, caption="Reference Image", use_container_width=True)
|
234 |
+
prompt = st.text_area("Prompt", "Generate a similar superhero image", key="gen_prompt")
|
235 |
+
if st.button("Run Image Gen 🚀", key="gen_run"):
|
236 |
+
output_file = generate_filename("gen_output", "png")
|
237 |
+
st.session_state['processing']['gen'] = True
|
238 |
+
result = asyncio.run(process_image_gen(prompt, output_file))
|
239 |
+
st.image(result, caption="Generated Image", use_container_width=True)
|
240 |
+
st.success(f"Image saved to {output_file}")
|
241 |
+
st.session_state['processing']['gen'] = False
|
242 |
+
else:
|
243 |
+
st.warning("No images captured yet. Use Camera Snap first!")
|
244 |
+
|
245 |
+
with tab4:
|
246 |
+
st.header("Test Line Drawings ✏️")
|
247 |
+
captured_images = get_gallery_files(["png"])
|
248 |
+
if captured_images:
|
249 |
+
selected_image = st.selectbox("Select Image", captured_images, key="line_select")
|
250 |
+
image = Image.open(selected_image)
|
251 |
+
st.image(image, caption="Input Image", use_container_width=True)
|
252 |
+
if st.button("Run Line Drawing 🚀", key="line_run"):
|
253 |
+
output_file = generate_filename("line_output", "png")
|
254 |
+
st.session_state['processing']['line'] = True
|
255 |
+
result = asyncio.run(process_line_drawing(image, output_file))
|
256 |
+
st.image(result, caption="Line Drawing", use_container_width=True)
|
257 |
+
st.success(f"Line drawing saved to {output_file}")
|
258 |
+
st.session_state['processing']['line'] = False
|
259 |
+
else:
|
260 |
+
st.warning("No images captured yet. Use Camera Snap first!")
|
261 |
+
|
262 |
+
# Initial Gallery Update
|
263 |
+
update_gallery()
|