Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
@@ -13,7 +13,7 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel
|
|
13 |
from diffusers import StableDiffusionPipeline
|
14 |
from torch.utils.data import Dataset, DataLoader
|
15 |
import csv
|
16 |
-
|
17 |
import requests
|
18 |
from PIL import Image
|
19 |
import cv2
|
@@ -342,6 +342,77 @@ def download_pdf(url, output_path):
|
|
342 |
logger.error(f"Failed to download {url}: {e}")
|
343 |
return False
|
344 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
345 |
# Mock Search Tool for RAG
|
346 |
def mock_search(query: str) -> str:
|
347 |
if "superhero" in query.lower():
|
@@ -423,73 +494,6 @@ def calculate_cargo_travel_time(origin_coords: Tuple[float, float], destination_
|
|
423 |
flight_time = (actual_distance / cruising_speed_kmh) + 1.0
|
424 |
return round(flight_time, 2)
|
425 |
|
426 |
-
# Async Processing Functions
|
427 |
-
async def process_pdf_snapshot(pdf_path, mode="thumbnail"):
|
428 |
-
start_time = time.time()
|
429 |
-
status = st.empty()
|
430 |
-
status.text(f"Processing PDF Snapshot ({mode})... (0s)")
|
431 |
-
try:
|
432 |
-
images = convert_from_path(pdf_path, dpi=200)
|
433 |
-
output_files = []
|
434 |
-
if mode == "thumbnail":
|
435 |
-
img = images[0].resize((int(images[0].width * 0.5), int(images[0].height * 0.5)), Image.Resampling.LANCZOS)
|
436 |
-
output_file = generate_filename("thumbnail", "png")
|
437 |
-
img.save(output_file)
|
438 |
-
output_files.append(output_file)
|
439 |
-
elif mode == "twopage":
|
440 |
-
for i in range(min(2, len(images))):
|
441 |
-
output_file = generate_filename(f"twopage_{i}", "png")
|
442 |
-
images[i].save(output_file)
|
443 |
-
output_files.append(output_file)
|
444 |
-
elapsed = int(time.time() - start_time)
|
445 |
-
status.text(f"PDF Snapshot ({mode}) completed in {elapsed}s!")
|
446 |
-
update_gallery()
|
447 |
-
return output_files
|
448 |
-
except Exception as e:
|
449 |
-
status.error(f"Failed to process PDF: {str(e)}. Install poppler-utils (e.g., 'sudo apt-get install poppler-utils' on Ubuntu) and ensure it's in PATH.")
|
450 |
-
return []
|
451 |
-
|
452 |
-
async def process_ocr(image, output_file):
|
453 |
-
start_time = time.time()
|
454 |
-
status = st.empty()
|
455 |
-
status.text("Processing GOT-OCR2_0... (0s)")
|
456 |
-
tokenizer = AutoTokenizer.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True)
|
457 |
-
model = AutoModel.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval()
|
458 |
-
result = model.chat(tokenizer, image, ocr_type='ocr')
|
459 |
-
elapsed = int(time.time() - start_time)
|
460 |
-
status.text(f"GOT-OCR2_0 completed in {elapsed}s!")
|
461 |
-
async with aiofiles.open(output_file, "w") as f:
|
462 |
-
await f.write(result)
|
463 |
-
update_gallery()
|
464 |
-
return result
|
465 |
-
|
466 |
-
async def process_image_gen(prompt, output_file):
|
467 |
-
start_time = time.time()
|
468 |
-
status = st.empty()
|
469 |
-
status.text("Processing Image Gen... (0s)")
|
470 |
-
pipeline = StableDiffusionPipeline.from_pretrained("OFA-Sys/small-stable-diffusion-v0", torch_dtype=torch.float32).to("cpu")
|
471 |
-
gen_image = pipeline(prompt, num_inference_steps=20).images[0]
|
472 |
-
elapsed = int(time.time() - start_time)
|
473 |
-
status.text(f"Image Gen completed in {elapsed}s!")
|
474 |
-
gen_image.save(output_file)
|
475 |
-
update_gallery()
|
476 |
-
return gen_image
|
477 |
-
|
478 |
-
async def process_custom_diffusion(images, output_file, model_name):
|
479 |
-
start_time = time.time()
|
480 |
-
status = st.empty()
|
481 |
-
status.text(f"Training {model_name}... (0s)")
|
482 |
-
unet = TinyUNet()
|
483 |
-
diffusion = TinyDiffusion(unet)
|
484 |
-
diffusion.train(images)
|
485 |
-
gen_image = diffusion.generate()
|
486 |
-
upscaled_image = diffusion.upscale(gen_image, scale_factor=2)
|
487 |
-
elapsed = int(time.time() - start_time)
|
488 |
-
status.text(f"{model_name} completed in {elapsed}s!")
|
489 |
-
upscaled_image.save(output_file)
|
490 |
-
update_gallery()
|
491 |
-
return upscaled_image
|
492 |
-
|
493 |
# Main App
|
494 |
st.title("AI Vision & SFT Titans 🚀")
|
495 |
|
|
|
13 |
from diffusers import StableDiffusionPipeline
|
14 |
from torch.utils.data import Dataset, DataLoader
|
15 |
import csv
|
16 |
+
import fitz # PyMuPDF, pure Python library
|
17 |
import requests
|
18 |
from PIL import Image
|
19 |
import cv2
|
|
|
342 |
logger.error(f"Failed to download {url}: {e}")
|
343 |
return False
|
344 |
|
345 |
+
# Async Processing Functions
|
346 |
+
async def process_pdf_snapshot(pdf_path, mode="thumbnail"):
|
347 |
+
start_time = time.time()
|
348 |
+
status = st.empty()
|
349 |
+
status.text(f"Processing PDF Snapshot ({mode})... (0s)")
|
350 |
+
try:
|
351 |
+
doc = fitz.open(pdf_path)
|
352 |
+
output_files = []
|
353 |
+
if mode == "thumbnail":
|
354 |
+
page = doc[0]
|
355 |
+
pix = page.get_pixmap(matrix=fitz.Matrix(0.5, 0.5)) # 50% scale
|
356 |
+
output_file = generate_filename("thumbnail", "png")
|
357 |
+
pix.save(output_file)
|
358 |
+
output_files.append(output_file)
|
359 |
+
elif mode == "twopage":
|
360 |
+
for i in range(min(2, len(doc))):
|
361 |
+
page = doc[i]
|
362 |
+
pix = page.get_pixmap(matrix=fitz.Matrix(1.0, 1.0)) # Full scale
|
363 |
+
output_file = generate_filename(f"twopage_{i}", "png")
|
364 |
+
pix.save(output_file)
|
365 |
+
output_files.append(output_file)
|
366 |
+
doc.close()
|
367 |
+
elapsed = int(time.time() - start_time)
|
368 |
+
status.text(f"PDF Snapshot ({mode}) completed in {elapsed}s!")
|
369 |
+
update_gallery()
|
370 |
+
return output_files
|
371 |
+
except Exception as e:
|
372 |
+
status.error(f"Failed to process PDF: {str(e)}")
|
373 |
+
return []
|
374 |
+
|
375 |
+
async def process_ocr(image, output_file):
|
376 |
+
start_time = time.time()
|
377 |
+
status = st.empty()
|
378 |
+
status.text("Processing GOT-OCR2_0... (0s)")
|
379 |
+
tokenizer = AutoTokenizer.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True)
|
380 |
+
model = AutoModel.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval()
|
381 |
+
result = model.chat(tokenizer, image, ocr_type='ocr')
|
382 |
+
elapsed = int(time.time() - start_time)
|
383 |
+
status.text(f"GOT-OCR2_0 completed in {elapsed}s!")
|
384 |
+
async with aiofiles.open(output_file, "w") as f:
|
385 |
+
await f.write(result)
|
386 |
+
update_gallery()
|
387 |
+
return result
|
388 |
+
|
389 |
+
async def process_image_gen(prompt, output_file):
|
390 |
+
start_time = time.time()
|
391 |
+
status = st.empty()
|
392 |
+
status.text("Processing Image Gen... (0s)")
|
393 |
+
pipeline = StableDiffusionPipeline.from_pretrained("OFA-Sys/small-stable-diffusion-v0", torch_dtype=torch.float32).to("cpu")
|
394 |
+
gen_image = pipeline(prompt, num_inference_steps=20).images[0]
|
395 |
+
elapsed = int(time.time() - start_time)
|
396 |
+
status.text(f"Image Gen completed in {elapsed}s!")
|
397 |
+
gen_image.save(output_file)
|
398 |
+
update_gallery()
|
399 |
+
return gen_image
|
400 |
+
|
401 |
+
async def process_custom_diffusion(images, output_file, model_name):
|
402 |
+
start_time = time.time()
|
403 |
+
status = st.empty()
|
404 |
+
status.text(f"Training {model_name}... (0s)")
|
405 |
+
unet = TinyUNet()
|
406 |
+
diffusion = TinyDiffusion(unet)
|
407 |
+
diffusion.train(images)
|
408 |
+
gen_image = diffusion.generate()
|
409 |
+
upscaled_image = diffusion.upscale(gen_image, scale_factor=2)
|
410 |
+
elapsed = int(time.time() - start_time)
|
411 |
+
status.text(f"{model_name} completed in {elapsed}s!")
|
412 |
+
upscaled_image.save(output_file)
|
413 |
+
update_gallery()
|
414 |
+
return upscaled_image
|
415 |
+
|
416 |
# Mock Search Tool for RAG
|
417 |
def mock_search(query: str) -> str:
|
418 |
if "superhero" in query.lower():
|
|
|
494 |
flight_time = (actual_distance / cruising_speed_kmh) + 1.0
|
495 |
return round(flight_time, 2)
|
496 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
497 |
# Main App
|
498 |
st.title("AI Vision & SFT Titans 🚀")
|
499 |
|