awacke1 commited on
Commit
615bd5f
·
verified ·
1 Parent(s): 44308c6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +408 -680
app.py CHANGED
@@ -1,46 +1,46 @@
1
- #!/usr/bin/env python3
2
- import os
3
- import glob
4
  import base64
5
- import time
 
 
 
 
 
 
 
 
6
  import shutil
7
  import streamlit as st
8
- import pandas as pd
9
  import torch
10
- import torch.nn as nn
11
- import torch.nn.functional as F
12
- from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel
 
13
  from diffusers import StableDiffusionPipeline
14
- from torch.utils.data import Dataset, DataLoader
15
- import csv
16
- import fitz # PyMuPDF
17
- import requests
18
- from PIL import Image
19
- import cv2
20
- import numpy as np
21
- import logging
22
- import asyncio
23
- import aiofiles
24
  from io import BytesIO
25
- from dataclasses import dataclass
26
- from typing import Optional, Tuple
27
- import zipfile
28
- import math
29
- import random
30
- import re
 
 
 
 
31
 
32
- # Logging setup with custom buffer
33
  logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
34
  logger = logging.getLogger(__name__)
35
  log_records = []
36
-
37
  class LogCaptureHandler(logging.Handler):
38
  def emit(self, record):
39
  log_records.append(record)
40
-
41
  logger.addHandler(LogCaptureHandler())
42
 
43
- # Page Configuration
44
  st.set_page_config(
45
  page_title="AI Vision & SFT Titans 🚀",
46
  page_icon="🤖",
@@ -53,22 +53,24 @@ st.set_page_config(
53
  }
54
  )
55
 
56
- # Initialize st.session_state
57
- if 'history' not in st.session_state:
58
- st.session_state['history'] = [] # Flat list for history
59
- if 'builder' not in st.session_state:
60
- st.session_state['builder'] = None
61
- if 'model_loaded' not in st.session_state:
62
- st.session_state['model_loaded'] = False
63
- if 'processing' not in st.session_state:
64
- st.session_state['processing'] = {}
65
- if 'pdf_checkboxes' not in st.session_state:
66
- st.session_state['pdf_checkboxes'] = {} # Shared cache for PDF checkboxes
67
- if 'downloaded_pdfs' not in st.session_state:
68
- st.session_state['downloaded_pdfs'] = {} # Cache for downloaded PDF paths
69
-
70
- # Model Configuration Classes
71
- @dataclass
 
 
72
  class ModelConfig:
73
  name: str
74
  base_model: str
@@ -76,138 +78,31 @@ class ModelConfig:
76
  domain: Optional[str] = None
77
  model_type: str = "causal_lm"
78
  @property
79
- def model_path(self):
80
  return f"models/{self.name}"
81
 
82
- @dataclass
83
  class DiffusionConfig:
84
  name: str
85
  base_model: str
86
  size: str
 
87
  @property
88
  def model_path(self):
89
  return f"diffusion_models/{self.name}"
90
 
91
- # Datasets
92
- class SFTDataset(Dataset):
93
- def __init__(self, data, tokenizer, max_length=128):
94
- self.data = data
95
- self.tokenizer = tokenizer
96
- self.max_length = max_length
97
- def __len__(self):
98
- return len(self.data)
99
- def __getitem__(self, idx):
100
- prompt = self.data[idx]["prompt"]
101
- response = self.data[idx]["response"]
102
- full_text = f"{prompt} {response}"
103
- full_encoding = self.tokenizer(full_text, max_length=self.max_length, padding="max_length", truncation=True, return_tensors="pt")
104
- prompt_encoding = self.tokenizer(prompt, max_length=self.max_length, padding=False, truncation=True, return_tensors="pt")
105
- input_ids = full_encoding["input_ids"].squeeze()
106
- attention_mask = full_encoding["attention_mask"].squeeze()
107
- labels = input_ids.clone()
108
- prompt_len = prompt_encoding["input_ids"].shape[1]
109
- if prompt_len < self.max_length:
110
- labels[:prompt_len] = -100
111
- return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels}
112
-
113
- class DiffusionDataset(Dataset):
114
- def __init__(self, images, texts):
115
- self.images = images
116
- self.texts = texts
117
- def __len__(self):
118
- return len(self.images)
119
- def __getitem__(self, idx):
120
- return {"image": self.images[idx], "text": self.texts[idx]}
121
-
122
- class TinyDiffusionDataset(Dataset):
123
- def __init__(self, images):
124
- self.images = [torch.tensor(np.array(img.convert("RGB")).transpose(2, 0, 1), dtype=torch.float32) / 255.0 for img in images]
125
- def __len__(self):
126
- return len(self.images)
127
- def __getitem__(self, idx):
128
- return self.images[idx]
129
-
130
- # Custom Tiny Diffusion Model
131
- class TinyUNet(nn.Module):
132
- def __init__(self, in_channels=3, out_channels=3):
133
- super(TinyUNet, self).__init__()
134
- self.down1 = nn.Conv2d(in_channels, 32, 3, padding=1)
135
- self.down2 = nn.Conv2d(32, 64, 3, padding=1, stride=2)
136
- self.mid = nn.Conv2d(64, 128, 3, padding=1)
137
- self.up1 = nn.ConvTranspose2d(128, 64, 3, stride=2, padding=1, output_padding=1)
138
- self.up2 = nn.Conv2d(64 + 32, 32, 3, padding=1)
139
- self.out = nn.Conv2d(32, out_channels, 3, padding=1)
140
- self.time_embed = nn.Linear(1, 64)
141
-
142
- def forward(self, x, t):
143
- t_embed = F.relu(self.time_embed(t.unsqueeze(-1)))
144
- t_embed = t_embed.view(t_embed.size(0), t_embed.size(1), 1, 1)
145
-
146
- x1 = F.relu(self.down1(x))
147
- x2 = F.relu(self.down2(x1))
148
- x_mid = F.relu(self.mid(x2)) + t_embed
149
- x_up1 = F.relu(self.up1(x_mid))
150
- x_up2 = F.relu(self.up2(torch.cat([x_up1, x1], dim=1)))
151
- return self.out(x_up2)
152
-
153
- class TinyDiffusion:
154
- def __init__(self, model, timesteps=100):
155
- self.model = model
156
- self.timesteps = timesteps
157
- self.beta = torch.linspace(0.0001, 0.02, timesteps)
158
- self.alpha = 1 - self.beta
159
- self.alpha_cumprod = torch.cumprod(self.alpha, dim=0)
160
-
161
- def train(self, images, epochs=50):
162
- dataset = TinyDiffusionDataset(images)
163
- dataloader = DataLoader(dataset, batch_size=1, shuffle=True)
164
- optimizer = torch.optim.Adam(self.model.parameters(), lr=1e-4)
165
- device = torch.device("cpu")
166
- self.model.to(device)
167
- for epoch in range(epochs):
168
- total_loss = 0
169
- for x in dataloader:
170
- x = x.to(device)
171
- t = torch.randint(0, self.timesteps, (x.size(0),), device=device).float()
172
- noise = torch.randn_like(x)
173
- alpha_t = self.alpha_cumprod[t.long()].view(-1, 1, 1, 1)
174
- x_noisy = torch.sqrt(alpha_t) * x + torch.sqrt(1 - alpha_t) * noise
175
- pred_noise = self.model(x_noisy, t)
176
- loss = F.mse_loss(pred_noise, noise)
177
- optimizer.zero_grad()
178
- loss.backward()
179
- optimizer.step()
180
- total_loss += loss.item()
181
- logger.info(f"Epoch {epoch + 1}/{epochs}, Loss: {total_loss / len(dataloader):.4f}")
182
- return self
183
-
184
- def generate(self, size=(64, 64), steps=100):
185
- device = torch.device("cpu")
186
- x = torch.randn(1, 3, size[0], size[1], device=device)
187
- for t in reversed(range(steps)):
188
- t_tensor = torch.full((1,), t, device=device, dtype=torch.float32)
189
- alpha_t = self.alpha_cumprod[t].view(-1, 1, 1, 1)
190
- pred_noise = self.model(x, t_tensor)
191
- x = (x - (1 - self.alpha[t]) / torch.sqrt(1 - alpha_t) * pred_noise) / torch.sqrt(self.alpha[t])
192
- if t > 0:
193
- x += torch.sqrt(self.beta[t]) * torch.randn_like(x)
194
- x = torch.clamp(x * 255, 0, 255).byte()
195
- return Image.fromarray(x.squeeze(0).permute(1, 2, 0).cpu().numpy())
196
-
197
- def upscale(self, image, scale_factor=2):
198
- img_tensor = torch.tensor(np.array(image.convert("RGB")).transpose(2, 0, 1), dtype=torch.float32).unsqueeze(0) / 255.0
199
- upscaled = F.interpolate(img_tensor, scale_factor=scale_factor, mode='bilinear', align_corners=False)
200
- upscaled = torch.clamp(upscaled * 255, 0, 255).byte()
201
- return Image.fromarray(upscaled.squeeze(0).permute(1, 2, 0).cpu().numpy())
202
-
203
- # Model Builders
204
  class ModelBuilder:
205
  def __init__(self):
206
  self.config = None
207
  self.model = None
208
  self.tokenizer = None
209
- self.sft_data = None
210
- self.jokes = ["Why did the AI go to therapy? Too many layers to unpack! 😂", "Training complete! Time for a binary coffee break. ☕"]
 
 
 
 
 
211
  def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
212
  with st.spinner(f"Loading {model_path}... ⏳"):
213
  self.model = AutoModelForCausalLM.from_pretrained(model_path)
@@ -219,53 +114,12 @@ class ModelBuilder:
219
  self.model.to("cuda" if torch.cuda.is_available() else "cpu")
220
  st.success(f"Model loaded! 🎉 {random.choice(self.jokes)}")
221
  return self
222
- def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4):
223
- self.sft_data = []
224
- with open(csv_path, "r") as f:
225
- reader = csv.DictReader(f)
226
- for row in reader:
227
- self.sft_data.append({"prompt": row["prompt"], "response": row["response"]})
228
- dataset = SFTDataset(self.sft_data, self.tokenizer)
229
- dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
230
- optimizer = torch.optim.AdamW(self.model.parameters(), lr=2e-5)
231
- self.model.train()
232
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
233
- self.model.to(device)
234
- for epoch in range(epochs):
235
- with st.spinner(f"Training epoch {epoch + 1}/{epochs}... ⚙️"):
236
- total_loss = 0
237
- for batch in dataloader:
238
- optimizer.zero_grad()
239
- input_ids = batch["input_ids"].to(device)
240
- attention_mask = batch["attention_mask"].to(device)
241
- labels = batch["labels"].to(device)
242
- outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
243
- loss = outputs.loss
244
- loss.backward()
245
- optimizer.step()
246
- total_loss += loss.item()
247
- st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
248
- st.success(f"SFT Fine-tuning completed! 🎉 {random.choice(self.jokes)}")
249
- return self
250
  def save_model(self, path: str):
251
  with st.spinner("Saving model... 💾"):
252
  os.makedirs(os.path.dirname(path), exist_ok=True)
253
  self.model.save_pretrained(path)
254
  self.tokenizer.save_pretrained(path)
255
  st.success(f"Model saved at {path}! ✅")
256
- def evaluate(self, prompt: str, status_container=None):
257
- self.model.eval()
258
- if status_container:
259
- status_container.write("Preparing to evaluate... 🧠")
260
- try:
261
- with torch.no_grad():
262
- inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device)
263
- outputs = self.model.generate(**inputs, max_new_tokens=50, do_sample=True, top_p=0.95, temperature=0.7)
264
- return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
265
- except Exception as e:
266
- if status_container:
267
- status_container.error(f"Oops! Something broke: {str(e)} 💥")
268
- return f"Error: {str(e)}"
269
 
270
  class DiffusionBuilder:
271
  def __init__(self):
@@ -276,32 +130,7 @@ class DiffusionBuilder:
276
  self.pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cpu")
277
  if config:
278
  self.config = config
279
- st.success(f"Diffusion model loaded! 🎨")
280
- return self
281
- def fine_tune_sft(self, images, texts, epochs=3):
282
- dataset = DiffusionDataset(images, texts)
283
- dataloader = DataLoader(dataset, batch_size=1, shuffle=True)
284
- optimizer = torch.optim.AdamW(self.pipeline.unet.parameters(), lr=1e-5)
285
- self.pipeline.unet.train()
286
- for epoch in range(epochs):
287
- with st.spinner(f"Training diffusion epoch {epoch + 1}/{epochs}... ⚙️"):
288
- total_loss = 0
289
- for batch in dataloader:
290
- optimizer.zero_grad()
291
- image = batch["image"][0].to(self.pipeline.device)
292
- text = batch["text"][0]
293
- latents = self.pipeline.vae.encode(torch.tensor(np.array(image)).permute(2, 0, 1).unsqueeze(0).float().to(self.pipeline.device)).latent_dist.sample()
294
- noise = torch.randn_like(latents)
295
- timesteps = torch.randint(0, self.pipeline.scheduler.num_train_timesteps, (latents.shape[0],), device=latents.device)
296
- noisy_latents = self.pipeline.scheduler.add_noise(latents, noise, timesteps)
297
- text_embeddings = self.pipeline.text_encoder(self.pipeline.tokenizer(text, return_tensors="pt").input_ids.to(self.pipeline.device))[0]
298
- pred_noise = self.pipeline.unet(noisy_latents, timesteps, encoder_hidden_states=text_embeddings).sample
299
- loss = torch.nn.functional.mse_loss(pred_noise, noise)
300
- loss.backward()
301
- optimizer.step()
302
- total_loss += loss.item()
303
- st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
304
- st.success("Diffusion SFT Fine-tuning completed! 🎨")
305
  return self
306
  def save_model(self, path: str):
307
  with st.spinner("Saving diffusion model... 💾"):
@@ -311,34 +140,25 @@ class DiffusionBuilder:
311
  def generate(self, prompt: str):
312
  return self.pipeline(prompt, num_inference_steps=20).images[0]
313
 
314
- # Utility Functions
315
  def generate_filename(sequence, ext="png"):
316
- timestamp = time.strftime("%d%m%Y%H%M%S")
317
- return f"{sequence}_{timestamp}.{ext}"
318
 
319
  def pdf_url_to_filename(url):
320
- # Convert full URL to filename, replacing illegal characters
321
- safe_name = re.sub(r'[<>:"/\\|?*]', '_', url)
322
- return f"{safe_name}.pdf"
323
 
324
  def get_download_link(file_path, mime_type="application/pdf", label="Download"):
325
- with open(file_path, 'rb') as f:
326
- data = f.read()
327
- b64 = base64.b64encode(data).decode()
328
- return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label}</a>'
329
 
330
  def zip_directory(directory_path, zip_path):
331
  with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
332
- for root, _, files in os.walk(directory_path):
333
- for file in files:
334
- zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path)))
335
 
336
  def get_model_files(model_type="causal_lm"):
337
- path = "models/*" if model_type == "causal_lm" else "diffusion_models/*"
338
- return [d for d in glob.glob(path) if os.path.isdir(d)]
339
 
340
- def get_gallery_files(file_types=["png"]):
341
- return sorted([f for ext in file_types for f in glob.glob(f"*.{ext}")])
342
 
343
  def get_pdf_files():
344
  return sorted(glob.glob("*.pdf"))
@@ -350,12 +170,15 @@ def download_pdf(url, output_path):
350
  with open(output_path, "wb") as f:
351
  for chunk in response.iter_content(chunk_size=8192):
352
  f.write(chunk)
353
- return True
 
 
354
  except requests.RequestException as e:
355
  logger.error(f"Failed to download {url}: {e}")
356
- return False
 
357
 
358
- # Async Processing Functions
359
  async def process_pdf_snapshot(pdf_path, mode="single"):
360
  start_time = time.time()
361
  status = st.empty()
@@ -365,206 +188,107 @@ async def process_pdf_snapshot(pdf_path, mode="single"):
365
  output_files = []
366
  if mode == "single":
367
  page = doc[0]
368
- pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) # High-res: 200% scale
369
  output_file = generate_filename("single", "png")
370
  pix.save(output_file)
371
  output_files.append(output_file)
372
  elif mode == "twopage":
373
  for i in range(min(2, len(doc))):
374
  page = doc[i]
375
- pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) # High-res: 200% scale
376
  output_file = generate_filename(f"twopage_{i}", "png")
377
  pix.save(output_file)
378
  output_files.append(output_file)
379
- elif mode == "allthumbs":
380
  for i in range(len(doc)):
381
  page = doc[i]
382
- pix = page.get_pixmap(matrix=fitz.Matrix(0.5, 0.5)) # Thumbnail: 50% scale
383
- output_file = generate_filename(f"thumb_{i}", "png")
384
  pix.save(output_file)
385
  output_files.append(output_file)
386
  doc.close()
387
  elapsed = int(time.time() - start_time)
388
  status.text(f"PDF Snapshot ({mode}) completed in {elapsed}s!")
389
- update_gallery()
390
  return output_files
391
  except Exception as e:
392
  status.error(f"Failed to process PDF: {str(e)}")
393
  return []
394
 
 
395
  async def process_ocr(image, output_file):
396
  start_time = time.time()
397
  status = st.empty()
398
  status.text("Processing GOT-OCR2_0... (0s)")
399
  tokenizer = AutoTokenizer.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True)
400
  model = AutoModel.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval()
401
- result = model.chat(tokenizer, image, ocr_type='ocr')
 
 
 
402
  elapsed = int(time.time() - start_time)
403
  status.text(f"GOT-OCR2_0 completed in {elapsed}s!")
404
  async with aiofiles.open(output_file, "w") as f:
405
  await f.write(result)
406
- update_gallery()
407
  return result
408
 
 
409
  async def process_image_gen(prompt, output_file):
410
  start_time = time.time()
411
  status = st.empty()
412
  status.text("Processing Image Gen... (0s)")
413
- pipeline = StableDiffusionPipeline.from_pretrained("OFA-Sys/small-stable-diffusion-v0", torch_dtype=torch.float32).to("cpu")
 
 
 
414
  gen_image = pipeline(prompt, num_inference_steps=20).images[0]
415
  elapsed = int(time.time() - start_time)
416
  status.text(f"Image Gen completed in {elapsed}s!")
417
  gen_image.save(output_file)
418
- update_gallery()
419
  return gen_image
420
 
421
- async def process_custom_diffusion(images, output_file, model_name):
422
- start_time = time.time()
423
- status = st.empty()
424
- status.text(f"Training {model_name}... (0s)")
425
- unet = TinyUNet()
426
- diffusion = TinyDiffusion(unet)
427
- diffusion.train(images)
428
- gen_image = diffusion.generate()
429
- upscaled_image = diffusion.upscale(gen_image, scale_factor=2)
430
- elapsed = int(time.time() - start_time)
431
- status.text(f"{model_name} completed in {elapsed}s!")
432
- upscaled_image.save(output_file)
433
- update_gallery()
434
- return upscaled_image
435
-
436
- # Mock Search Tool for RAG
437
- def mock_search(query: str) -> str:
438
- if "superhero" in query.lower():
439
- return "Latest trends: Gold-plated Batman statues, VR superhero battles."
440
- return "No relevant results found."
441
-
442
- def mock_duckduckgo_search(query: str) -> str:
443
- if "superhero party trends" in query.lower():
444
- return """
445
- Latest trends for 2025:
446
- - Luxury decorations: Gold-plated Batman statues, holographic Avengers displays.
447
- - Entertainment: Live stunt shows with Iron Man suits, VR superhero battles.
448
- - Catering: Gourmet kryptonite-green cocktails, Thor’s hammer-shaped appetizers.
449
- """
450
- return "No relevant results found."
451
-
452
- # Agent Classes
453
- class PartyPlannerAgent:
454
- def __init__(self, model, tokenizer):
455
- self.model = model
456
- self.tokenizer = tokenizer
457
- self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
458
- self.model.to(self.device)
459
- def generate(self, prompt: str) -> str:
460
- self.model.eval()
461
- with torch.no_grad():
462
- inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.device)
463
- outputs = self.model.generate(**inputs, max_new_tokens=100, do_sample=True, top_p=0.95, temperature=0.7)
464
- return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
465
- def plan_party(self, task: str) -> pd.DataFrame:
466
- search_result = mock_duckduckgo_search("latest superhero party trends")
467
- prompt = f"Given this context: '{search_result}'\n{task}"
468
- plan_text = self.generate(prompt)
469
- locations = {
470
- "Wayne Manor": (42.3601, -71.0589),
471
- "New York": (40.7128, -74.0060),
472
- "Los Angeles": (34.0522, -118.2437),
473
- "London": (51.5074, -0.1278)
474
- }
475
- wayne_coords = locations["Wayne Manor"]
476
- travel_times = {loc: calculate_cargo_travel_time(coords, wayne_coords) for loc, coords in locations.items() if loc != "Wayne Manor"}
477
- catchphrases = ["To the Batmobile!", "Avengers, assemble!", "I am Iron Man!", "By the power of Grayskull!"]
478
- data = [
479
- {"Location": "New York", "Travel Time (hrs)": travel_times["New York"], "Luxury Idea": "Gold-plated Batman statues", "Catchphrase": random.choice(catchphrases)},
480
- {"Location": "Los Angeles", "Travel Time (hrs)": travel_times["Los Angeles"], "Luxury Idea": "Holographic Avengers displays", "Catchphrase": random.choice(catchphrases)},
481
- {"Location": "London", "Travel Time (hrs)": travel_times["London"], "Luxury Idea": "Live stunt shows with Iron Man suits", "Catchphrase": random.choice(catchphrases)},
482
- {"Location": "Wayne Manor", "Travel Time (hrs)": 0.0, "Luxury Idea": "VR superhero battles", "Catchphrase": random.choice(catchphrases)},
483
- {"Location": "New York", "Travel Time (hrs)": travel_times["New York"], "Luxury Idea": "Gourmet kryptonite-green cocktails", "Catchphrase": random.choice(catchphrases)},
484
- {"Location": "Los Angeles", "Travel Time (hrs)": travel_times["Los Angeles"], "Luxury Idea": "Thor’s hammer-shaped appetizers", "Catchphrase": random.choice(catchphrases)},
485
  ]
486
- return pd.DataFrame(data)
 
 
 
 
 
487
 
488
- class CVPartyPlannerAgent:
489
- def __init__(self, pipeline):
490
- self.pipeline = pipeline
491
- def generate(self, prompt: str) -> Image.Image:
492
- return self.pipeline(prompt, num_inference_steps=20).images[0]
493
- def plan_party(self, task: str) -> pd.DataFrame:
494
- search_result = mock_search("superhero party trends")
495
- prompt = f"Given this context: '{search_result}'\n{task}"
496
- data = [
497
- {"Theme": "Batman", "Image Idea": "Gold-plated Batman statue"},
498
- {"Theme": "Avengers", "Image Idea": "VR superhero battle scene"}
499
- ]
500
- return pd.DataFrame(data)
501
-
502
- def calculate_cargo_travel_time(origin_coords: Tuple[float, float], destination_coords: Tuple[float, float], cruising_speed_kmh: float = 750.0) -> float:
503
- def to_radians(degrees: float) -> float:
504
- return degrees * (math.pi / 180)
505
- lat1, lon1 = map(to_radians, origin_coords)
506
- lat2, lon2 = map(to_radians, destination_coords)
507
- EARTH_RADIUS_KM = 6371.0
508
- dlon = lon2 - lon1
509
- dlat = lat2 - lat1
510
- a = (math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2) ** 2)
511
- c = 2 * math.asin(math.sqrt(a))
512
- distance = EARTH_RADIUS_KM * c
513
- actual_distance = distance * 1.1
514
- flight_time = (actual_distance / cruising_speed_kmh) + 1.0
515
- return round(flight_time, 2)
516
-
517
- # Main App
518
- st.title("AI Vision & SFT Titans 🚀")
519
-
520
- # Sidebar
521
- st.sidebar.header("Captured Files 📜")
522
- gallery_size = st.sidebar.slider("Gallery Size", 1, 10, 2) # Default to 2
523
- def update_gallery():
524
- media_files = get_gallery_files(["png"])
525
- pdf_files = get_pdf_files()
526
- if media_files or pdf_files:
527
- st.sidebar.subheader("Images 📸")
528
- cols = st.sidebar.columns(2)
529
- for idx, file in enumerate(media_files[:gallery_size * 2]): # Limit by gallery size
530
- with cols[idx % 2]:
531
- st.image(Image.open(file), caption=os.path.basename(file), use_container_width=True)
532
- st.sidebar.subheader("PDF Downloads 📖")
533
- for pdf_file in pdf_files[:gallery_size * 2]: # Limit by gallery size
534
- st.markdown(get_download_link(pdf_file, "application/pdf", f"📥 Grab {os.path.basename(pdf_file)}"), unsafe_allow_html=True)
535
- update_gallery()
536
 
537
- st.sidebar.subheader("Model Management 🗂️")
538
- model_type = st.sidebar.selectbox("Model Type", ["Causal LM", "Diffusion"], key="sidebar_model_type")
539
- model_dirs = get_model_files(model_type)
540
- selected_model = st.sidebar.selectbox("Select Saved Model", ["None"] + model_dirs, key="sidebar_model_select")
541
- if selected_model != "None" and st.sidebar.button("Load Model 📂"):
542
- builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
543
- config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=os.path.basename(selected_model), base_model="unknown", size="small")
544
- builder.load_model(selected_model, config)
545
- st.session_state['builder'] = builder
546
- st.session_state['model_loaded'] = True
547
- st.rerun()
548
 
549
- st.sidebar.subheader("Action Logs 📜")
550
- log_container = st.sidebar.empty()
551
- with log_container:
552
- for record in log_records:
553
- st.write(f"{record.asctime} - {record.levelname} - {record.message}")
554
 
555
- st.sidebar.subheader("History 📜")
556
- history_container = st.sidebar.empty()
557
- with history_container:
558
- for entry in st.session_state['history'][-gallery_size * 2:]: # Limit by gallery size
559
- st.write(entry)
560
-
561
- # Tabs
562
- tab1, tab2, tab3, tab4, tab5, tab6, tab7, tab8, tab9 = st.tabs([
563
- "Camera Snap 📷", "Download PDFs 📥", "Build Titan 🌱", "Fine-Tune Titan 🔧",
564
- "Test Titan 🧪", "Agentic RAG Party 🌐", "Test OCR 🔍", "Test Image Gen 🎨", "Custom Diffusion 🎨🤓"
565
  ])
 
566
 
567
- with tab1:
 
568
  st.header("Camera Snap 📷")
569
  st.subheader("Single Capture")
570
  cols = st.columns(2)
@@ -572,48 +296,48 @@ with tab1:
572
  cam0_img = st.camera_input("Take a picture - Cam 0", key="cam0")
573
  if cam0_img:
574
  filename = generate_filename("cam0")
 
 
575
  with open(filename, "wb") as f:
576
  f.write(cam0_img.getvalue())
 
577
  entry = f"Snapshot from Cam 0: {filename}"
578
- if entry not in st.session_state['history']:
579
- st.session_state['history'] = [e for e in st.session_state['history'] if not e.startswith("Snapshot from Cam 0:")] + [entry]
580
  st.image(Image.open(filename), caption="Camera 0", use_container_width=True)
581
  logger.info(f"Saved snapshot from Camera 0: {filename}")
582
- update_gallery()
583
  with cols[1]:
584
  cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1")
585
  if cam1_img:
586
  filename = generate_filename("cam1")
 
 
587
  with open(filename, "wb") as f:
588
  f.write(cam1_img.getvalue())
 
589
  entry = f"Snapshot from Cam 1: {filename}"
590
- if entry not in st.session_state['history']:
591
- st.session_state['history'] = [e for e in st.session_state['history'] if not e.startswith("Snapshot from Cam 1:")] + [entry]
592
  st.image(Image.open(filename), caption="Camera 1", use_container_width=True)
593
  logger.info(f"Saved snapshot from Camera 1: {filename}")
594
- update_gallery()
595
 
596
- with tab2:
 
597
  st.header("Download PDFs 📥")
598
- # Examples button with arXiv PDF links from README.md
599
  if st.button("Examples 📚"):
600
  example_urls = [
601
- "https://arxiv.org/pdf/2308.03892", # Streamlit
602
- "https://arxiv.org/pdf/1912.01703", # PyTorch
603
- "https://arxiv.org/pdf/2408.11039", # Qwen2-VL
604
- "https://arxiv.org/pdf/2109.10282", # TrOCR
605
- "https://arxiv.org/pdf/2112.10752", # LDM
606
- "https://arxiv.org/pdf/2308.11236", # OpenCV
607
- "https://arxiv.org/pdf/1706.03762", # Attention is All You Need
608
- "https://arxiv.org/pdf/2006.11239", # DDPM
609
- "https://arxiv.org/pdf/2305.11207", # Pandas
610
- "https://arxiv.org/pdf/2106.09685", # LoRA
611
- "https://arxiv.org/pdf/2005.11401", # RAG
612
- "https://arxiv.org/pdf/2106.10504" # Fine-Tuning Vision Transformers
613
  ]
614
  st.session_state['pdf_urls'] = "\n".join(example_urls)
615
-
616
- # Robo-Downloader
617
  url_input = st.text_area("Enter PDF URLs (one per line)", value=st.session_state.get('pdf_urls', ""), height=200)
618
  if st.button("Robo-Download 🤖"):
619
  urls = url_input.strip().split("\n")
@@ -630,8 +354,8 @@ with tab2:
630
  st.session_state['downloaded_pdfs'][url] = output_path
631
  logger.info(f"Downloaded PDF from {url} to {output_path}")
632
  entry = f"Downloaded PDF: {output_path}"
633
- if entry not in st.session_state['history']:
634
- st.session_state['history'].append(entry)
635
  else:
636
  st.error(f"Failed to nab {url} 😿")
637
  else:
@@ -639,218 +363,50 @@ with tab2:
639
  st.session_state['downloaded_pdfs'][url] = output_path
640
  progress_bar.progress((idx + 1) / total_urls)
641
  status_text.text("Robo-Download complete! 🚀")
642
- update_gallery()
643
-
644
- # PDF Gallery with Thumbnails and Checkboxes
645
- st.subheader("PDF Gallery 📖")
646
- downloaded_pdfs = list(st.session_state['downloaded_pdfs'].values())
647
- if downloaded_pdfs:
648
- cols_per_row = 3
649
- for i in range(0, len(downloaded_pdfs), cols_per_row):
650
- cols = st.columns(cols_per_row)
651
- for j, pdf_path in enumerate(downloaded_pdfs[i:i + cols_per_row]):
652
- with cols[j]:
653
- doc = fitz.open(pdf_path)
654
- page = doc[0]
655
- pix = page.get_pixmap(matrix=fitz.Matrix(0.5, 0.5)) # Thumbnail at 50% scale
656
- img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
657
- st.image(img, caption=os.path.basename(pdf_path), use_container_width=True)
658
- # Checkbox for SFT/Input use
659
- checkbox_key = f"pdf_{pdf_path}"
660
- st.session_state['pdf_checkboxes'][checkbox_key] = st.checkbox(
661
- "Use for SFT/Input",
662
- value=st.session_state['pdf_checkboxes'].get(checkbox_key, False),
663
- key=checkbox_key
664
- )
665
- # Download and Delete Buttons
666
- st.markdown(get_download_link(pdf_path, "application/pdf", "Snag It! 📥"), unsafe_allow_html=True)
667
- if st.button("Zap It! 🗑️", key=f"delete_{pdf_path}"):
668
- os.remove(pdf_path)
669
- url_key = next((k for k, v in st.session_state['downloaded_pdfs'].items() if v == pdf_path), None)
670
- if url_key:
671
- del st.session_state['downloaded_pdfs'][url_key]
672
- del st.session_state['pdf_checkboxes'][checkbox_key]
673
- st.success(f"PDF {os.path.basename(pdf_path)} vaporized! 💨")
674
- st.rerun()
675
- doc.close()
676
- else:
677
- st.info("No PDFs captured yet. Feed the robo-downloader some URLs! 🤖")
678
-
679
- mode = st.selectbox("Snapshot Mode", ["Single Page (High-Res)", "Two Pages (High-Res)", "All Pages (Thumbnails)"], key="download_mode")
680
  if st.button("Snapshot Selected 📸"):
681
- selected_pdfs = [path for key, path in st.session_state['downloaded_pdfs'].items() if st.session_state['pdf_checkboxes'].get(f"pdf_{path}", False)]
682
  if selected_pdfs:
683
  for pdf_path in selected_pdfs:
684
- mode_key = {"Single Page (High-Res)": "single", "Two Pages (High-Res)": "twopage", "All Pages (Thumbnails)": "allthumbs"}[mode]
 
 
 
 
 
685
  snapshots = asyncio.run(process_pdf_snapshot(pdf_path, mode_key))
686
  for snapshot in snapshots:
687
  st.image(Image.open(snapshot), caption=snapshot, use_container_width=True)
 
 
688
  else:
689
- st.warning("No PDFs selected for snapshotting! Check some boxes first. 📝")
690
 
691
- with tab3:
692
- st.header("Build Titan 🌱")
693
- model_type = st.selectbox("Model Type", ["Causal LM", "Diffusion"], key="build_type")
694
- base_model = st.selectbox("Select Tiny Model",
695
- ["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"] if model_type == "Causal LM" else
696
- ["OFA-Sys/small-stable-diffusion-v0", "stabilityai/stable-diffusion-2-base"])
697
- model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}")
698
- domain = st.text_input("Target Domain", "general")
699
- if st.button("Download Model ⬇️"):
700
- config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=model_name, base_model=base_model, size="small", domain=domain)
701
- builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
702
- builder.load_model(base_model, config)
703
- builder.save_model(config.model_path)
704
- st.session_state['builder'] = builder
705
- st.session_state['model_loaded'] = True
706
- entry = f"Built {model_type} model: {model_name}"
707
- if entry not in st.session_state['history']:
708
- st.session_state['history'].append(entry)
709
- st.success(f"Model downloaded and saved to {config.model_path}! 🎉")
710
- st.rerun()
711
-
712
- with tab4:
713
- st.header("Fine-Tune Titan 🔧")
714
- if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
715
- st.warning("Please build or load a Titan first! ⚠️")
716
- else:
717
- if isinstance(st.session_state['builder'], ModelBuilder):
718
- if st.button("Generate Sample CSV 📝"):
719
- sample_data = [
720
- {"prompt": "What is AI?", "response": "AI is artificial intelligence, simulating human smarts in machines."},
721
- {"prompt": "Explain machine learning", "response": "Machine learning is AI’s gym where models bulk up on data."},
722
- ]
723
- csv_path = f"sft_data_{int(time.time())}.csv"
724
- with open(csv_path, "w", newline="") as f:
725
- writer = csv.DictWriter(f, fieldnames=["prompt", "response"])
726
- writer.writeheader()
727
- writer.writerows(sample_data)
728
- st.markdown(get_download_link(csv_path, "text/csv", "Download Sample CSV"), unsafe_allow_html=True)
729
- st.success(f"Sample CSV generated as {csv_path}! ✅")
730
-
731
- uploaded_csv = st.file_uploader("Upload CSV for SFT", type="csv")
732
- if uploaded_csv and st.button("Fine-Tune with Uploaded CSV 🔄"):
733
- csv_path = f"uploaded_sft_data_{int(time.time())}.csv"
734
- with open(csv_path, "wb") as f:
735
- f.write(uploaded_csv.read())
736
- new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}"
737
- new_config = ModelConfig(name=new_model_name, base_model=st.session_state['builder'].config.base_model, size="small", domain=st.session_state['builder'].config.domain)
738
- st.session_state['builder'].config = new_config
739
- st.session_state['builder'].fine_tune_sft(csv_path)
740
- st.session_state['builder'].save_model(new_config.model_path)
741
- zip_path = f"{new_config.model_path}.zip"
742
- zip_directory(new_config.model_path, zip_path)
743
- entry = f"Fine-tuned Causal LM: {new_model_name}"
744
- if entry not in st.session_state['history']:
745
- st.session_state['history'].append(entry)
746
- st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned Titan"), unsafe_allow_html=True)
747
- st.rerun()
748
- elif isinstance(st.session_state['builder'], DiffusionBuilder):
749
- captured_files = get_gallery_files(["png"])
750
- selected_pdfs = [path for key, path in st.session_state['downloaded_pdfs'].items() if st.session_state['pdf_checkboxes'].get(f"pdf_{path}", False)]
751
- if len(captured_files) + len(selected_pdfs) >= 2:
752
- demo_data = [{"image": img, "text": f"Superhero {os.path.basename(img).split('.')[0]}"} for img in captured_files]
753
- for pdf_path in selected_pdfs:
754
- demo_data.append({"image": pdf_path, "text": f"PDF {os.path.basename(pdf_path)}"})
755
- edited_data = st.data_editor(pd.DataFrame(demo_data), num_rows="dynamic")
756
- if st.button("Fine-Tune with Dataset 🔄"):
757
- images = [Image.open(row["image"]) if row["image"].endswith('.png') else Image.frombytes("RGB", fitz.open(row["image"])[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)).size, fitz.open(row["image"])[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)).samples) for _, row in edited_data.iterrows()]
758
- texts = [row["text"] for _, row in edited_data.iterrows()]
759
- new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}"
760
- new_config = DiffusionConfig(name=new_model_name, base_model=st.session_state['builder'].config.base_model, size="small")
761
- st.session_state['builder'].config = new_config
762
- st.session_state['builder'].fine_tune_sft(images, texts)
763
- st.session_state['builder'].save_model(new_config.model_path)
764
- zip_path = f"{new_config.model_path}.zip"
765
- zip_directory(new_config.model_path, zip_path)
766
- entry = f"Fine-tuned Diffusion: {new_model_name}"
767
- if entry not in st.session_state['history']:
768
- st.session_state['history'].append(entry)
769
- st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned Diffusion Model"), unsafe_allow_html=True)
770
- csv_path = f"sft_dataset_{int(time.time())}.csv"
771
- with open(csv_path, "w", newline="") as f:
772
- writer = csv.writer(f)
773
- writer.writerow(["image", "text"])
774
- for _, row in edited_data.iterrows():
775
- writer.writerow([row["image"], row["text"]])
776
- st.markdown(get_download_link(csv_path, "text/csv", "Download SFT Dataset CSV"), unsafe_allow_html=True)
777
-
778
- with tab5:
779
- st.header("Test Titan 🧪")
780
- if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
781
- st.warning("Please build or load a Titan first! ⚠️")
782
- else:
783
- if isinstance(st.session_state['builder'], ModelBuilder):
784
- if st.session_state['builder'].sft_data:
785
- st.write("Testing with SFT Data:")
786
- for item in st.session_state['builder'].sft_data[:3]:
787
- prompt = item["prompt"]
788
- expected = item["response"]
789
- status_container = st.empty()
790
- generated = st.session_state['builder'].evaluate(prompt, status_container)
791
- st.write(f"**Prompt**: {prompt}")
792
- st.write(f"**Expected**: {expected}")
793
- st.write(f"**Generated**: {generated}")
794
- st.write("---")
795
- status_container.empty()
796
- test_prompt = st.text_area("Enter Test Prompt", "What is AI?")
797
- if st.button("Run Test ▶️"):
798
- status_container = st.empty()
799
- result = st.session_state['builder'].evaluate(test_prompt, status_container)
800
- entry = f"Causal LM Test: {test_prompt} -> {result}"
801
- if entry not in st.session_state['history']:
802
- st.session_state['history'].append(entry)
803
- st.write(f"**Generated Response**: {result}")
804
- status_container.empty()
805
- elif isinstance(st.session_state['builder'], DiffusionBuilder):
806
- test_prompt = st.text_area("Enter Test Prompt", "Neon Batman")
807
- selected_pdfs = [path for key, path in st.session_state['downloaded_pdfs'].items() if st.session_state['pdf_checkboxes'].get(f"pdf_{path}", False)]
808
- if st.button("Run Test ▶️"):
809
- image = st.session_state['builder'].generate(test_prompt)
810
- output_file = generate_filename("diffusion_test", "png")
811
- image.save(output_file)
812
- entry = f"Diffusion Test: {test_prompt} -> {output_file}"
813
- if entry not in st.session_state['history']:
814
- st.session_state['history'].append(entry)
815
- st.image(image, caption="Generated Image")
816
- update_gallery()
817
-
818
- with tab6:
819
- st.header("Agentic RAG Party 🌐")
820
- if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
821
- st.warning("Please build or load a Titan first! ⚠️")
822
- else:
823
- if isinstance(st.session_state['builder'], ModelBuilder):
824
- if st.button("Run NLP RAG Demo 🎉"):
825
- agent = PartyPlannerAgent(st.session_state['builder'].model, st.session_state['builder'].tokenizer)
826
- task = "Plan a luxury superhero-themed party at Wayne Manor."
827
- plan_df = agent.plan_party(task)
828
- entry = f"NLP RAG Demo: Planned party at Wayne Manor"
829
- if entry not in st.session_state['history']:
830
- st.session_state['history'].append(entry)
831
- st.dataframe(plan_df)
832
- elif isinstance(st.session_state['builder'], DiffusionBuilder):
833
- if st.button("Run CV RAG Demo 🎉"):
834
- agent = CVPartyPlannerAgent(st.session_state['builder'].pipeline)
835
- task = "Generate images for a luxury superhero-themed party."
836
- plan_df = agent.plan_party(task)
837
- entry = f"CV RAG Demo: Generated party images"
838
- if entry not in st.session_state['history']:
839
- st.session_state['history'].append(entry)
840
- st.dataframe(plan_df)
841
- for _, row in plan_df.iterrows():
842
- image = agent.generate(row["Image Idea"])
843
- output_file = generate_filename(f"cv_rag_{row['Theme'].lower()}", "png")
844
- image.save(output_file)
845
- st.image(image, caption=f"{row['Theme']} - {row['Image Idea']}")
846
- update_gallery()
847
-
848
- with tab7:
849
  st.header("Test OCR 🔍")
850
- captured_files = get_gallery_files(["png"])
851
- selected_pdfs = [path for key, path in st.session_state['downloaded_pdfs'].items() if st.session_state['pdf_checkboxes'].get(f"pdf_{path}", False)]
852
- all_files = captured_files + selected_pdfs
853
  if all_files:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
854
  selected_file = st.selectbox("Select Image or PDF", all_files, key="ocr_select")
855
  if selected_file:
856
  if selected_file.endswith('.png'):
@@ -866,19 +422,60 @@ with tab7:
866
  st.session_state['processing']['ocr'] = True
867
  result = asyncio.run(process_ocr(image, output_file))
868
  entry = f"OCR Test: {selected_file} -> {output_file}"
869
- if entry not in st.session_state['history']:
870
- st.session_state['history'].append(entry)
871
  st.text_area("OCR Result", result, height=200, key="ocr_result")
872
  st.success(f"OCR output saved to {output_file}")
873
  st.session_state['processing']['ocr'] = False
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
874
  else:
875
- st.warning("No images or PDFs captured yet. Use Camera Snap or Download PDFs first!")
876
 
877
- with tab8:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
878
  st.header("Test Image Gen 🎨")
879
- captured_files = get_gallery_files(["png"])
880
- selected_pdfs = [path for key, path in st.session_state['downloaded_pdfs'].items() if st.session_state['pdf_checkboxes'].get(f"pdf_{path}", False)]
881
- all_files = captured_files + selected_pdfs
882
  if all_files:
883
  selected_file = st.selectbox("Select Image or PDF", all_files, key="gen_select")
884
  if selected_file:
@@ -890,65 +487,196 @@ with tab8:
890
  image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
891
  doc.close()
892
  st.image(image, caption="Reference Image", use_container_width=True)
893
- prompt = st.text_area("Prompt", "Generate a similar superhero image", key="gen_prompt")
894
  if st.button("Run Image Gen 🚀", key="gen_run"):
895
  output_file = generate_filename("gen_output", "png")
896
  st.session_state['processing']['gen'] = True
897
  result = asyncio.run(process_image_gen(prompt, output_file))
898
  entry = f"Image Gen Test: {prompt} -> {output_file}"
899
- if entry not in st.session_state['history']:
900
- st.session_state['history'].append(entry)
901
  st.image(result, caption="Generated Image", use_container_width=True)
902
  st.success(f"Image saved to {output_file}")
903
  st.session_state['processing']['gen'] = False
904
  else:
905
- st.warning("No images or PDFs captured yet. Use Camera Snap or Download PDFs first WAV!")
906
-
907
- with tab9:
908
- st.header("Custom Diffusion 🎨🤓")
909
- st.write("Unleash your inner artist with our tiny diffusion models!")
910
- captured_files = get_gallery_files(["png"])
911
- selected_pdfs = [path for key, path in st.session_state['downloaded_pdfs'].items() if st.session_state['pdf_checkboxes'].get(f"pdf_{path}", False)]
912
- all_files = captured_files + selected_pdfs
913
- if all_files:
914
- st.subheader("Select Images or PDFs to Train")
915
- selected_files = st.multiselect("Pick Images or PDFs", all_files, key="diffusion_select")
916
- images = []
917
- for file in selected_files:
918
- if file.endswith('.png'):
919
- images.append(Image.open(file))
920
- else:
921
- doc = fitz.open(file)
922
- pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
923
- images.append(Image.frombytes("RGB", [pix.width, pix.height], pix.samples))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
924
  doc.close()
925
-
926
- model_options = [
927
- ("PixelTickler 🎨✨", "OFA-Sys/small-stable-diffusion-v0"),
928
- ("DreamWeaver 🌙🖌️", "stabilityai/stable-diffusion-2-base"),
929
- ("TinyArtBot 🤖🖼️", "custom")
930
- ]
931
- model_choice = st.selectbox("Choose Your Diffusion Dynamo", [opt[0] for opt in model_options], key="diffusion_model")
932
- model_name = next(opt[1] for opt in model_options if opt[0] == model_choice)
933
-
934
- if st.button("Train & Generate 🚀", key="diffusion_run"):
935
- output_file = generate_filename("custom_diffusion", "png")
936
- st.session_state['processing']['diffusion'] = True
937
- if model_name == "custom":
938
- result = asyncio.run(process_custom_diffusion(images, output_file, model_choice))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
939
  else:
940
- builder = DiffusionBuilder()
941
- builder.load_model(model_name)
942
- result = builder.generate("A superhero scene inspired by captured images")
943
- result.save(output_file)
944
- entry = f"Custom Diffusion: {model_choice} -> {output_file}"
945
- if entry not in st.session_state['history']:
946
- st.session_state['history'].append(entry)
947
- st.image(result, caption=f"{model_choice} Masterpiece", use_container_width=True)
948
- st.success(f"Image saved to {output_file}")
949
- st.session_state['processing']['diffusion'] = False
950
  else:
951
- st.warning("No images or PDFs captured yet. Use Camera Snap or Download PDFs first!")
952
 
953
- # Initial Gallery Update
954
- update_gallery()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import aiofiles
2
+ import asyncio
 
3
  import base64
4
+ import fitz
5
+ import glob
6
+ import logging
7
+ import os
8
+ import pandas as pd
9
+ import pytz
10
+ import random
11
+ import re
12
+ import requests
13
  import shutil
14
  import streamlit as st
15
+ import time
16
  import torch
17
+ import zipfile
18
+
19
+ from dataclasses import dataclass
20
+ from datetime import datetime
21
  from diffusers import StableDiffusionPipeline
 
 
 
 
 
 
 
 
 
 
22
  from io import BytesIO
23
+ from openai import OpenAI
24
+ from PIL import Image
25
+ from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel
26
+ from typing import Optional
27
+
28
+ # 🤖 OpenAI wizardry: Summon your API magic!
29
+ client = OpenAI(
30
+ api_key=os.getenv('OPENAI_API_KEY'),
31
+ organization=os.getenv('OPENAI_ORG_ID')
32
+ )
33
 
34
+ # 📜 Logging activated: Capturing chaos and calm!
35
  logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
36
  logger = logging.getLogger(__name__)
37
  log_records = []
 
38
  class LogCaptureHandler(logging.Handler):
39
  def emit(self, record):
40
  log_records.append(record)
 
41
  logger.addHandler(LogCaptureHandler())
42
 
43
+ # 🎨 Streamlit styling: Designing a cosmic interface!
44
  st.set_page_config(
45
  page_title="AI Vision & SFT Titans 🚀",
46
  page_icon="🤖",
 
53
  }
54
  )
55
 
56
+ # Set up default session state values.
57
+ st.session_state.setdefault('history', []) # History: starting fresh if empty!
58
+ st.session_state.setdefault('builder', None) # Builder: set up if missing.
59
+ st.session_state.setdefault('model_loaded', False) # Model Loaded: not loaded by default.
60
+ st.session_state.setdefault('processing', {}) # Processing: initialize as an empty dict.
61
+ st.session_state.setdefault('asset_checkboxes', {}) # Asset Checkboxes: default to an empty dict.
62
+ st.session_state.setdefault('downloaded_pdfs', {}) # Downloaded PDFs: start with none.
63
+ st.session_state.setdefault('unique_counter', 0) # Unique Counter: initialize to zero.
64
+ st.session_state.setdefault('selected_model_type', "Causal LM")
65
+ st.session_state.setdefault('selected_model', "None")
66
+ st.session_state.setdefault('cam0_file', None)
67
+ st.session_state.setdefault('cam1_file', None)
68
+
69
+ # Create a single container for the asset gallery in the sidebar.
70
+ if 'asset_gallery_container' not in st.session_state:
71
+ st.session_state['asset_gallery_container'] = st.sidebar.empty()
72
+
73
+ @dataclass # ModelConfig: A blueprint for model configurations.
74
  class ModelConfig:
75
  name: str
76
  base_model: str
 
78
  domain: Optional[str] = None
79
  model_type: str = "causal_lm"
80
  @property
81
+ def model_path(self):
82
  return f"models/{self.name}"
83
 
84
+ @dataclass # DiffusionConfig: Where diffusion magic takes shape.
85
  class DiffusionConfig:
86
  name: str
87
  base_model: str
88
  size: str
89
+ domain: Optional[str] = None
90
  @property
91
  def model_path(self):
92
  return f"diffusion_models/{self.name}"
93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94
  class ModelBuilder:
95
  def __init__(self):
96
  self.config = None
97
  self.model = None
98
  self.tokenizer = None
99
+ self.jokes = [
100
+ "Why did the AI go to therapy? Too many layers to unpack! 😂",
101
+ "Training complete! Time for a binary coffee break. ☕",
102
+ "I told my neural network a joke; it couldn't stop dropping bits! 🤖",
103
+ "I asked the AI for a pun, and it said, 'I'm punning on parallel processing!' 😄",
104
+ "Debugging my code is like a stand-up routine—always a series of exceptions! 😆"
105
+ ]
106
  def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
107
  with st.spinner(f"Loading {model_path}... ⏳"):
108
  self.model = AutoModelForCausalLM.from_pretrained(model_path)
 
114
  self.model.to("cuda" if torch.cuda.is_available() else "cpu")
115
  st.success(f"Model loaded! 🎉 {random.choice(self.jokes)}")
116
  return self
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
117
  def save_model(self, path: str):
118
  with st.spinner("Saving model... 💾"):
119
  os.makedirs(os.path.dirname(path), exist_ok=True)
120
  self.model.save_pretrained(path)
121
  self.tokenizer.save_pretrained(path)
122
  st.success(f"Model saved at {path}! ✅")
 
 
 
 
 
 
 
 
 
 
 
 
 
123
 
124
  class DiffusionBuilder:
125
  def __init__(self):
 
130
  self.pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cpu")
131
  if config:
132
  self.config = config
133
+ st.success("Diffusion model loaded! 🎨")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134
  return self
135
  def save_model(self, path: str):
136
  with st.spinner("Saving diffusion model... 💾"):
 
140
  def generate(self, prompt: str):
141
  return self.pipeline(prompt, num_inference_steps=20).images[0]
142
 
 
143
  def generate_filename(sequence, ext="png"):
144
+ return f"{sequence}_{time.strftime('%d%m%Y%H%M%S')}.{ext}"
 
145
 
146
  def pdf_url_to_filename(url):
147
+ return re.sub(r'[<>:"/\\|?*]', '_', url) + ".pdf"
 
 
148
 
149
  def get_download_link(file_path, mime_type="application/pdf", label="Download"):
150
+ return f'<a href="data:{mime_type};base64,{base64.b64encode(open(file_path, "rb").read()).decode()}" download="{os.path.basename(file_path)}">{label}</a>'
 
 
 
151
 
152
  def zip_directory(directory_path, zip_path):
153
  with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
154
+ [zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path)))
155
+ for root, _, files in os.walk(directory_path) for file in files]
 
156
 
157
  def get_model_files(model_type="causal_lm"):
158
+ return [d for d in glob.glob("models/*" if model_type == "causal_lm" else "diffusion_models/*") if os.path.isdir(d)] or ["None"]
 
159
 
160
+ def get_gallery_files(file_types=["png", "pdf"]):
161
+ return sorted(list({f for ext in file_types for f in glob.glob(f"*.{ext}")}))
162
 
163
  def get_pdf_files():
164
  return sorted(glob.glob("*.pdf"))
 
170
  with open(output_path, "wb") as f:
171
  for chunk in response.iter_content(chunk_size=8192):
172
  f.write(chunk)
173
+ ret = True
174
+ else:
175
+ ret = False
176
  except requests.RequestException as e:
177
  logger.error(f"Failed to download {url}: {e}")
178
+ ret = False
179
+ return ret
180
 
181
+ # Async PDF Snapshot: Snap your PDF pages without blocking.
182
  async def process_pdf_snapshot(pdf_path, mode="single"):
183
  start_time = time.time()
184
  status = st.empty()
 
188
  output_files = []
189
  if mode == "single":
190
  page = doc[0]
191
+ pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
192
  output_file = generate_filename("single", "png")
193
  pix.save(output_file)
194
  output_files.append(output_file)
195
  elif mode == "twopage":
196
  for i in range(min(2, len(doc))):
197
  page = doc[i]
198
+ pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
199
  output_file = generate_filename(f"twopage_{i}", "png")
200
  pix.save(output_file)
201
  output_files.append(output_file)
202
+ elif mode == "allpages":
203
  for i in range(len(doc)):
204
  page = doc[i]
205
+ pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
206
+ output_file = generate_filename(f"page_{i}", "png")
207
  pix.save(output_file)
208
  output_files.append(output_file)
209
  doc.close()
210
  elapsed = int(time.time() - start_time)
211
  status.text(f"PDF Snapshot ({mode}) completed in {elapsed}s!")
 
212
  return output_files
213
  except Exception as e:
214
  status.error(f"Failed to process PDF: {str(e)}")
215
  return []
216
 
217
+ # Async OCR: Convert images to text.
218
  async def process_ocr(image, output_file):
219
  start_time = time.time()
220
  status = st.empty()
221
  status.text("Processing GOT-OCR2_0... (0s)")
222
  tokenizer = AutoTokenizer.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True)
223
  model = AutoModel.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval()
224
+ temp_file = f"temp_{int(time.time())}.png"
225
+ image.save(temp_file)
226
+ result = model.chat(tokenizer, temp_file, ocr_type='ocr')
227
+ os.remove(temp_file)
228
  elapsed = int(time.time() - start_time)
229
  status.text(f"GOT-OCR2_0 completed in {elapsed}s!")
230
  async with aiofiles.open(output_file, "w") as f:
231
  await f.write(result)
 
232
  return result
233
 
234
+ # Async Image Gen: Your image genie.
235
  async def process_image_gen(prompt, output_file):
236
  start_time = time.time()
237
  status = st.empty()
238
  status.text("Processing Image Gen... (0s)")
239
+ pipeline = (st.session_state['builder'].pipeline
240
+ if st.session_state.get('builder') and isinstance(st.session_state['builder'], DiffusionBuilder)
241
+ and st.session_state['builder'].pipeline
242
+ else StableDiffusionPipeline.from_pretrained("OFA-Sys/small-stable-diffusion-v0", torch_dtype=torch.float32).to("cpu"))
243
  gen_image = pipeline(prompt, num_inference_steps=20).images[0]
244
  elapsed = int(time.time() - start_time)
245
  status.text(f"Image Gen completed in {elapsed}s!")
246
  gen_image.save(output_file)
 
247
  return gen_image
248
 
249
+ # GPT-Image Interpreter: Turning pixels into prose!
250
+ def process_image_with_prompt(image, prompt, model="gpt-4o-mini", detail="auto"):
251
+ buffered = BytesIO()
252
+ image.save(buffered, format="PNG")
253
+ img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
254
+ messages = [{
255
+ "role": "user",
256
+ "content": [
257
+ {"type": "text", "text": prompt},
258
+ {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{img_str}", "detail": detail}}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
259
  ]
260
+ }]
261
+ try:
262
+ response = client.chat.completions.create(model=model, messages=messages, max_tokens=300)
263
+ return response.choices[0].message.content
264
+ except Exception as e:
265
+ return f"Error processing image with GPT: {str(e)}"
266
 
267
+ # GPT-Text Alchemist: Merging prompt and text.
268
+ def process_text_with_prompt(text, prompt, model="gpt-4o-mini"):
269
+ messages = [{"role": "user", "content": f"{prompt}\n\n{text}"}]
270
+ try:
271
+ response = client.chat.completions.create(model=model, messages=messages, max_tokens=300)
272
+ return response.choices[0].message.content
273
+ except Exception as e:
274
+ return f"Error processing text with GPT: {str(e)}"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
275
 
276
+ # ----------------- SIDEBAR UPDATES -----------------
 
 
 
 
 
 
 
 
 
 
277
 
278
+ # Sidebar: Gallery Settings
279
+ st.sidebar.subheader("Gallery Settings")
280
+ st.session_state.setdefault('gallery_size', 2)
281
+ st.session_state['gallery_size'] = st.sidebar.slider("Gallery Size", 1, 10, st.session_state['gallery_size'], key="gallery_size_slider")
 
282
 
283
+ # ----------------- TAB SETUP -----------------
284
+ tabs = st.tabs([
285
+ "Camera Snap 📷", "Download PDFs 📥", "Test OCR 🔍", "Build Titan 🌱",
286
+ "Test Image Gen 🎨", "PDF Process 📄", "Image Process 🖼️", "MD Gallery 📚"
 
 
 
 
 
 
287
  ])
288
+ (tab_camera, tab_download, tab_ocr, tab_build, tab_imggen, tab_pdf_process, tab_image_process, tab_md_gallery) = tabs
289
 
290
+ # ----------------- TAB: Camera Snap -----------------
291
+ with tab_camera:
292
  st.header("Camera Snap 📷")
293
  st.subheader("Single Capture")
294
  cols = st.columns(2)
 
296
  cam0_img = st.camera_input("Take a picture - Cam 0", key="cam0")
297
  if cam0_img:
298
  filename = generate_filename("cam0")
299
+ if st.session_state['cam0_file'] and os.path.exists(st.session_state['cam0_file']):
300
+ os.remove(st.session_state['cam0_file'])
301
  with open(filename, "wb") as f:
302
  f.write(cam0_img.getvalue())
303
+ st.session_state['cam0_file'] = filename
304
  entry = f"Snapshot from Cam 0: {filename}"
305
+ st.session_state['history'].append(entry)
 
306
  st.image(Image.open(filename), caption="Camera 0", use_container_width=True)
307
  logger.info(f"Saved snapshot from Camera 0: {filename}")
 
308
  with cols[1]:
309
  cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1")
310
  if cam1_img:
311
  filename = generate_filename("cam1")
312
+ if st.session_state['cam1_file'] and os.path.exists(st.session_state['cam1_file']):
313
+ os.remove(st.session_state['cam1_file'])
314
  with open(filename, "wb") as f:
315
  f.write(cam1_img.getvalue())
316
+ st.session_state['cam1_file'] = filename
317
  entry = f"Snapshot from Cam 1: {filename}"
318
+ st.session_state['history'].append(entry)
 
319
  st.image(Image.open(filename), caption="Camera 1", use_container_width=True)
320
  logger.info(f"Saved snapshot from Camera 1: {filename}")
 
321
 
322
+ # ----------------- TAB: Download PDFs -----------------
323
+ with tab_download:
324
  st.header("Download PDFs 📥")
 
325
  if st.button("Examples 📚"):
326
  example_urls = [
327
+ "https://arxiv.org/pdf/2308.03892",
328
+ "https://arxiv.org/pdf/1912.01703",
329
+ "https://arxiv.org/pdf/2408.11039",
330
+ "https://arxiv.org/pdf/2109.10282",
331
+ "https://arxiv.org/pdf/2112.10752",
332
+ "https://arxiv.org/pdf/2308.11236",
333
+ "https://arxiv.org/pdf/1706.03762",
334
+ "https://arxiv.org/pdf/2006.11239",
335
+ "https://arxiv.org/pdf/2305.11207",
336
+ "https://arxiv.org/pdf/2106.09685",
337
+ "https://arxiv.org/pdf/2005.11401",
338
+ "https://arxiv.org/pdf/2106.10504"
339
  ]
340
  st.session_state['pdf_urls'] = "\n".join(example_urls)
 
 
341
  url_input = st.text_area("Enter PDF URLs (one per line)", value=st.session_state.get('pdf_urls', ""), height=200)
342
  if st.button("Robo-Download 🤖"):
343
  urls = url_input.strip().split("\n")
 
354
  st.session_state['downloaded_pdfs'][url] = output_path
355
  logger.info(f"Downloaded PDF from {url} to {output_path}")
356
  entry = f"Downloaded PDF: {output_path}"
357
+ st.session_state['history'].append(entry)
358
+ st.session_state['asset_checkboxes'][output_path] = True
359
  else:
360
  st.error(f"Failed to nab {url} 😿")
361
  else:
 
363
  st.session_state['downloaded_pdfs'][url] = output_path
364
  progress_bar.progress((idx + 1) / total_urls)
365
  status_text.text("Robo-Download complete! 🚀")
366
+ mode = st.selectbox("Snapshot Mode", ["Single Page (High-Res)", "Two Pages (High-Res)", "All Pages (High-Res)"], key="download_mode")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
367
  if st.button("Snapshot Selected 📸"):
368
+ selected_pdfs = [path for path in get_gallery_files() if path.endswith('.pdf') and st.session_state['asset_checkboxes'].get(path, False)]
369
  if selected_pdfs:
370
  for pdf_path in selected_pdfs:
371
+ if not os.path.exists(pdf_path):
372
+ st.warning(f"File not found: {pdf_path}. Skipping.")
373
+ continue
374
+ mode_key = {"Single Page (High-Res)": "single",
375
+ "Two Pages (High-Res)": "twopage",
376
+ "All Pages (High-Res)": "allpages"}[mode]
377
  snapshots = asyncio.run(process_pdf_snapshot(pdf_path, mode_key))
378
  for snapshot in snapshots:
379
  st.image(Image.open(snapshot), caption=snapshot, use_container_width=True)
380
+ st.session_state['asset_checkboxes'][snapshot] = True
381
+ # No update_gallery() call here; will update once later.
382
  else:
383
+ st.warning("No PDFs selected for snapshotting! Check some boxes in the sidebar.")
384
 
385
+ # ----------------- TAB: Test OCR -----------------
386
+ with tab_ocr:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
387
  st.header("Test OCR 🔍")
388
+ all_files = get_gallery_files()
 
 
389
  if all_files:
390
+ if st.button("OCR All Assets 🚀"):
391
+ full_text = "# OCR Results\n\n"
392
+ for file in all_files:
393
+ if file.endswith('.png'):
394
+ image = Image.open(file)
395
+ else:
396
+ doc = fitz.open(file)
397
+ pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
398
+ image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
399
+ doc.close()
400
+ output_file = generate_filename(f"ocr_{os.path.basename(file)}", "txt")
401
+ result = asyncio.run(process_ocr(image, output_file))
402
+ full_text += f"## {os.path.basename(file)}\n\n{result}\n\n"
403
+ entry = f"OCR Test: {file} -> {output_file}"
404
+ st.session_state['history'].append(entry)
405
+ md_output_file = f"full_ocr_{int(time.time())}.md"
406
+ with open(md_output_file, "w") as f:
407
+ f.write(full_text)
408
+ st.success(f"Full OCR saved to {md_output_file}")
409
+ st.markdown(get_download_link(md_output_file, "text/markdown", "Download Full OCR Markdown"), unsafe_allow_html=True)
410
  selected_file = st.selectbox("Select Image or PDF", all_files, key="ocr_select")
411
  if selected_file:
412
  if selected_file.endswith('.png'):
 
422
  st.session_state['processing']['ocr'] = True
423
  result = asyncio.run(process_ocr(image, output_file))
424
  entry = f"OCR Test: {selected_file} -> {output_file}"
425
+ st.session_state['history'].append(entry)
 
426
  st.text_area("OCR Result", result, height=200, key="ocr_result")
427
  st.success(f"OCR output saved to {output_file}")
428
  st.session_state['processing']['ocr'] = False
429
+ if selected_file.endswith('.pdf') and st.button("OCR All Pages 🚀", key="ocr_all_pages"):
430
+ doc = fitz.open(selected_file)
431
+ full_text = f"# OCR Results for {os.path.basename(selected_file)}\n\n"
432
+ for i in range(len(doc)):
433
+ pix = doc[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
434
+ image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
435
+ output_file = generate_filename(f"ocr_page_{i}", "txt")
436
+ result = asyncio.run(process_ocr(image, output_file))
437
+ full_text += f"## Page {i + 1}\n\n{result}\n\n"
438
+ entry = f"OCR Test: {selected_file} Page {i + 1} -> {output_file}"
439
+ st.session_state['history'].append(entry)
440
+ md_output_file = f"full_ocr_{os.path.basename(selected_file)}_{int(time.time())}.md"
441
+ with open(md_output_file, "w") as f:
442
+ f.write(full_text)
443
+ st.success(f"Full OCR saved to {md_output_file}")
444
+ st.markdown(get_download_link(md_output_file, "text/markdown", "Download Full OCR Markdown"), unsafe_allow_html=True)
445
  else:
446
+ st.warning("No assets in gallery yet. Use Camera Snap or Download PDFs!")
447
 
448
+ # ----------------- TAB: Build Titan -----------------
449
+ with tab_build:
450
+ st.header("Build Titan 🌱")
451
+ model_type = st.selectbox("Model Type", ["Causal LM", "Diffusion"], key="build_type")
452
+ base_model = st.selectbox(
453
+ "Select Tiny Model",
454
+ ["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"] if model_type == "Causal LM"
455
+ else ["OFA-Sys/small-stable-diffusion-v0", "stabilityai/stable-diffusion-2-base"]
456
+ )
457
+ model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}")
458
+ domain = st.text_input("Target Domain", "general")
459
+ if st.button("Download Model ⬇️"):
460
+ config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(
461
+ name=model_name, base_model=base_model, size="small", domain=domain
462
+ )
463
+ builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
464
+ builder.load_model(base_model, config)
465
+ builder.save_model(config.model_path)
466
+ st.session_state['builder'] = builder
467
+ st.session_state['model_loaded'] = True
468
+ st.session_state['selected_model_type'] = model_type
469
+ st.session_state['selected_model'] = config.model_path
470
+ entry = f"Built {model_type} model: {model_name}"
471
+ st.session_state['history'].append(entry)
472
+ st.success(f"Model downloaded and saved to {config.model_path}! 🎉")
473
+ st.experimental_rerun()
474
+
475
+ # ----------------- TAB: Test Image Gen -----------------
476
+ with tab_imggen:
477
  st.header("Test Image Gen 🎨")
478
+ all_files = get_gallery_files()
 
 
479
  if all_files:
480
  selected_file = st.selectbox("Select Image or PDF", all_files, key="gen_select")
481
  if selected_file:
 
487
  image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
488
  doc.close()
489
  st.image(image, caption="Reference Image", use_container_width=True)
490
+ prompt = st.text_area("Prompt", "Generate a neon superhero version of this image", key="gen_prompt")
491
  if st.button("Run Image Gen 🚀", key="gen_run"):
492
  output_file = generate_filename("gen_output", "png")
493
  st.session_state['processing']['gen'] = True
494
  result = asyncio.run(process_image_gen(prompt, output_file))
495
  entry = f"Image Gen Test: {prompt} -> {output_file}"
496
+ st.session_state['history'].append(entry)
 
497
  st.image(result, caption="Generated Image", use_container_width=True)
498
  st.success(f"Image saved to {output_file}")
499
  st.session_state['processing']['gen'] = False
500
  else:
501
+ st.warning("No images or PDFs in gallery yet. Use Camera Snap or Download PDFs!")
502
+
503
+ # ----------------- TAB: PDF Process -----------------
504
+ with tab_pdf_process:
505
+ st.header("PDF Process")
506
+ st.subheader("Upload PDFs for GPT-based text extraction")
507
+ gpt_models = ["gpt-4o", "gpt-4o-mini"]
508
+ selected_gpt_model = st.selectbox("Select GPT Model", gpt_models, key="pdf_gpt_model")
509
+ detail_level = st.selectbox("Detail Level", ["auto", "low", "high"], key="pdf_detail_level")
510
+ uploaded_pdfs = st.file_uploader("Upload PDF files", type=["pdf"], accept_multiple_files=True, key="pdf_process_uploader")
511
+ view_mode = st.selectbox("View Mode", ["Single Page", "Double Page"], key="pdf_view_mode")
512
+ if st.button("Process Uploaded PDFs", key="process_pdfs"):
513
+ combined_text = ""
514
+ for pdf_file in uploaded_pdfs:
515
+ pdf_bytes = pdf_file.read()
516
+ temp_pdf_path = f"temp_{pdf_file.name}"
517
+ with open(temp_pdf_path, "wb") as f:
518
+ f.write(pdf_bytes)
519
+ try:
520
+ doc = fitz.open(temp_pdf_path)
521
+ st.write(f"Processing {pdf_file.name} with {len(doc)} pages")
522
+ if view_mode == "Single Page":
523
+ for i, page in enumerate(doc):
524
+ pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
525
+ img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
526
+ st.image(img, caption=f"{pdf_file.name} Page {i+1}")
527
+ gpt_text = process_image_with_prompt(img, "Extract the electronic text from image", model=selected_gpt_model, detail=detail_level)
528
+ combined_text += f"\n## {pdf_file.name} - Page {i+1}\n\n{gpt_text}\n"
529
+ else:
530
+ pages = list(doc)
531
+ for i in range(0, len(pages), 2):
532
+ if i+1 < len(pages):
533
+ pix1 = pages[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
534
+ img1 = Image.frombytes("RGB", [pix1.width, pix1.height], pix1.samples)
535
+ pix2 = pages[i+1].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
536
+ img2 = Image.frombytes("RGB", [pix2.width, pix2.height], pix2.samples)
537
+ total_width = img1.width + img2.width
538
+ max_height = max(img1.height, img2.height)
539
+ combined_img = Image.new("RGB", (total_width, max_height))
540
+ combined_img.paste(img1, (0, 0))
541
+ combined_img.paste(img2, (img1.width, 0))
542
+ st.image(combined_img, caption=f"{pdf_file.name} Pages {i+1}-{i+2}")
543
+ gpt_text = process_image_with_prompt(combined_img, "Extract the electronic text from image", model=selected_gpt_model, detail=detail_level)
544
+ combined_text += f"\n## {pdf_file.name} - Pages {i+1}-{i+2}\n\n{gpt_text}\n"
545
+ else:
546
+ pix = pages[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
547
+ img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
548
+ st.image(img, caption=f"{pdf_file.name} Page {i+1}")
549
+ gpt_text = process_image_with_prompt(img, "Extract the electronic text from image", model=selected_gpt_model, detail=detail_level)
550
+ combined_text += f"\n## {pdf_file.name} - Page {i+1}\n\n{gpt_text}\n"
551
  doc.close()
552
+ except Exception as e:
553
+ st.error(f"Error processing {pdf_file.name}: {str(e)}")
554
+ finally:
555
+ os.remove(temp_pdf_path)
556
+ output_filename = generate_filename("processed_pdf", "md")
557
+ with open(output_filename, "w", encoding="utf-8") as f:
558
+ f.write(combined_text)
559
+ st.success(f"PDF processing complete. MD file saved as {output_filename}")
560
+ st.markdown(get_download_link(output_filename, "text/markdown", "Download Processed PDF MD"), unsafe_allow_html=True)
561
+
562
+ # ----------------- TAB: Image Process -----------------
563
+ with tab_image_process:
564
+ st.header("Image Process")
565
+ st.subheader("Upload Images for GPT-based OCR")
566
+ gpt_models = ["gpt-4o", "gpt-4o-mini"]
567
+ selected_gpt_model = st.selectbox("Select GPT Model", gpt_models, key="img_gpt_model")
568
+ detail_level = st.selectbox("Detail Level", ["auto", "low", "high"], key="img_detail_level")
569
+ prompt_img = st.text_input("Enter prompt for image processing", "Extract the electronic text from image", key="img_process_prompt")
570
+ uploaded_images = st.file_uploader("Upload image files", type=["png", "jpg", "jpeg"], accept_multiple_files=True, key="image_process_uploader")
571
+ if st.button("Process Uploaded Images", key="process_images"):
572
+ combined_text = ""
573
+ for img_file in uploaded_images:
574
+ try:
575
+ img = Image.open(img_file)
576
+ st.image(img, caption=img_file.name)
577
+ gpt_text = process_image_with_prompt(img, prompt_img, model=selected_gpt_model, detail=detail_level)
578
+ combined_text += f"\n## {img_file.name}\n\n{gpt_text}\n"
579
+ except Exception as e:
580
+ st.error(f"Error processing image {img_file.name}: {str(e)}")
581
+ output_filename = generate_filename("processed_image", "md")
582
+ with open(output_filename, "w", encoding="utf-8") as f:
583
+ f.write(combined_text)
584
+ st.success(f"Image processing complete. MD file saved as {output_filename}")
585
+ st.markdown(get_download_link(output_filename, "text/markdown", "Download Processed Image MD"), unsafe_allow_html=True)
586
+
587
+ # ----------------- TAB: MD Gallery -----------------
588
+ with tab_md_gallery:
589
+ st.header("MD Gallery and GPT Processing")
590
+ gpt_models = ["gpt-4o", "gpt-4o-mini"]
591
+ selected_gpt_model = st.selectbox("Select GPT Model", gpt_models, key="md_gpt_model")
592
+ md_files = sorted(glob.glob("*.md"))
593
+ if md_files:
594
+ st.subheader("Individual File Processing")
595
+ cols = st.columns(2)
596
+ for idx, md_file in enumerate(md_files):
597
+ with cols[idx % 2]:
598
+ st.write(md_file)
599
+ if st.button(f"Process {md_file}", key=f"process_md_{md_file}"):
600
+ try:
601
+ with open(md_file, "r", encoding="utf-8") as f:
602
+ content = f.read()
603
+ prompt_md = "Summarize this into markdown outline with emojis and number the topics 1..12"
604
+ result_text = process_text_with_prompt(content, prompt_md, model=selected_gpt_model)
605
+ st.markdown(result_text)
606
+ output_filename = generate_filename(f"processed_{os.path.splitext(md_file)[0]}", "md")
607
+ with open(output_filename, "w", encoding="utf-8") as f:
608
+ f.write(result_text)
609
+ st.markdown(get_download_link(output_filename, "text/markdown", f"Download {output_filename}"), unsafe_allow_html=True)
610
+ except Exception as e:
611
+ st.error(f"Error processing {md_file}: {str(e)}")
612
+ st.subheader("Batch Processing")
613
+ st.write("Select MD files to combine and process:")
614
+ selected_md = {}
615
+ for md_file in md_files:
616
+ selected_md[md_file] = st.checkbox(md_file, key=f"checkbox_md_{md_file}")
617
+ batch_prompt = st.text_input("Enter batch processing prompt", "Summarize this into markdown outline with emojis and number the topics 1..12", key="batch_prompt")
618
+ if st.button("Process Selected MD Files", key="process_batch_md"):
619
+ combined_content = ""
620
+ for md_file, selected in selected_md.items():
621
+ if selected:
622
+ try:
623
+ with open(md_file, "r", encoding="utf-8") as f:
624
+ combined_content += f"\n## {md_file}\n" + f.read() + "\n"
625
+ except Exception as e:
626
+ st.error(f"Error reading {md_file}: {str(e)}")
627
+ if combined_content:
628
+ result_text = process_text_with_prompt(combined_content, batch_prompt, model=selected_gpt_model)
629
+ st.markdown(result_text)
630
+ output_filename = generate_filename("batch_processed_md", "md")
631
+ with open(output_filename, "w", encoding="utf-8") as f:
632
+ f.write(result_text)
633
+ st.success(f"Batch processing complete. MD file saved as {output_filename}")
634
+ st.markdown(get_download_link(output_filename, "text/markdown", "Download Batch Processed MD"), unsafe_allow_html=True)
635
  else:
636
+ st.warning("No MD files selected.")
 
 
 
 
 
 
 
 
 
637
  else:
638
+ st.warning("No MD files found.")
639
 
640
+ # ----------------- FINAL SIDEBAR UPDATE -----------------
641
+ # Update the asset gallery once (using its container).
642
+ def update_gallery():
643
+ container = st.session_state['asset_gallery_container']
644
+ container.empty() # Clear previous gallery content.
645
+ all_files = get_gallery_files()
646
+ if all_files:
647
+ container.markdown("### Asset Gallery 📸📖")
648
+ cols = container.columns(2)
649
+ for idx, file in enumerate(all_files[:st.session_state['gallery_size']]):
650
+ with cols[idx % 2]:
651
+ st.session_state['unique_counter'] += 1
652
+ unique_id = st.session_state['unique_counter']
653
+ if file.endswith('.png'):
654
+ st.image(Image.open(file), caption=os.path.basename(file), use_container_width=True)
655
+ else:
656
+ doc = fitz.open(file)
657
+ pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5))
658
+ img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
659
+ st.image(img, caption=os.path.basename(file), use_container_width=True)
660
+ doc.close()
661
+ checkbox_key = f"asset_{file}_{unique_id}"
662
+ st.session_state['asset_checkboxes'][file] = st.checkbox("Use for SFT/Input", value=st.session_state['asset_checkboxes'].get(file, False), key=checkbox_key)
663
+ mime_type = "image/png" if file.endswith('.png') else "application/pdf"
664
+ st.markdown(get_download_link(file, mime_type, "Snag It! 📥"), unsafe_allow_html=True)
665
+ if st.button("Zap It! 🗑️", key=f"delete_{file}_{unique_id}"):
666
+ os.remove(file)
667
+ st.session_state['asset_checkboxes'].pop(file, None)
668
+ st.success(f"Asset {os.path.basename(file)} vaporized! 💨")
669
+ st.experimental_rerun()
670
+
671
+ # Call the gallery update once after all tabs have been processed.
672
+ update_gallery()
673
+
674
+ # Finally, update the Action Logs and History in the sidebar.
675
+ st.sidebar.subheader("Action Logs 📜")
676
+ for record in log_records:
677
+ st.sidebar.write(f"{record.asctime} - {record.levelname} - {record.message}")
678
+
679
+ st.sidebar.subheader("History 📜")
680
+ for entry in st.session_state.get("history", []):
681
+ if entry is not None:
682
+ st.sidebar.write(entry)