Update app.py
Browse files
app.py
CHANGED
@@ -1,46 +1,46 @@
|
|
1 |
-
|
2 |
-
import
|
3 |
-
import glob
|
4 |
import base64
|
5 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import shutil
|
7 |
import streamlit as st
|
8 |
-
import
|
9 |
import torch
|
10 |
-
import
|
11 |
-
|
12 |
-
from
|
|
|
13 |
from diffusers import StableDiffusionPipeline
|
14 |
-
from torch.utils.data import Dataset, DataLoader
|
15 |
-
import csv
|
16 |
-
import fitz # PyMuPDF
|
17 |
-
import requests
|
18 |
-
from PIL import Image
|
19 |
-
import cv2
|
20 |
-
import numpy as np
|
21 |
-
import logging
|
22 |
-
import asyncio
|
23 |
-
import aiofiles
|
24 |
from io import BytesIO
|
25 |
-
from
|
26 |
-
from
|
27 |
-
import
|
28 |
-
import
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
# Logging
|
33 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
34 |
logger = logging.getLogger(__name__)
|
35 |
log_records = []
|
36 |
-
|
37 |
class LogCaptureHandler(logging.Handler):
|
38 |
def emit(self, record):
|
39 |
log_records.append(record)
|
40 |
-
|
41 |
logger.addHandler(LogCaptureHandler())
|
42 |
|
43 |
-
#
|
44 |
st.set_page_config(
|
45 |
page_title="AI Vision & SFT Titans 🚀",
|
46 |
page_icon="🤖",
|
@@ -53,22 +53,24 @@ st.set_page_config(
|
|
53 |
}
|
54 |
)
|
55 |
|
56 |
-
#
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
72 |
class ModelConfig:
|
73 |
name: str
|
74 |
base_model: str
|
@@ -76,138 +78,31 @@ class ModelConfig:
|
|
76 |
domain: Optional[str] = None
|
77 |
model_type: str = "causal_lm"
|
78 |
@property
|
79 |
-
def model_path(self):
|
80 |
return f"models/{self.name}"
|
81 |
|
82 |
-
@dataclass
|
83 |
class DiffusionConfig:
|
84 |
name: str
|
85 |
base_model: str
|
86 |
size: str
|
|
|
87 |
@property
|
88 |
def model_path(self):
|
89 |
return f"diffusion_models/{self.name}"
|
90 |
|
91 |
-
# Datasets
|
92 |
-
class SFTDataset(Dataset):
|
93 |
-
def __init__(self, data, tokenizer, max_length=128):
|
94 |
-
self.data = data
|
95 |
-
self.tokenizer = tokenizer
|
96 |
-
self.max_length = max_length
|
97 |
-
def __len__(self):
|
98 |
-
return len(self.data)
|
99 |
-
def __getitem__(self, idx):
|
100 |
-
prompt = self.data[idx]["prompt"]
|
101 |
-
response = self.data[idx]["response"]
|
102 |
-
full_text = f"{prompt} {response}"
|
103 |
-
full_encoding = self.tokenizer(full_text, max_length=self.max_length, padding="max_length", truncation=True, return_tensors="pt")
|
104 |
-
prompt_encoding = self.tokenizer(prompt, max_length=self.max_length, padding=False, truncation=True, return_tensors="pt")
|
105 |
-
input_ids = full_encoding["input_ids"].squeeze()
|
106 |
-
attention_mask = full_encoding["attention_mask"].squeeze()
|
107 |
-
labels = input_ids.clone()
|
108 |
-
prompt_len = prompt_encoding["input_ids"].shape[1]
|
109 |
-
if prompt_len < self.max_length:
|
110 |
-
labels[:prompt_len] = -100
|
111 |
-
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels}
|
112 |
-
|
113 |
-
class DiffusionDataset(Dataset):
|
114 |
-
def __init__(self, images, texts):
|
115 |
-
self.images = images
|
116 |
-
self.texts = texts
|
117 |
-
def __len__(self):
|
118 |
-
return len(self.images)
|
119 |
-
def __getitem__(self, idx):
|
120 |
-
return {"image": self.images[idx], "text": self.texts[idx]}
|
121 |
-
|
122 |
-
class TinyDiffusionDataset(Dataset):
|
123 |
-
def __init__(self, images):
|
124 |
-
self.images = [torch.tensor(np.array(img.convert("RGB")).transpose(2, 0, 1), dtype=torch.float32) / 255.0 for img in images]
|
125 |
-
def __len__(self):
|
126 |
-
return len(self.images)
|
127 |
-
def __getitem__(self, idx):
|
128 |
-
return self.images[idx]
|
129 |
-
|
130 |
-
# Custom Tiny Diffusion Model
|
131 |
-
class TinyUNet(nn.Module):
|
132 |
-
def __init__(self, in_channels=3, out_channels=3):
|
133 |
-
super(TinyUNet, self).__init__()
|
134 |
-
self.down1 = nn.Conv2d(in_channels, 32, 3, padding=1)
|
135 |
-
self.down2 = nn.Conv2d(32, 64, 3, padding=1, stride=2)
|
136 |
-
self.mid = nn.Conv2d(64, 128, 3, padding=1)
|
137 |
-
self.up1 = nn.ConvTranspose2d(128, 64, 3, stride=2, padding=1, output_padding=1)
|
138 |
-
self.up2 = nn.Conv2d(64 + 32, 32, 3, padding=1)
|
139 |
-
self.out = nn.Conv2d(32, out_channels, 3, padding=1)
|
140 |
-
self.time_embed = nn.Linear(1, 64)
|
141 |
-
|
142 |
-
def forward(self, x, t):
|
143 |
-
t_embed = F.relu(self.time_embed(t.unsqueeze(-1)))
|
144 |
-
t_embed = t_embed.view(t_embed.size(0), t_embed.size(1), 1, 1)
|
145 |
-
|
146 |
-
x1 = F.relu(self.down1(x))
|
147 |
-
x2 = F.relu(self.down2(x1))
|
148 |
-
x_mid = F.relu(self.mid(x2)) + t_embed
|
149 |
-
x_up1 = F.relu(self.up1(x_mid))
|
150 |
-
x_up2 = F.relu(self.up2(torch.cat([x_up1, x1], dim=1)))
|
151 |
-
return self.out(x_up2)
|
152 |
-
|
153 |
-
class TinyDiffusion:
|
154 |
-
def __init__(self, model, timesteps=100):
|
155 |
-
self.model = model
|
156 |
-
self.timesteps = timesteps
|
157 |
-
self.beta = torch.linspace(0.0001, 0.02, timesteps)
|
158 |
-
self.alpha = 1 - self.beta
|
159 |
-
self.alpha_cumprod = torch.cumprod(self.alpha, dim=0)
|
160 |
-
|
161 |
-
def train(self, images, epochs=50):
|
162 |
-
dataset = TinyDiffusionDataset(images)
|
163 |
-
dataloader = DataLoader(dataset, batch_size=1, shuffle=True)
|
164 |
-
optimizer = torch.optim.Adam(self.model.parameters(), lr=1e-4)
|
165 |
-
device = torch.device("cpu")
|
166 |
-
self.model.to(device)
|
167 |
-
for epoch in range(epochs):
|
168 |
-
total_loss = 0
|
169 |
-
for x in dataloader:
|
170 |
-
x = x.to(device)
|
171 |
-
t = torch.randint(0, self.timesteps, (x.size(0),), device=device).float()
|
172 |
-
noise = torch.randn_like(x)
|
173 |
-
alpha_t = self.alpha_cumprod[t.long()].view(-1, 1, 1, 1)
|
174 |
-
x_noisy = torch.sqrt(alpha_t) * x + torch.sqrt(1 - alpha_t) * noise
|
175 |
-
pred_noise = self.model(x_noisy, t)
|
176 |
-
loss = F.mse_loss(pred_noise, noise)
|
177 |
-
optimizer.zero_grad()
|
178 |
-
loss.backward()
|
179 |
-
optimizer.step()
|
180 |
-
total_loss += loss.item()
|
181 |
-
logger.info(f"Epoch {epoch + 1}/{epochs}, Loss: {total_loss / len(dataloader):.4f}")
|
182 |
-
return self
|
183 |
-
|
184 |
-
def generate(self, size=(64, 64), steps=100):
|
185 |
-
device = torch.device("cpu")
|
186 |
-
x = torch.randn(1, 3, size[0], size[1], device=device)
|
187 |
-
for t in reversed(range(steps)):
|
188 |
-
t_tensor = torch.full((1,), t, device=device, dtype=torch.float32)
|
189 |
-
alpha_t = self.alpha_cumprod[t].view(-1, 1, 1, 1)
|
190 |
-
pred_noise = self.model(x, t_tensor)
|
191 |
-
x = (x - (1 - self.alpha[t]) / torch.sqrt(1 - alpha_t) * pred_noise) / torch.sqrt(self.alpha[t])
|
192 |
-
if t > 0:
|
193 |
-
x += torch.sqrt(self.beta[t]) * torch.randn_like(x)
|
194 |
-
x = torch.clamp(x * 255, 0, 255).byte()
|
195 |
-
return Image.fromarray(x.squeeze(0).permute(1, 2, 0).cpu().numpy())
|
196 |
-
|
197 |
-
def upscale(self, image, scale_factor=2):
|
198 |
-
img_tensor = torch.tensor(np.array(image.convert("RGB")).transpose(2, 0, 1), dtype=torch.float32).unsqueeze(0) / 255.0
|
199 |
-
upscaled = F.interpolate(img_tensor, scale_factor=scale_factor, mode='bilinear', align_corners=False)
|
200 |
-
upscaled = torch.clamp(upscaled * 255, 0, 255).byte()
|
201 |
-
return Image.fromarray(upscaled.squeeze(0).permute(1, 2, 0).cpu().numpy())
|
202 |
-
|
203 |
-
# Model Builders
|
204 |
class ModelBuilder:
|
205 |
def __init__(self):
|
206 |
self.config = None
|
207 |
self.model = None
|
208 |
self.tokenizer = None
|
209 |
-
self.
|
210 |
-
|
|
|
|
|
|
|
|
|
|
|
211 |
def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
|
212 |
with st.spinner(f"Loading {model_path}... ⏳"):
|
213 |
self.model = AutoModelForCausalLM.from_pretrained(model_path)
|
@@ -219,53 +114,12 @@ class ModelBuilder:
|
|
219 |
self.model.to("cuda" if torch.cuda.is_available() else "cpu")
|
220 |
st.success(f"Model loaded! 🎉 {random.choice(self.jokes)}")
|
221 |
return self
|
222 |
-
def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4):
|
223 |
-
self.sft_data = []
|
224 |
-
with open(csv_path, "r") as f:
|
225 |
-
reader = csv.DictReader(f)
|
226 |
-
for row in reader:
|
227 |
-
self.sft_data.append({"prompt": row["prompt"], "response": row["response"]})
|
228 |
-
dataset = SFTDataset(self.sft_data, self.tokenizer)
|
229 |
-
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
|
230 |
-
optimizer = torch.optim.AdamW(self.model.parameters(), lr=2e-5)
|
231 |
-
self.model.train()
|
232 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
233 |
-
self.model.to(device)
|
234 |
-
for epoch in range(epochs):
|
235 |
-
with st.spinner(f"Training epoch {epoch + 1}/{epochs}... ⚙️"):
|
236 |
-
total_loss = 0
|
237 |
-
for batch in dataloader:
|
238 |
-
optimizer.zero_grad()
|
239 |
-
input_ids = batch["input_ids"].to(device)
|
240 |
-
attention_mask = batch["attention_mask"].to(device)
|
241 |
-
labels = batch["labels"].to(device)
|
242 |
-
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
|
243 |
-
loss = outputs.loss
|
244 |
-
loss.backward()
|
245 |
-
optimizer.step()
|
246 |
-
total_loss += loss.item()
|
247 |
-
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
|
248 |
-
st.success(f"SFT Fine-tuning completed! 🎉 {random.choice(self.jokes)}")
|
249 |
-
return self
|
250 |
def save_model(self, path: str):
|
251 |
with st.spinner("Saving model... 💾"):
|
252 |
os.makedirs(os.path.dirname(path), exist_ok=True)
|
253 |
self.model.save_pretrained(path)
|
254 |
self.tokenizer.save_pretrained(path)
|
255 |
st.success(f"Model saved at {path}! ✅")
|
256 |
-
def evaluate(self, prompt: str, status_container=None):
|
257 |
-
self.model.eval()
|
258 |
-
if status_container:
|
259 |
-
status_container.write("Preparing to evaluate... 🧠")
|
260 |
-
try:
|
261 |
-
with torch.no_grad():
|
262 |
-
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device)
|
263 |
-
outputs = self.model.generate(**inputs, max_new_tokens=50, do_sample=True, top_p=0.95, temperature=0.7)
|
264 |
-
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
265 |
-
except Exception as e:
|
266 |
-
if status_container:
|
267 |
-
status_container.error(f"Oops! Something broke: {str(e)} 💥")
|
268 |
-
return f"Error: {str(e)}"
|
269 |
|
270 |
class DiffusionBuilder:
|
271 |
def __init__(self):
|
@@ -276,32 +130,7 @@ class DiffusionBuilder:
|
|
276 |
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cpu")
|
277 |
if config:
|
278 |
self.config = config
|
279 |
-
st.success(
|
280 |
-
return self
|
281 |
-
def fine_tune_sft(self, images, texts, epochs=3):
|
282 |
-
dataset = DiffusionDataset(images, texts)
|
283 |
-
dataloader = DataLoader(dataset, batch_size=1, shuffle=True)
|
284 |
-
optimizer = torch.optim.AdamW(self.pipeline.unet.parameters(), lr=1e-5)
|
285 |
-
self.pipeline.unet.train()
|
286 |
-
for epoch in range(epochs):
|
287 |
-
with st.spinner(f"Training diffusion epoch {epoch + 1}/{epochs}... ⚙️"):
|
288 |
-
total_loss = 0
|
289 |
-
for batch in dataloader:
|
290 |
-
optimizer.zero_grad()
|
291 |
-
image = batch["image"][0].to(self.pipeline.device)
|
292 |
-
text = batch["text"][0]
|
293 |
-
latents = self.pipeline.vae.encode(torch.tensor(np.array(image)).permute(2, 0, 1).unsqueeze(0).float().to(self.pipeline.device)).latent_dist.sample()
|
294 |
-
noise = torch.randn_like(latents)
|
295 |
-
timesteps = torch.randint(0, self.pipeline.scheduler.num_train_timesteps, (latents.shape[0],), device=latents.device)
|
296 |
-
noisy_latents = self.pipeline.scheduler.add_noise(latents, noise, timesteps)
|
297 |
-
text_embeddings = self.pipeline.text_encoder(self.pipeline.tokenizer(text, return_tensors="pt").input_ids.to(self.pipeline.device))[0]
|
298 |
-
pred_noise = self.pipeline.unet(noisy_latents, timesteps, encoder_hidden_states=text_embeddings).sample
|
299 |
-
loss = torch.nn.functional.mse_loss(pred_noise, noise)
|
300 |
-
loss.backward()
|
301 |
-
optimizer.step()
|
302 |
-
total_loss += loss.item()
|
303 |
-
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
|
304 |
-
st.success("Diffusion SFT Fine-tuning completed! 🎨")
|
305 |
return self
|
306 |
def save_model(self, path: str):
|
307 |
with st.spinner("Saving diffusion model... 💾"):
|
@@ -311,34 +140,25 @@ class DiffusionBuilder:
|
|
311 |
def generate(self, prompt: str):
|
312 |
return self.pipeline(prompt, num_inference_steps=20).images[0]
|
313 |
|
314 |
-
# Utility Functions
|
315 |
def generate_filename(sequence, ext="png"):
|
316 |
-
|
317 |
-
return f"{sequence}_{timestamp}.{ext}"
|
318 |
|
319 |
def pdf_url_to_filename(url):
|
320 |
-
|
321 |
-
safe_name = re.sub(r'[<>:"/\\|?*]', '_', url)
|
322 |
-
return f"{safe_name}.pdf"
|
323 |
|
324 |
def get_download_link(file_path, mime_type="application/pdf", label="Download"):
|
325 |
-
|
326 |
-
data = f.read()
|
327 |
-
b64 = base64.b64encode(data).decode()
|
328 |
-
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label}</a>'
|
329 |
|
330 |
def zip_directory(directory_path, zip_path):
|
331 |
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
332 |
-
|
333 |
-
|
334 |
-
zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path)))
|
335 |
|
336 |
def get_model_files(model_type="causal_lm"):
|
337 |
-
|
338 |
-
return [d for d in glob.glob(path) if os.path.isdir(d)]
|
339 |
|
340 |
-
def get_gallery_files(file_types=["png"]):
|
341 |
-
return sorted(
|
342 |
|
343 |
def get_pdf_files():
|
344 |
return sorted(glob.glob("*.pdf"))
|
@@ -350,12 +170,15 @@ def download_pdf(url, output_path):
|
|
350 |
with open(output_path, "wb") as f:
|
351 |
for chunk in response.iter_content(chunk_size=8192):
|
352 |
f.write(chunk)
|
353 |
-
|
|
|
|
|
354 |
except requests.RequestException as e:
|
355 |
logger.error(f"Failed to download {url}: {e}")
|
356 |
-
|
|
|
357 |
|
358 |
-
# Async
|
359 |
async def process_pdf_snapshot(pdf_path, mode="single"):
|
360 |
start_time = time.time()
|
361 |
status = st.empty()
|
@@ -365,206 +188,107 @@ async def process_pdf_snapshot(pdf_path, mode="single"):
|
|
365 |
output_files = []
|
366 |
if mode == "single":
|
367 |
page = doc[0]
|
368 |
-
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
369 |
output_file = generate_filename("single", "png")
|
370 |
pix.save(output_file)
|
371 |
output_files.append(output_file)
|
372 |
elif mode == "twopage":
|
373 |
for i in range(min(2, len(doc))):
|
374 |
page = doc[i]
|
375 |
-
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
376 |
output_file = generate_filename(f"twopage_{i}", "png")
|
377 |
pix.save(output_file)
|
378 |
output_files.append(output_file)
|
379 |
-
elif mode == "
|
380 |
for i in range(len(doc)):
|
381 |
page = doc[i]
|
382 |
-
pix = page.get_pixmap(matrix=fitz.Matrix(0
|
383 |
-
output_file = generate_filename(f"
|
384 |
pix.save(output_file)
|
385 |
output_files.append(output_file)
|
386 |
doc.close()
|
387 |
elapsed = int(time.time() - start_time)
|
388 |
status.text(f"PDF Snapshot ({mode}) completed in {elapsed}s!")
|
389 |
-
update_gallery()
|
390 |
return output_files
|
391 |
except Exception as e:
|
392 |
status.error(f"Failed to process PDF: {str(e)}")
|
393 |
return []
|
394 |
|
|
|
395 |
async def process_ocr(image, output_file):
|
396 |
start_time = time.time()
|
397 |
status = st.empty()
|
398 |
status.text("Processing GOT-OCR2_0... (0s)")
|
399 |
tokenizer = AutoTokenizer.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True)
|
400 |
model = AutoModel.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval()
|
401 |
-
|
|
|
|
|
|
|
402 |
elapsed = int(time.time() - start_time)
|
403 |
status.text(f"GOT-OCR2_0 completed in {elapsed}s!")
|
404 |
async with aiofiles.open(output_file, "w") as f:
|
405 |
await f.write(result)
|
406 |
-
update_gallery()
|
407 |
return result
|
408 |
|
|
|
409 |
async def process_image_gen(prompt, output_file):
|
410 |
start_time = time.time()
|
411 |
status = st.empty()
|
412 |
status.text("Processing Image Gen... (0s)")
|
413 |
-
pipeline =
|
|
|
|
|
|
|
414 |
gen_image = pipeline(prompt, num_inference_steps=20).images[0]
|
415 |
elapsed = int(time.time() - start_time)
|
416 |
status.text(f"Image Gen completed in {elapsed}s!")
|
417 |
gen_image.save(output_file)
|
418 |
-
update_gallery()
|
419 |
return gen_image
|
420 |
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
status.text(f"{model_name} completed in {elapsed}s!")
|
432 |
-
upscaled_image.save(output_file)
|
433 |
-
update_gallery()
|
434 |
-
return upscaled_image
|
435 |
-
|
436 |
-
# Mock Search Tool for RAG
|
437 |
-
def mock_search(query: str) -> str:
|
438 |
-
if "superhero" in query.lower():
|
439 |
-
return "Latest trends: Gold-plated Batman statues, VR superhero battles."
|
440 |
-
return "No relevant results found."
|
441 |
-
|
442 |
-
def mock_duckduckgo_search(query: str) -> str:
|
443 |
-
if "superhero party trends" in query.lower():
|
444 |
-
return """
|
445 |
-
Latest trends for 2025:
|
446 |
-
- Luxury decorations: Gold-plated Batman statues, holographic Avengers displays.
|
447 |
-
- Entertainment: Live stunt shows with Iron Man suits, VR superhero battles.
|
448 |
-
- Catering: Gourmet kryptonite-green cocktails, Thor’s hammer-shaped appetizers.
|
449 |
-
"""
|
450 |
-
return "No relevant results found."
|
451 |
-
|
452 |
-
# Agent Classes
|
453 |
-
class PartyPlannerAgent:
|
454 |
-
def __init__(self, model, tokenizer):
|
455 |
-
self.model = model
|
456 |
-
self.tokenizer = tokenizer
|
457 |
-
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
458 |
-
self.model.to(self.device)
|
459 |
-
def generate(self, prompt: str) -> str:
|
460 |
-
self.model.eval()
|
461 |
-
with torch.no_grad():
|
462 |
-
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.device)
|
463 |
-
outputs = self.model.generate(**inputs, max_new_tokens=100, do_sample=True, top_p=0.95, temperature=0.7)
|
464 |
-
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
465 |
-
def plan_party(self, task: str) -> pd.DataFrame:
|
466 |
-
search_result = mock_duckduckgo_search("latest superhero party trends")
|
467 |
-
prompt = f"Given this context: '{search_result}'\n{task}"
|
468 |
-
plan_text = self.generate(prompt)
|
469 |
-
locations = {
|
470 |
-
"Wayne Manor": (42.3601, -71.0589),
|
471 |
-
"New York": (40.7128, -74.0060),
|
472 |
-
"Los Angeles": (34.0522, -118.2437),
|
473 |
-
"London": (51.5074, -0.1278)
|
474 |
-
}
|
475 |
-
wayne_coords = locations["Wayne Manor"]
|
476 |
-
travel_times = {loc: calculate_cargo_travel_time(coords, wayne_coords) for loc, coords in locations.items() if loc != "Wayne Manor"}
|
477 |
-
catchphrases = ["To the Batmobile!", "Avengers, assemble!", "I am Iron Man!", "By the power of Grayskull!"]
|
478 |
-
data = [
|
479 |
-
{"Location": "New York", "Travel Time (hrs)": travel_times["New York"], "Luxury Idea": "Gold-plated Batman statues", "Catchphrase": random.choice(catchphrases)},
|
480 |
-
{"Location": "Los Angeles", "Travel Time (hrs)": travel_times["Los Angeles"], "Luxury Idea": "Holographic Avengers displays", "Catchphrase": random.choice(catchphrases)},
|
481 |
-
{"Location": "London", "Travel Time (hrs)": travel_times["London"], "Luxury Idea": "Live stunt shows with Iron Man suits", "Catchphrase": random.choice(catchphrases)},
|
482 |
-
{"Location": "Wayne Manor", "Travel Time (hrs)": 0.0, "Luxury Idea": "VR superhero battles", "Catchphrase": random.choice(catchphrases)},
|
483 |
-
{"Location": "New York", "Travel Time (hrs)": travel_times["New York"], "Luxury Idea": "Gourmet kryptonite-green cocktails", "Catchphrase": random.choice(catchphrases)},
|
484 |
-
{"Location": "Los Angeles", "Travel Time (hrs)": travel_times["Los Angeles"], "Luxury Idea": "Thor’s hammer-shaped appetizers", "Catchphrase": random.choice(catchphrases)},
|
485 |
]
|
486 |
-
|
|
|
|
|
|
|
|
|
|
|
487 |
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
data = [
|
497 |
-
{"Theme": "Batman", "Image Idea": "Gold-plated Batman statue"},
|
498 |
-
{"Theme": "Avengers", "Image Idea": "VR superhero battle scene"}
|
499 |
-
]
|
500 |
-
return pd.DataFrame(data)
|
501 |
-
|
502 |
-
def calculate_cargo_travel_time(origin_coords: Tuple[float, float], destination_coords: Tuple[float, float], cruising_speed_kmh: float = 750.0) -> float:
|
503 |
-
def to_radians(degrees: float) -> float:
|
504 |
-
return degrees * (math.pi / 180)
|
505 |
-
lat1, lon1 = map(to_radians, origin_coords)
|
506 |
-
lat2, lon2 = map(to_radians, destination_coords)
|
507 |
-
EARTH_RADIUS_KM = 6371.0
|
508 |
-
dlon = lon2 - lon1
|
509 |
-
dlat = lat2 - lat1
|
510 |
-
a = (math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2) ** 2)
|
511 |
-
c = 2 * math.asin(math.sqrt(a))
|
512 |
-
distance = EARTH_RADIUS_KM * c
|
513 |
-
actual_distance = distance * 1.1
|
514 |
-
flight_time = (actual_distance / cruising_speed_kmh) + 1.0
|
515 |
-
return round(flight_time, 2)
|
516 |
-
|
517 |
-
# Main App
|
518 |
-
st.title("AI Vision & SFT Titans 🚀")
|
519 |
-
|
520 |
-
# Sidebar
|
521 |
-
st.sidebar.header("Captured Files 📜")
|
522 |
-
gallery_size = st.sidebar.slider("Gallery Size", 1, 10, 2) # Default to 2
|
523 |
-
def update_gallery():
|
524 |
-
media_files = get_gallery_files(["png"])
|
525 |
-
pdf_files = get_pdf_files()
|
526 |
-
if media_files or pdf_files:
|
527 |
-
st.sidebar.subheader("Images 📸")
|
528 |
-
cols = st.sidebar.columns(2)
|
529 |
-
for idx, file in enumerate(media_files[:gallery_size * 2]): # Limit by gallery size
|
530 |
-
with cols[idx % 2]:
|
531 |
-
st.image(Image.open(file), caption=os.path.basename(file), use_container_width=True)
|
532 |
-
st.sidebar.subheader("PDF Downloads 📖")
|
533 |
-
for pdf_file in pdf_files[:gallery_size * 2]: # Limit by gallery size
|
534 |
-
st.markdown(get_download_link(pdf_file, "application/pdf", f"📥 Grab {os.path.basename(pdf_file)}"), unsafe_allow_html=True)
|
535 |
-
update_gallery()
|
536 |
|
537 |
-
|
538 |
-
model_type = st.sidebar.selectbox("Model Type", ["Causal LM", "Diffusion"], key="sidebar_model_type")
|
539 |
-
model_dirs = get_model_files(model_type)
|
540 |
-
selected_model = st.sidebar.selectbox("Select Saved Model", ["None"] + model_dirs, key="sidebar_model_select")
|
541 |
-
if selected_model != "None" and st.sidebar.button("Load Model 📂"):
|
542 |
-
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
|
543 |
-
config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=os.path.basename(selected_model), base_model="unknown", size="small")
|
544 |
-
builder.load_model(selected_model, config)
|
545 |
-
st.session_state['builder'] = builder
|
546 |
-
st.session_state['model_loaded'] = True
|
547 |
-
st.rerun()
|
548 |
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
st.write(f"{record.asctime} - {record.levelname} - {record.message}")
|
554 |
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
st.write(entry)
|
560 |
-
|
561 |
-
# Tabs
|
562 |
-
tab1, tab2, tab3, tab4, tab5, tab6, tab7, tab8, tab9 = st.tabs([
|
563 |
-
"Camera Snap 📷", "Download PDFs 📥", "Build Titan 🌱", "Fine-Tune Titan 🔧",
|
564 |
-
"Test Titan 🧪", "Agentic RAG Party 🌐", "Test OCR 🔍", "Test Image Gen 🎨", "Custom Diffusion 🎨🤓"
|
565 |
])
|
|
|
566 |
|
567 |
-
|
|
|
568 |
st.header("Camera Snap 📷")
|
569 |
st.subheader("Single Capture")
|
570 |
cols = st.columns(2)
|
@@ -572,48 +296,48 @@ with tab1:
|
|
572 |
cam0_img = st.camera_input("Take a picture - Cam 0", key="cam0")
|
573 |
if cam0_img:
|
574 |
filename = generate_filename("cam0")
|
|
|
|
|
575 |
with open(filename, "wb") as f:
|
576 |
f.write(cam0_img.getvalue())
|
|
|
577 |
entry = f"Snapshot from Cam 0: {filename}"
|
578 |
-
|
579 |
-
st.session_state['history'] = [e for e in st.session_state['history'] if not e.startswith("Snapshot from Cam 0:")] + [entry]
|
580 |
st.image(Image.open(filename), caption="Camera 0", use_container_width=True)
|
581 |
logger.info(f"Saved snapshot from Camera 0: {filename}")
|
582 |
-
update_gallery()
|
583 |
with cols[1]:
|
584 |
cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1")
|
585 |
if cam1_img:
|
586 |
filename = generate_filename("cam1")
|
|
|
|
|
587 |
with open(filename, "wb") as f:
|
588 |
f.write(cam1_img.getvalue())
|
|
|
589 |
entry = f"Snapshot from Cam 1: {filename}"
|
590 |
-
|
591 |
-
st.session_state['history'] = [e for e in st.session_state['history'] if not e.startswith("Snapshot from Cam 1:")] + [entry]
|
592 |
st.image(Image.open(filename), caption="Camera 1", use_container_width=True)
|
593 |
logger.info(f"Saved snapshot from Camera 1: {filename}")
|
594 |
-
update_gallery()
|
595 |
|
596 |
-
|
|
|
597 |
st.header("Download PDFs 📥")
|
598 |
-
# Examples button with arXiv PDF links from README.md
|
599 |
if st.button("Examples 📚"):
|
600 |
example_urls = [
|
601 |
-
"https://arxiv.org/pdf/2308.03892",
|
602 |
-
"https://arxiv.org/pdf/1912.01703",
|
603 |
-
"https://arxiv.org/pdf/2408.11039",
|
604 |
-
"https://arxiv.org/pdf/2109.10282",
|
605 |
-
"https://arxiv.org/pdf/2112.10752",
|
606 |
-
"https://arxiv.org/pdf/2308.11236",
|
607 |
-
"https://arxiv.org/pdf/1706.03762",
|
608 |
-
"https://arxiv.org/pdf/2006.11239",
|
609 |
-
"https://arxiv.org/pdf/2305.11207",
|
610 |
-
"https://arxiv.org/pdf/2106.09685",
|
611 |
-
"https://arxiv.org/pdf/2005.11401",
|
612 |
-
"https://arxiv.org/pdf/2106.10504"
|
613 |
]
|
614 |
st.session_state['pdf_urls'] = "\n".join(example_urls)
|
615 |
-
|
616 |
-
# Robo-Downloader
|
617 |
url_input = st.text_area("Enter PDF URLs (one per line)", value=st.session_state.get('pdf_urls', ""), height=200)
|
618 |
if st.button("Robo-Download 🤖"):
|
619 |
urls = url_input.strip().split("\n")
|
@@ -630,8 +354,8 @@ with tab2:
|
|
630 |
st.session_state['downloaded_pdfs'][url] = output_path
|
631 |
logger.info(f"Downloaded PDF from {url} to {output_path}")
|
632 |
entry = f"Downloaded PDF: {output_path}"
|
633 |
-
|
634 |
-
|
635 |
else:
|
636 |
st.error(f"Failed to nab {url} 😿")
|
637 |
else:
|
@@ -639,218 +363,50 @@ with tab2:
|
|
639 |
st.session_state['downloaded_pdfs'][url] = output_path
|
640 |
progress_bar.progress((idx + 1) / total_urls)
|
641 |
status_text.text("Robo-Download complete! 🚀")
|
642 |
-
|
643 |
-
|
644 |
-
# PDF Gallery with Thumbnails and Checkboxes
|
645 |
-
st.subheader("PDF Gallery 📖")
|
646 |
-
downloaded_pdfs = list(st.session_state['downloaded_pdfs'].values())
|
647 |
-
if downloaded_pdfs:
|
648 |
-
cols_per_row = 3
|
649 |
-
for i in range(0, len(downloaded_pdfs), cols_per_row):
|
650 |
-
cols = st.columns(cols_per_row)
|
651 |
-
for j, pdf_path in enumerate(downloaded_pdfs[i:i + cols_per_row]):
|
652 |
-
with cols[j]:
|
653 |
-
doc = fitz.open(pdf_path)
|
654 |
-
page = doc[0]
|
655 |
-
pix = page.get_pixmap(matrix=fitz.Matrix(0.5, 0.5)) # Thumbnail at 50% scale
|
656 |
-
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
657 |
-
st.image(img, caption=os.path.basename(pdf_path), use_container_width=True)
|
658 |
-
# Checkbox for SFT/Input use
|
659 |
-
checkbox_key = f"pdf_{pdf_path}"
|
660 |
-
st.session_state['pdf_checkboxes'][checkbox_key] = st.checkbox(
|
661 |
-
"Use for SFT/Input",
|
662 |
-
value=st.session_state['pdf_checkboxes'].get(checkbox_key, False),
|
663 |
-
key=checkbox_key
|
664 |
-
)
|
665 |
-
# Download and Delete Buttons
|
666 |
-
st.markdown(get_download_link(pdf_path, "application/pdf", "Snag It! 📥"), unsafe_allow_html=True)
|
667 |
-
if st.button("Zap It! 🗑️", key=f"delete_{pdf_path}"):
|
668 |
-
os.remove(pdf_path)
|
669 |
-
url_key = next((k for k, v in st.session_state['downloaded_pdfs'].items() if v == pdf_path), None)
|
670 |
-
if url_key:
|
671 |
-
del st.session_state['downloaded_pdfs'][url_key]
|
672 |
-
del st.session_state['pdf_checkboxes'][checkbox_key]
|
673 |
-
st.success(f"PDF {os.path.basename(pdf_path)} vaporized! 💨")
|
674 |
-
st.rerun()
|
675 |
-
doc.close()
|
676 |
-
else:
|
677 |
-
st.info("No PDFs captured yet. Feed the robo-downloader some URLs! 🤖")
|
678 |
-
|
679 |
-
mode = st.selectbox("Snapshot Mode", ["Single Page (High-Res)", "Two Pages (High-Res)", "All Pages (Thumbnails)"], key="download_mode")
|
680 |
if st.button("Snapshot Selected 📸"):
|
681 |
-
selected_pdfs = [path for
|
682 |
if selected_pdfs:
|
683 |
for pdf_path in selected_pdfs:
|
684 |
-
|
|
|
|
|
|
|
|
|
|
|
685 |
snapshots = asyncio.run(process_pdf_snapshot(pdf_path, mode_key))
|
686 |
for snapshot in snapshots:
|
687 |
st.image(Image.open(snapshot), caption=snapshot, use_container_width=True)
|
|
|
|
|
688 |
else:
|
689 |
-
st.warning("No PDFs selected for snapshotting! Check some boxes
|
690 |
|
691 |
-
|
692 |
-
|
693 |
-
model_type = st.selectbox("Model Type", ["Causal LM", "Diffusion"], key="build_type")
|
694 |
-
base_model = st.selectbox("Select Tiny Model",
|
695 |
-
["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"] if model_type == "Causal LM" else
|
696 |
-
["OFA-Sys/small-stable-diffusion-v0", "stabilityai/stable-diffusion-2-base"])
|
697 |
-
model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}")
|
698 |
-
domain = st.text_input("Target Domain", "general")
|
699 |
-
if st.button("Download Model ⬇️"):
|
700 |
-
config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=model_name, base_model=base_model, size="small", domain=domain)
|
701 |
-
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
|
702 |
-
builder.load_model(base_model, config)
|
703 |
-
builder.save_model(config.model_path)
|
704 |
-
st.session_state['builder'] = builder
|
705 |
-
st.session_state['model_loaded'] = True
|
706 |
-
entry = f"Built {model_type} model: {model_name}"
|
707 |
-
if entry not in st.session_state['history']:
|
708 |
-
st.session_state['history'].append(entry)
|
709 |
-
st.success(f"Model downloaded and saved to {config.model_path}! 🎉")
|
710 |
-
st.rerun()
|
711 |
-
|
712 |
-
with tab4:
|
713 |
-
st.header("Fine-Tune Titan 🔧")
|
714 |
-
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
|
715 |
-
st.warning("Please build or load a Titan first! ⚠️")
|
716 |
-
else:
|
717 |
-
if isinstance(st.session_state['builder'], ModelBuilder):
|
718 |
-
if st.button("Generate Sample CSV 📝"):
|
719 |
-
sample_data = [
|
720 |
-
{"prompt": "What is AI?", "response": "AI is artificial intelligence, simulating human smarts in machines."},
|
721 |
-
{"prompt": "Explain machine learning", "response": "Machine learning is AI’s gym where models bulk up on data."},
|
722 |
-
]
|
723 |
-
csv_path = f"sft_data_{int(time.time())}.csv"
|
724 |
-
with open(csv_path, "w", newline="") as f:
|
725 |
-
writer = csv.DictWriter(f, fieldnames=["prompt", "response"])
|
726 |
-
writer.writeheader()
|
727 |
-
writer.writerows(sample_data)
|
728 |
-
st.markdown(get_download_link(csv_path, "text/csv", "Download Sample CSV"), unsafe_allow_html=True)
|
729 |
-
st.success(f"Sample CSV generated as {csv_path}! ✅")
|
730 |
-
|
731 |
-
uploaded_csv = st.file_uploader("Upload CSV for SFT", type="csv")
|
732 |
-
if uploaded_csv and st.button("Fine-Tune with Uploaded CSV 🔄"):
|
733 |
-
csv_path = f"uploaded_sft_data_{int(time.time())}.csv"
|
734 |
-
with open(csv_path, "wb") as f:
|
735 |
-
f.write(uploaded_csv.read())
|
736 |
-
new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}"
|
737 |
-
new_config = ModelConfig(name=new_model_name, base_model=st.session_state['builder'].config.base_model, size="small", domain=st.session_state['builder'].config.domain)
|
738 |
-
st.session_state['builder'].config = new_config
|
739 |
-
st.session_state['builder'].fine_tune_sft(csv_path)
|
740 |
-
st.session_state['builder'].save_model(new_config.model_path)
|
741 |
-
zip_path = f"{new_config.model_path}.zip"
|
742 |
-
zip_directory(new_config.model_path, zip_path)
|
743 |
-
entry = f"Fine-tuned Causal LM: {new_model_name}"
|
744 |
-
if entry not in st.session_state['history']:
|
745 |
-
st.session_state['history'].append(entry)
|
746 |
-
st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned Titan"), unsafe_allow_html=True)
|
747 |
-
st.rerun()
|
748 |
-
elif isinstance(st.session_state['builder'], DiffusionBuilder):
|
749 |
-
captured_files = get_gallery_files(["png"])
|
750 |
-
selected_pdfs = [path for key, path in st.session_state['downloaded_pdfs'].items() if st.session_state['pdf_checkboxes'].get(f"pdf_{path}", False)]
|
751 |
-
if len(captured_files) + len(selected_pdfs) >= 2:
|
752 |
-
demo_data = [{"image": img, "text": f"Superhero {os.path.basename(img).split('.')[0]}"} for img in captured_files]
|
753 |
-
for pdf_path in selected_pdfs:
|
754 |
-
demo_data.append({"image": pdf_path, "text": f"PDF {os.path.basename(pdf_path)}"})
|
755 |
-
edited_data = st.data_editor(pd.DataFrame(demo_data), num_rows="dynamic")
|
756 |
-
if st.button("Fine-Tune with Dataset 🔄"):
|
757 |
-
images = [Image.open(row["image"]) if row["image"].endswith('.png') else Image.frombytes("RGB", fitz.open(row["image"])[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)).size, fitz.open(row["image"])[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)).samples) for _, row in edited_data.iterrows()]
|
758 |
-
texts = [row["text"] for _, row in edited_data.iterrows()]
|
759 |
-
new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}"
|
760 |
-
new_config = DiffusionConfig(name=new_model_name, base_model=st.session_state['builder'].config.base_model, size="small")
|
761 |
-
st.session_state['builder'].config = new_config
|
762 |
-
st.session_state['builder'].fine_tune_sft(images, texts)
|
763 |
-
st.session_state['builder'].save_model(new_config.model_path)
|
764 |
-
zip_path = f"{new_config.model_path}.zip"
|
765 |
-
zip_directory(new_config.model_path, zip_path)
|
766 |
-
entry = f"Fine-tuned Diffusion: {new_model_name}"
|
767 |
-
if entry not in st.session_state['history']:
|
768 |
-
st.session_state['history'].append(entry)
|
769 |
-
st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned Diffusion Model"), unsafe_allow_html=True)
|
770 |
-
csv_path = f"sft_dataset_{int(time.time())}.csv"
|
771 |
-
with open(csv_path, "w", newline="") as f:
|
772 |
-
writer = csv.writer(f)
|
773 |
-
writer.writerow(["image", "text"])
|
774 |
-
for _, row in edited_data.iterrows():
|
775 |
-
writer.writerow([row["image"], row["text"]])
|
776 |
-
st.markdown(get_download_link(csv_path, "text/csv", "Download SFT Dataset CSV"), unsafe_allow_html=True)
|
777 |
-
|
778 |
-
with tab5:
|
779 |
-
st.header("Test Titan 🧪")
|
780 |
-
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
|
781 |
-
st.warning("Please build or load a Titan first! ⚠️")
|
782 |
-
else:
|
783 |
-
if isinstance(st.session_state['builder'], ModelBuilder):
|
784 |
-
if st.session_state['builder'].sft_data:
|
785 |
-
st.write("Testing with SFT Data:")
|
786 |
-
for item in st.session_state['builder'].sft_data[:3]:
|
787 |
-
prompt = item["prompt"]
|
788 |
-
expected = item["response"]
|
789 |
-
status_container = st.empty()
|
790 |
-
generated = st.session_state['builder'].evaluate(prompt, status_container)
|
791 |
-
st.write(f"**Prompt**: {prompt}")
|
792 |
-
st.write(f"**Expected**: {expected}")
|
793 |
-
st.write(f"**Generated**: {generated}")
|
794 |
-
st.write("---")
|
795 |
-
status_container.empty()
|
796 |
-
test_prompt = st.text_area("Enter Test Prompt", "What is AI?")
|
797 |
-
if st.button("Run Test ▶️"):
|
798 |
-
status_container = st.empty()
|
799 |
-
result = st.session_state['builder'].evaluate(test_prompt, status_container)
|
800 |
-
entry = f"Causal LM Test: {test_prompt} -> {result}"
|
801 |
-
if entry not in st.session_state['history']:
|
802 |
-
st.session_state['history'].append(entry)
|
803 |
-
st.write(f"**Generated Response**: {result}")
|
804 |
-
status_container.empty()
|
805 |
-
elif isinstance(st.session_state['builder'], DiffusionBuilder):
|
806 |
-
test_prompt = st.text_area("Enter Test Prompt", "Neon Batman")
|
807 |
-
selected_pdfs = [path for key, path in st.session_state['downloaded_pdfs'].items() if st.session_state['pdf_checkboxes'].get(f"pdf_{path}", False)]
|
808 |
-
if st.button("Run Test ▶️"):
|
809 |
-
image = st.session_state['builder'].generate(test_prompt)
|
810 |
-
output_file = generate_filename("diffusion_test", "png")
|
811 |
-
image.save(output_file)
|
812 |
-
entry = f"Diffusion Test: {test_prompt} -> {output_file}"
|
813 |
-
if entry not in st.session_state['history']:
|
814 |
-
st.session_state['history'].append(entry)
|
815 |
-
st.image(image, caption="Generated Image")
|
816 |
-
update_gallery()
|
817 |
-
|
818 |
-
with tab6:
|
819 |
-
st.header("Agentic RAG Party 🌐")
|
820 |
-
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
|
821 |
-
st.warning("Please build or load a Titan first! ⚠️")
|
822 |
-
else:
|
823 |
-
if isinstance(st.session_state['builder'], ModelBuilder):
|
824 |
-
if st.button("Run NLP RAG Demo 🎉"):
|
825 |
-
agent = PartyPlannerAgent(st.session_state['builder'].model, st.session_state['builder'].tokenizer)
|
826 |
-
task = "Plan a luxury superhero-themed party at Wayne Manor."
|
827 |
-
plan_df = agent.plan_party(task)
|
828 |
-
entry = f"NLP RAG Demo: Planned party at Wayne Manor"
|
829 |
-
if entry not in st.session_state['history']:
|
830 |
-
st.session_state['history'].append(entry)
|
831 |
-
st.dataframe(plan_df)
|
832 |
-
elif isinstance(st.session_state['builder'], DiffusionBuilder):
|
833 |
-
if st.button("Run CV RAG Demo 🎉"):
|
834 |
-
agent = CVPartyPlannerAgent(st.session_state['builder'].pipeline)
|
835 |
-
task = "Generate images for a luxury superhero-themed party."
|
836 |
-
plan_df = agent.plan_party(task)
|
837 |
-
entry = f"CV RAG Demo: Generated party images"
|
838 |
-
if entry not in st.session_state['history']:
|
839 |
-
st.session_state['history'].append(entry)
|
840 |
-
st.dataframe(plan_df)
|
841 |
-
for _, row in plan_df.iterrows():
|
842 |
-
image = agent.generate(row["Image Idea"])
|
843 |
-
output_file = generate_filename(f"cv_rag_{row['Theme'].lower()}", "png")
|
844 |
-
image.save(output_file)
|
845 |
-
st.image(image, caption=f"{row['Theme']} - {row['Image Idea']}")
|
846 |
-
update_gallery()
|
847 |
-
|
848 |
-
with tab7:
|
849 |
st.header("Test OCR 🔍")
|
850 |
-
|
851 |
-
selected_pdfs = [path for key, path in st.session_state['downloaded_pdfs'].items() if st.session_state['pdf_checkboxes'].get(f"pdf_{path}", False)]
|
852 |
-
all_files = captured_files + selected_pdfs
|
853 |
if all_files:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
854 |
selected_file = st.selectbox("Select Image or PDF", all_files, key="ocr_select")
|
855 |
if selected_file:
|
856 |
if selected_file.endswith('.png'):
|
@@ -866,19 +422,60 @@ with tab7:
|
|
866 |
st.session_state['processing']['ocr'] = True
|
867 |
result = asyncio.run(process_ocr(image, output_file))
|
868 |
entry = f"OCR Test: {selected_file} -> {output_file}"
|
869 |
-
|
870 |
-
st.session_state['history'].append(entry)
|
871 |
st.text_area("OCR Result", result, height=200, key="ocr_result")
|
872 |
st.success(f"OCR output saved to {output_file}")
|
873 |
st.session_state['processing']['ocr'] = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
874 |
else:
|
875 |
-
st.warning("No
|
876 |
|
877 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
878 |
st.header("Test Image Gen 🎨")
|
879 |
-
|
880 |
-
selected_pdfs = [path for key, path in st.session_state['downloaded_pdfs'].items() if st.session_state['pdf_checkboxes'].get(f"pdf_{path}", False)]
|
881 |
-
all_files = captured_files + selected_pdfs
|
882 |
if all_files:
|
883 |
selected_file = st.selectbox("Select Image or PDF", all_files, key="gen_select")
|
884 |
if selected_file:
|
@@ -890,65 +487,196 @@ with tab8:
|
|
890 |
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
891 |
doc.close()
|
892 |
st.image(image, caption="Reference Image", use_container_width=True)
|
893 |
-
prompt = st.text_area("Prompt", "Generate a
|
894 |
if st.button("Run Image Gen 🚀", key="gen_run"):
|
895 |
output_file = generate_filename("gen_output", "png")
|
896 |
st.session_state['processing']['gen'] = True
|
897 |
result = asyncio.run(process_image_gen(prompt, output_file))
|
898 |
entry = f"Image Gen Test: {prompt} -> {output_file}"
|
899 |
-
|
900 |
-
st.session_state['history'].append(entry)
|
901 |
st.image(result, caption="Generated Image", use_container_width=True)
|
902 |
st.success(f"Image saved to {output_file}")
|
903 |
st.session_state['processing']['gen'] = False
|
904 |
else:
|
905 |
-
st.warning("No images or PDFs
|
906 |
-
|
907 |
-
|
908 |
-
|
909 |
-
st.
|
910 |
-
|
911 |
-
|
912 |
-
|
913 |
-
|
914 |
-
|
915 |
-
|
916 |
-
|
917 |
-
|
918 |
-
|
919 |
-
|
920 |
-
|
921 |
-
|
922 |
-
|
923 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
924 |
doc.close()
|
925 |
-
|
926 |
-
|
927 |
-
|
928 |
-
|
929 |
-
|
930 |
-
|
931 |
-
|
932 |
-
|
933 |
-
|
934 |
-
|
935 |
-
|
936 |
-
|
937 |
-
|
938 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
939 |
else:
|
940 |
-
|
941 |
-
builder.load_model(model_name)
|
942 |
-
result = builder.generate("A superhero scene inspired by captured images")
|
943 |
-
result.save(output_file)
|
944 |
-
entry = f"Custom Diffusion: {model_choice} -> {output_file}"
|
945 |
-
if entry not in st.session_state['history']:
|
946 |
-
st.session_state['history'].append(entry)
|
947 |
-
st.image(result, caption=f"{model_choice} Masterpiece", use_container_width=True)
|
948 |
-
st.success(f"Image saved to {output_file}")
|
949 |
-
st.session_state['processing']['diffusion'] = False
|
950 |
else:
|
951 |
-
st.warning("No
|
952 |
|
953 |
-
#
|
954 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import aiofiles
|
2 |
+
import asyncio
|
|
|
3 |
import base64
|
4 |
+
import fitz
|
5 |
+
import glob
|
6 |
+
import logging
|
7 |
+
import os
|
8 |
+
import pandas as pd
|
9 |
+
import pytz
|
10 |
+
import random
|
11 |
+
import re
|
12 |
+
import requests
|
13 |
import shutil
|
14 |
import streamlit as st
|
15 |
+
import time
|
16 |
import torch
|
17 |
+
import zipfile
|
18 |
+
|
19 |
+
from dataclasses import dataclass
|
20 |
+
from datetime import datetime
|
21 |
from diffusers import StableDiffusionPipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
from io import BytesIO
|
23 |
+
from openai import OpenAI
|
24 |
+
from PIL import Image
|
25 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel
|
26 |
+
from typing import Optional
|
27 |
+
|
28 |
+
# 🤖 OpenAI wizardry: Summon your API magic!
|
29 |
+
client = OpenAI(
|
30 |
+
api_key=os.getenv('OPENAI_API_KEY'),
|
31 |
+
organization=os.getenv('OPENAI_ORG_ID')
|
32 |
+
)
|
33 |
|
34 |
+
# 📜 Logging activated: Capturing chaos and calm!
|
35 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
36 |
logger = logging.getLogger(__name__)
|
37 |
log_records = []
|
|
|
38 |
class LogCaptureHandler(logging.Handler):
|
39 |
def emit(self, record):
|
40 |
log_records.append(record)
|
|
|
41 |
logger.addHandler(LogCaptureHandler())
|
42 |
|
43 |
+
# 🎨 Streamlit styling: Designing a cosmic interface!
|
44 |
st.set_page_config(
|
45 |
page_title="AI Vision & SFT Titans 🚀",
|
46 |
page_icon="🤖",
|
|
|
53 |
}
|
54 |
)
|
55 |
|
56 |
+
# Set up default session state values.
|
57 |
+
st.session_state.setdefault('history', []) # History: starting fresh if empty!
|
58 |
+
st.session_state.setdefault('builder', None) # Builder: set up if missing.
|
59 |
+
st.session_state.setdefault('model_loaded', False) # Model Loaded: not loaded by default.
|
60 |
+
st.session_state.setdefault('processing', {}) # Processing: initialize as an empty dict.
|
61 |
+
st.session_state.setdefault('asset_checkboxes', {}) # Asset Checkboxes: default to an empty dict.
|
62 |
+
st.session_state.setdefault('downloaded_pdfs', {}) # Downloaded PDFs: start with none.
|
63 |
+
st.session_state.setdefault('unique_counter', 0) # Unique Counter: initialize to zero.
|
64 |
+
st.session_state.setdefault('selected_model_type', "Causal LM")
|
65 |
+
st.session_state.setdefault('selected_model', "None")
|
66 |
+
st.session_state.setdefault('cam0_file', None)
|
67 |
+
st.session_state.setdefault('cam1_file', None)
|
68 |
+
|
69 |
+
# Create a single container for the asset gallery in the sidebar.
|
70 |
+
if 'asset_gallery_container' not in st.session_state:
|
71 |
+
st.session_state['asset_gallery_container'] = st.sidebar.empty()
|
72 |
+
|
73 |
+
@dataclass # ModelConfig: A blueprint for model configurations.
|
74 |
class ModelConfig:
|
75 |
name: str
|
76 |
base_model: str
|
|
|
78 |
domain: Optional[str] = None
|
79 |
model_type: str = "causal_lm"
|
80 |
@property
|
81 |
+
def model_path(self):
|
82 |
return f"models/{self.name}"
|
83 |
|
84 |
+
@dataclass # DiffusionConfig: Where diffusion magic takes shape.
|
85 |
class DiffusionConfig:
|
86 |
name: str
|
87 |
base_model: str
|
88 |
size: str
|
89 |
+
domain: Optional[str] = None
|
90 |
@property
|
91 |
def model_path(self):
|
92 |
return f"diffusion_models/{self.name}"
|
93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
class ModelBuilder:
|
95 |
def __init__(self):
|
96 |
self.config = None
|
97 |
self.model = None
|
98 |
self.tokenizer = None
|
99 |
+
self.jokes = [
|
100 |
+
"Why did the AI go to therapy? Too many layers to unpack! 😂",
|
101 |
+
"Training complete! Time for a binary coffee break. ☕",
|
102 |
+
"I told my neural network a joke; it couldn't stop dropping bits! 🤖",
|
103 |
+
"I asked the AI for a pun, and it said, 'I'm punning on parallel processing!' 😄",
|
104 |
+
"Debugging my code is like a stand-up routine—always a series of exceptions! 😆"
|
105 |
+
]
|
106 |
def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
|
107 |
with st.spinner(f"Loading {model_path}... ⏳"):
|
108 |
self.model = AutoModelForCausalLM.from_pretrained(model_path)
|
|
|
114 |
self.model.to("cuda" if torch.cuda.is_available() else "cpu")
|
115 |
st.success(f"Model loaded! 🎉 {random.choice(self.jokes)}")
|
116 |
return self
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
def save_model(self, path: str):
|
118 |
with st.spinner("Saving model... 💾"):
|
119 |
os.makedirs(os.path.dirname(path), exist_ok=True)
|
120 |
self.model.save_pretrained(path)
|
121 |
self.tokenizer.save_pretrained(path)
|
122 |
st.success(f"Model saved at {path}! ✅")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
class DiffusionBuilder:
|
125 |
def __init__(self):
|
|
|
130 |
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cpu")
|
131 |
if config:
|
132 |
self.config = config
|
133 |
+
st.success("Diffusion model loaded! 🎨")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
return self
|
135 |
def save_model(self, path: str):
|
136 |
with st.spinner("Saving diffusion model... 💾"):
|
|
|
140 |
def generate(self, prompt: str):
|
141 |
return self.pipeline(prompt, num_inference_steps=20).images[0]
|
142 |
|
|
|
143 |
def generate_filename(sequence, ext="png"):
|
144 |
+
return f"{sequence}_{time.strftime('%d%m%Y%H%M%S')}.{ext}"
|
|
|
145 |
|
146 |
def pdf_url_to_filename(url):
|
147 |
+
return re.sub(r'[<>:"/\\|?*]', '_', url) + ".pdf"
|
|
|
|
|
148 |
|
149 |
def get_download_link(file_path, mime_type="application/pdf", label="Download"):
|
150 |
+
return f'<a href="data:{mime_type};base64,{base64.b64encode(open(file_path, "rb").read()).decode()}" download="{os.path.basename(file_path)}">{label}</a>'
|
|
|
|
|
|
|
151 |
|
152 |
def zip_directory(directory_path, zip_path):
|
153 |
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
154 |
+
[zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path)))
|
155 |
+
for root, _, files in os.walk(directory_path) for file in files]
|
|
|
156 |
|
157 |
def get_model_files(model_type="causal_lm"):
|
158 |
+
return [d for d in glob.glob("models/*" if model_type == "causal_lm" else "diffusion_models/*") if os.path.isdir(d)] or ["None"]
|
|
|
159 |
|
160 |
+
def get_gallery_files(file_types=["png", "pdf"]):
|
161 |
+
return sorted(list({f for ext in file_types for f in glob.glob(f"*.{ext}")}))
|
162 |
|
163 |
def get_pdf_files():
|
164 |
return sorted(glob.glob("*.pdf"))
|
|
|
170 |
with open(output_path, "wb") as f:
|
171 |
for chunk in response.iter_content(chunk_size=8192):
|
172 |
f.write(chunk)
|
173 |
+
ret = True
|
174 |
+
else:
|
175 |
+
ret = False
|
176 |
except requests.RequestException as e:
|
177 |
logger.error(f"Failed to download {url}: {e}")
|
178 |
+
ret = False
|
179 |
+
return ret
|
180 |
|
181 |
+
# Async PDF Snapshot: Snap your PDF pages without blocking.
|
182 |
async def process_pdf_snapshot(pdf_path, mode="single"):
|
183 |
start_time = time.time()
|
184 |
status = st.empty()
|
|
|
188 |
output_files = []
|
189 |
if mode == "single":
|
190 |
page = doc[0]
|
191 |
+
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
192 |
output_file = generate_filename("single", "png")
|
193 |
pix.save(output_file)
|
194 |
output_files.append(output_file)
|
195 |
elif mode == "twopage":
|
196 |
for i in range(min(2, len(doc))):
|
197 |
page = doc[i]
|
198 |
+
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
199 |
output_file = generate_filename(f"twopage_{i}", "png")
|
200 |
pix.save(output_file)
|
201 |
output_files.append(output_file)
|
202 |
+
elif mode == "allpages":
|
203 |
for i in range(len(doc)):
|
204 |
page = doc[i]
|
205 |
+
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
206 |
+
output_file = generate_filename(f"page_{i}", "png")
|
207 |
pix.save(output_file)
|
208 |
output_files.append(output_file)
|
209 |
doc.close()
|
210 |
elapsed = int(time.time() - start_time)
|
211 |
status.text(f"PDF Snapshot ({mode}) completed in {elapsed}s!")
|
|
|
212 |
return output_files
|
213 |
except Exception as e:
|
214 |
status.error(f"Failed to process PDF: {str(e)}")
|
215 |
return []
|
216 |
|
217 |
+
# Async OCR: Convert images to text.
|
218 |
async def process_ocr(image, output_file):
|
219 |
start_time = time.time()
|
220 |
status = st.empty()
|
221 |
status.text("Processing GOT-OCR2_0... (0s)")
|
222 |
tokenizer = AutoTokenizer.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True)
|
223 |
model = AutoModel.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval()
|
224 |
+
temp_file = f"temp_{int(time.time())}.png"
|
225 |
+
image.save(temp_file)
|
226 |
+
result = model.chat(tokenizer, temp_file, ocr_type='ocr')
|
227 |
+
os.remove(temp_file)
|
228 |
elapsed = int(time.time() - start_time)
|
229 |
status.text(f"GOT-OCR2_0 completed in {elapsed}s!")
|
230 |
async with aiofiles.open(output_file, "w") as f:
|
231 |
await f.write(result)
|
|
|
232 |
return result
|
233 |
|
234 |
+
# Async Image Gen: Your image genie.
|
235 |
async def process_image_gen(prompt, output_file):
|
236 |
start_time = time.time()
|
237 |
status = st.empty()
|
238 |
status.text("Processing Image Gen... (0s)")
|
239 |
+
pipeline = (st.session_state['builder'].pipeline
|
240 |
+
if st.session_state.get('builder') and isinstance(st.session_state['builder'], DiffusionBuilder)
|
241 |
+
and st.session_state['builder'].pipeline
|
242 |
+
else StableDiffusionPipeline.from_pretrained("OFA-Sys/small-stable-diffusion-v0", torch_dtype=torch.float32).to("cpu"))
|
243 |
gen_image = pipeline(prompt, num_inference_steps=20).images[0]
|
244 |
elapsed = int(time.time() - start_time)
|
245 |
status.text(f"Image Gen completed in {elapsed}s!")
|
246 |
gen_image.save(output_file)
|
|
|
247 |
return gen_image
|
248 |
|
249 |
+
# GPT-Image Interpreter: Turning pixels into prose!
|
250 |
+
def process_image_with_prompt(image, prompt, model="gpt-4o-mini", detail="auto"):
|
251 |
+
buffered = BytesIO()
|
252 |
+
image.save(buffered, format="PNG")
|
253 |
+
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
254 |
+
messages = [{
|
255 |
+
"role": "user",
|
256 |
+
"content": [
|
257 |
+
{"type": "text", "text": prompt},
|
258 |
+
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{img_str}", "detail": detail}}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
]
|
260 |
+
}]
|
261 |
+
try:
|
262 |
+
response = client.chat.completions.create(model=model, messages=messages, max_tokens=300)
|
263 |
+
return response.choices[0].message.content
|
264 |
+
except Exception as e:
|
265 |
+
return f"Error processing image with GPT: {str(e)}"
|
266 |
|
267 |
+
# GPT-Text Alchemist: Merging prompt and text.
|
268 |
+
def process_text_with_prompt(text, prompt, model="gpt-4o-mini"):
|
269 |
+
messages = [{"role": "user", "content": f"{prompt}\n\n{text}"}]
|
270 |
+
try:
|
271 |
+
response = client.chat.completions.create(model=model, messages=messages, max_tokens=300)
|
272 |
+
return response.choices[0].message.content
|
273 |
+
except Exception as e:
|
274 |
+
return f"Error processing text with GPT: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
275 |
|
276 |
+
# ----------------- SIDEBAR UPDATES -----------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
277 |
|
278 |
+
# Sidebar: Gallery Settings
|
279 |
+
st.sidebar.subheader("Gallery Settings")
|
280 |
+
st.session_state.setdefault('gallery_size', 2)
|
281 |
+
st.session_state['gallery_size'] = st.sidebar.slider("Gallery Size", 1, 10, st.session_state['gallery_size'], key="gallery_size_slider")
|
|
|
282 |
|
283 |
+
# ----------------- TAB SETUP -----------------
|
284 |
+
tabs = st.tabs([
|
285 |
+
"Camera Snap 📷", "Download PDFs 📥", "Test OCR 🔍", "Build Titan 🌱",
|
286 |
+
"Test Image Gen 🎨", "PDF Process 📄", "Image Process 🖼️", "MD Gallery 📚"
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
])
|
288 |
+
(tab_camera, tab_download, tab_ocr, tab_build, tab_imggen, tab_pdf_process, tab_image_process, tab_md_gallery) = tabs
|
289 |
|
290 |
+
# ----------------- TAB: Camera Snap -----------------
|
291 |
+
with tab_camera:
|
292 |
st.header("Camera Snap 📷")
|
293 |
st.subheader("Single Capture")
|
294 |
cols = st.columns(2)
|
|
|
296 |
cam0_img = st.camera_input("Take a picture - Cam 0", key="cam0")
|
297 |
if cam0_img:
|
298 |
filename = generate_filename("cam0")
|
299 |
+
if st.session_state['cam0_file'] and os.path.exists(st.session_state['cam0_file']):
|
300 |
+
os.remove(st.session_state['cam0_file'])
|
301 |
with open(filename, "wb") as f:
|
302 |
f.write(cam0_img.getvalue())
|
303 |
+
st.session_state['cam0_file'] = filename
|
304 |
entry = f"Snapshot from Cam 0: {filename}"
|
305 |
+
st.session_state['history'].append(entry)
|
|
|
306 |
st.image(Image.open(filename), caption="Camera 0", use_container_width=True)
|
307 |
logger.info(f"Saved snapshot from Camera 0: {filename}")
|
|
|
308 |
with cols[1]:
|
309 |
cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1")
|
310 |
if cam1_img:
|
311 |
filename = generate_filename("cam1")
|
312 |
+
if st.session_state['cam1_file'] and os.path.exists(st.session_state['cam1_file']):
|
313 |
+
os.remove(st.session_state['cam1_file'])
|
314 |
with open(filename, "wb") as f:
|
315 |
f.write(cam1_img.getvalue())
|
316 |
+
st.session_state['cam1_file'] = filename
|
317 |
entry = f"Snapshot from Cam 1: {filename}"
|
318 |
+
st.session_state['history'].append(entry)
|
|
|
319 |
st.image(Image.open(filename), caption="Camera 1", use_container_width=True)
|
320 |
logger.info(f"Saved snapshot from Camera 1: {filename}")
|
|
|
321 |
|
322 |
+
# ----------------- TAB: Download PDFs -----------------
|
323 |
+
with tab_download:
|
324 |
st.header("Download PDFs 📥")
|
|
|
325 |
if st.button("Examples 📚"):
|
326 |
example_urls = [
|
327 |
+
"https://arxiv.org/pdf/2308.03892",
|
328 |
+
"https://arxiv.org/pdf/1912.01703",
|
329 |
+
"https://arxiv.org/pdf/2408.11039",
|
330 |
+
"https://arxiv.org/pdf/2109.10282",
|
331 |
+
"https://arxiv.org/pdf/2112.10752",
|
332 |
+
"https://arxiv.org/pdf/2308.11236",
|
333 |
+
"https://arxiv.org/pdf/1706.03762",
|
334 |
+
"https://arxiv.org/pdf/2006.11239",
|
335 |
+
"https://arxiv.org/pdf/2305.11207",
|
336 |
+
"https://arxiv.org/pdf/2106.09685",
|
337 |
+
"https://arxiv.org/pdf/2005.11401",
|
338 |
+
"https://arxiv.org/pdf/2106.10504"
|
339 |
]
|
340 |
st.session_state['pdf_urls'] = "\n".join(example_urls)
|
|
|
|
|
341 |
url_input = st.text_area("Enter PDF URLs (one per line)", value=st.session_state.get('pdf_urls', ""), height=200)
|
342 |
if st.button("Robo-Download 🤖"):
|
343 |
urls = url_input.strip().split("\n")
|
|
|
354 |
st.session_state['downloaded_pdfs'][url] = output_path
|
355 |
logger.info(f"Downloaded PDF from {url} to {output_path}")
|
356 |
entry = f"Downloaded PDF: {output_path}"
|
357 |
+
st.session_state['history'].append(entry)
|
358 |
+
st.session_state['asset_checkboxes'][output_path] = True
|
359 |
else:
|
360 |
st.error(f"Failed to nab {url} 😿")
|
361 |
else:
|
|
|
363 |
st.session_state['downloaded_pdfs'][url] = output_path
|
364 |
progress_bar.progress((idx + 1) / total_urls)
|
365 |
status_text.text("Robo-Download complete! 🚀")
|
366 |
+
mode = st.selectbox("Snapshot Mode", ["Single Page (High-Res)", "Two Pages (High-Res)", "All Pages (High-Res)"], key="download_mode")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
367 |
if st.button("Snapshot Selected 📸"):
|
368 |
+
selected_pdfs = [path for path in get_gallery_files() if path.endswith('.pdf') and st.session_state['asset_checkboxes'].get(path, False)]
|
369 |
if selected_pdfs:
|
370 |
for pdf_path in selected_pdfs:
|
371 |
+
if not os.path.exists(pdf_path):
|
372 |
+
st.warning(f"File not found: {pdf_path}. Skipping.")
|
373 |
+
continue
|
374 |
+
mode_key = {"Single Page (High-Res)": "single",
|
375 |
+
"Two Pages (High-Res)": "twopage",
|
376 |
+
"All Pages (High-Res)": "allpages"}[mode]
|
377 |
snapshots = asyncio.run(process_pdf_snapshot(pdf_path, mode_key))
|
378 |
for snapshot in snapshots:
|
379 |
st.image(Image.open(snapshot), caption=snapshot, use_container_width=True)
|
380 |
+
st.session_state['asset_checkboxes'][snapshot] = True
|
381 |
+
# No update_gallery() call here; will update once later.
|
382 |
else:
|
383 |
+
st.warning("No PDFs selected for snapshotting! Check some boxes in the sidebar.")
|
384 |
|
385 |
+
# ----------------- TAB: Test OCR -----------------
|
386 |
+
with tab_ocr:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
387 |
st.header("Test OCR 🔍")
|
388 |
+
all_files = get_gallery_files()
|
|
|
|
|
389 |
if all_files:
|
390 |
+
if st.button("OCR All Assets 🚀"):
|
391 |
+
full_text = "# OCR Results\n\n"
|
392 |
+
for file in all_files:
|
393 |
+
if file.endswith('.png'):
|
394 |
+
image = Image.open(file)
|
395 |
+
else:
|
396 |
+
doc = fitz.open(file)
|
397 |
+
pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
398 |
+
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
399 |
+
doc.close()
|
400 |
+
output_file = generate_filename(f"ocr_{os.path.basename(file)}", "txt")
|
401 |
+
result = asyncio.run(process_ocr(image, output_file))
|
402 |
+
full_text += f"## {os.path.basename(file)}\n\n{result}\n\n"
|
403 |
+
entry = f"OCR Test: {file} -> {output_file}"
|
404 |
+
st.session_state['history'].append(entry)
|
405 |
+
md_output_file = f"full_ocr_{int(time.time())}.md"
|
406 |
+
with open(md_output_file, "w") as f:
|
407 |
+
f.write(full_text)
|
408 |
+
st.success(f"Full OCR saved to {md_output_file}")
|
409 |
+
st.markdown(get_download_link(md_output_file, "text/markdown", "Download Full OCR Markdown"), unsafe_allow_html=True)
|
410 |
selected_file = st.selectbox("Select Image or PDF", all_files, key="ocr_select")
|
411 |
if selected_file:
|
412 |
if selected_file.endswith('.png'):
|
|
|
422 |
st.session_state['processing']['ocr'] = True
|
423 |
result = asyncio.run(process_ocr(image, output_file))
|
424 |
entry = f"OCR Test: {selected_file} -> {output_file}"
|
425 |
+
st.session_state['history'].append(entry)
|
|
|
426 |
st.text_area("OCR Result", result, height=200, key="ocr_result")
|
427 |
st.success(f"OCR output saved to {output_file}")
|
428 |
st.session_state['processing']['ocr'] = False
|
429 |
+
if selected_file.endswith('.pdf') and st.button("OCR All Pages 🚀", key="ocr_all_pages"):
|
430 |
+
doc = fitz.open(selected_file)
|
431 |
+
full_text = f"# OCR Results for {os.path.basename(selected_file)}\n\n"
|
432 |
+
for i in range(len(doc)):
|
433 |
+
pix = doc[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
434 |
+
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
435 |
+
output_file = generate_filename(f"ocr_page_{i}", "txt")
|
436 |
+
result = asyncio.run(process_ocr(image, output_file))
|
437 |
+
full_text += f"## Page {i + 1}\n\n{result}\n\n"
|
438 |
+
entry = f"OCR Test: {selected_file} Page {i + 1} -> {output_file}"
|
439 |
+
st.session_state['history'].append(entry)
|
440 |
+
md_output_file = f"full_ocr_{os.path.basename(selected_file)}_{int(time.time())}.md"
|
441 |
+
with open(md_output_file, "w") as f:
|
442 |
+
f.write(full_text)
|
443 |
+
st.success(f"Full OCR saved to {md_output_file}")
|
444 |
+
st.markdown(get_download_link(md_output_file, "text/markdown", "Download Full OCR Markdown"), unsafe_allow_html=True)
|
445 |
else:
|
446 |
+
st.warning("No assets in gallery yet. Use Camera Snap or Download PDFs!")
|
447 |
|
448 |
+
# ----------------- TAB: Build Titan -----------------
|
449 |
+
with tab_build:
|
450 |
+
st.header("Build Titan 🌱")
|
451 |
+
model_type = st.selectbox("Model Type", ["Causal LM", "Diffusion"], key="build_type")
|
452 |
+
base_model = st.selectbox(
|
453 |
+
"Select Tiny Model",
|
454 |
+
["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"] if model_type == "Causal LM"
|
455 |
+
else ["OFA-Sys/small-stable-diffusion-v0", "stabilityai/stable-diffusion-2-base"]
|
456 |
+
)
|
457 |
+
model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}")
|
458 |
+
domain = st.text_input("Target Domain", "general")
|
459 |
+
if st.button("Download Model ⬇️"):
|
460 |
+
config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(
|
461 |
+
name=model_name, base_model=base_model, size="small", domain=domain
|
462 |
+
)
|
463 |
+
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
|
464 |
+
builder.load_model(base_model, config)
|
465 |
+
builder.save_model(config.model_path)
|
466 |
+
st.session_state['builder'] = builder
|
467 |
+
st.session_state['model_loaded'] = True
|
468 |
+
st.session_state['selected_model_type'] = model_type
|
469 |
+
st.session_state['selected_model'] = config.model_path
|
470 |
+
entry = f"Built {model_type} model: {model_name}"
|
471 |
+
st.session_state['history'].append(entry)
|
472 |
+
st.success(f"Model downloaded and saved to {config.model_path}! 🎉")
|
473 |
+
st.experimental_rerun()
|
474 |
+
|
475 |
+
# ----------------- TAB: Test Image Gen -----------------
|
476 |
+
with tab_imggen:
|
477 |
st.header("Test Image Gen 🎨")
|
478 |
+
all_files = get_gallery_files()
|
|
|
|
|
479 |
if all_files:
|
480 |
selected_file = st.selectbox("Select Image or PDF", all_files, key="gen_select")
|
481 |
if selected_file:
|
|
|
487 |
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
488 |
doc.close()
|
489 |
st.image(image, caption="Reference Image", use_container_width=True)
|
490 |
+
prompt = st.text_area("Prompt", "Generate a neon superhero version of this image", key="gen_prompt")
|
491 |
if st.button("Run Image Gen 🚀", key="gen_run"):
|
492 |
output_file = generate_filename("gen_output", "png")
|
493 |
st.session_state['processing']['gen'] = True
|
494 |
result = asyncio.run(process_image_gen(prompt, output_file))
|
495 |
entry = f"Image Gen Test: {prompt} -> {output_file}"
|
496 |
+
st.session_state['history'].append(entry)
|
|
|
497 |
st.image(result, caption="Generated Image", use_container_width=True)
|
498 |
st.success(f"Image saved to {output_file}")
|
499 |
st.session_state['processing']['gen'] = False
|
500 |
else:
|
501 |
+
st.warning("No images or PDFs in gallery yet. Use Camera Snap or Download PDFs!")
|
502 |
+
|
503 |
+
# ----------------- TAB: PDF Process -----------------
|
504 |
+
with tab_pdf_process:
|
505 |
+
st.header("PDF Process")
|
506 |
+
st.subheader("Upload PDFs for GPT-based text extraction")
|
507 |
+
gpt_models = ["gpt-4o", "gpt-4o-mini"]
|
508 |
+
selected_gpt_model = st.selectbox("Select GPT Model", gpt_models, key="pdf_gpt_model")
|
509 |
+
detail_level = st.selectbox("Detail Level", ["auto", "low", "high"], key="pdf_detail_level")
|
510 |
+
uploaded_pdfs = st.file_uploader("Upload PDF files", type=["pdf"], accept_multiple_files=True, key="pdf_process_uploader")
|
511 |
+
view_mode = st.selectbox("View Mode", ["Single Page", "Double Page"], key="pdf_view_mode")
|
512 |
+
if st.button("Process Uploaded PDFs", key="process_pdfs"):
|
513 |
+
combined_text = ""
|
514 |
+
for pdf_file in uploaded_pdfs:
|
515 |
+
pdf_bytes = pdf_file.read()
|
516 |
+
temp_pdf_path = f"temp_{pdf_file.name}"
|
517 |
+
with open(temp_pdf_path, "wb") as f:
|
518 |
+
f.write(pdf_bytes)
|
519 |
+
try:
|
520 |
+
doc = fitz.open(temp_pdf_path)
|
521 |
+
st.write(f"Processing {pdf_file.name} with {len(doc)} pages")
|
522 |
+
if view_mode == "Single Page":
|
523 |
+
for i, page in enumerate(doc):
|
524 |
+
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
525 |
+
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
526 |
+
st.image(img, caption=f"{pdf_file.name} Page {i+1}")
|
527 |
+
gpt_text = process_image_with_prompt(img, "Extract the electronic text from image", model=selected_gpt_model, detail=detail_level)
|
528 |
+
combined_text += f"\n## {pdf_file.name} - Page {i+1}\n\n{gpt_text}\n"
|
529 |
+
else:
|
530 |
+
pages = list(doc)
|
531 |
+
for i in range(0, len(pages), 2):
|
532 |
+
if i+1 < len(pages):
|
533 |
+
pix1 = pages[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
534 |
+
img1 = Image.frombytes("RGB", [pix1.width, pix1.height], pix1.samples)
|
535 |
+
pix2 = pages[i+1].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
536 |
+
img2 = Image.frombytes("RGB", [pix2.width, pix2.height], pix2.samples)
|
537 |
+
total_width = img1.width + img2.width
|
538 |
+
max_height = max(img1.height, img2.height)
|
539 |
+
combined_img = Image.new("RGB", (total_width, max_height))
|
540 |
+
combined_img.paste(img1, (0, 0))
|
541 |
+
combined_img.paste(img2, (img1.width, 0))
|
542 |
+
st.image(combined_img, caption=f"{pdf_file.name} Pages {i+1}-{i+2}")
|
543 |
+
gpt_text = process_image_with_prompt(combined_img, "Extract the electronic text from image", model=selected_gpt_model, detail=detail_level)
|
544 |
+
combined_text += f"\n## {pdf_file.name} - Pages {i+1}-{i+2}\n\n{gpt_text}\n"
|
545 |
+
else:
|
546 |
+
pix = pages[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
547 |
+
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
548 |
+
st.image(img, caption=f"{pdf_file.name} Page {i+1}")
|
549 |
+
gpt_text = process_image_with_prompt(img, "Extract the electronic text from image", model=selected_gpt_model, detail=detail_level)
|
550 |
+
combined_text += f"\n## {pdf_file.name} - Page {i+1}\n\n{gpt_text}\n"
|
551 |
doc.close()
|
552 |
+
except Exception as e:
|
553 |
+
st.error(f"Error processing {pdf_file.name}: {str(e)}")
|
554 |
+
finally:
|
555 |
+
os.remove(temp_pdf_path)
|
556 |
+
output_filename = generate_filename("processed_pdf", "md")
|
557 |
+
with open(output_filename, "w", encoding="utf-8") as f:
|
558 |
+
f.write(combined_text)
|
559 |
+
st.success(f"PDF processing complete. MD file saved as {output_filename}")
|
560 |
+
st.markdown(get_download_link(output_filename, "text/markdown", "Download Processed PDF MD"), unsafe_allow_html=True)
|
561 |
+
|
562 |
+
# ----------------- TAB: Image Process -----------------
|
563 |
+
with tab_image_process:
|
564 |
+
st.header("Image Process")
|
565 |
+
st.subheader("Upload Images for GPT-based OCR")
|
566 |
+
gpt_models = ["gpt-4o", "gpt-4o-mini"]
|
567 |
+
selected_gpt_model = st.selectbox("Select GPT Model", gpt_models, key="img_gpt_model")
|
568 |
+
detail_level = st.selectbox("Detail Level", ["auto", "low", "high"], key="img_detail_level")
|
569 |
+
prompt_img = st.text_input("Enter prompt for image processing", "Extract the electronic text from image", key="img_process_prompt")
|
570 |
+
uploaded_images = st.file_uploader("Upload image files", type=["png", "jpg", "jpeg"], accept_multiple_files=True, key="image_process_uploader")
|
571 |
+
if st.button("Process Uploaded Images", key="process_images"):
|
572 |
+
combined_text = ""
|
573 |
+
for img_file in uploaded_images:
|
574 |
+
try:
|
575 |
+
img = Image.open(img_file)
|
576 |
+
st.image(img, caption=img_file.name)
|
577 |
+
gpt_text = process_image_with_prompt(img, prompt_img, model=selected_gpt_model, detail=detail_level)
|
578 |
+
combined_text += f"\n## {img_file.name}\n\n{gpt_text}\n"
|
579 |
+
except Exception as e:
|
580 |
+
st.error(f"Error processing image {img_file.name}: {str(e)}")
|
581 |
+
output_filename = generate_filename("processed_image", "md")
|
582 |
+
with open(output_filename, "w", encoding="utf-8") as f:
|
583 |
+
f.write(combined_text)
|
584 |
+
st.success(f"Image processing complete. MD file saved as {output_filename}")
|
585 |
+
st.markdown(get_download_link(output_filename, "text/markdown", "Download Processed Image MD"), unsafe_allow_html=True)
|
586 |
+
|
587 |
+
# ----------------- TAB: MD Gallery -----------------
|
588 |
+
with tab_md_gallery:
|
589 |
+
st.header("MD Gallery and GPT Processing")
|
590 |
+
gpt_models = ["gpt-4o", "gpt-4o-mini"]
|
591 |
+
selected_gpt_model = st.selectbox("Select GPT Model", gpt_models, key="md_gpt_model")
|
592 |
+
md_files = sorted(glob.glob("*.md"))
|
593 |
+
if md_files:
|
594 |
+
st.subheader("Individual File Processing")
|
595 |
+
cols = st.columns(2)
|
596 |
+
for idx, md_file in enumerate(md_files):
|
597 |
+
with cols[idx % 2]:
|
598 |
+
st.write(md_file)
|
599 |
+
if st.button(f"Process {md_file}", key=f"process_md_{md_file}"):
|
600 |
+
try:
|
601 |
+
with open(md_file, "r", encoding="utf-8") as f:
|
602 |
+
content = f.read()
|
603 |
+
prompt_md = "Summarize this into markdown outline with emojis and number the topics 1..12"
|
604 |
+
result_text = process_text_with_prompt(content, prompt_md, model=selected_gpt_model)
|
605 |
+
st.markdown(result_text)
|
606 |
+
output_filename = generate_filename(f"processed_{os.path.splitext(md_file)[0]}", "md")
|
607 |
+
with open(output_filename, "w", encoding="utf-8") as f:
|
608 |
+
f.write(result_text)
|
609 |
+
st.markdown(get_download_link(output_filename, "text/markdown", f"Download {output_filename}"), unsafe_allow_html=True)
|
610 |
+
except Exception as e:
|
611 |
+
st.error(f"Error processing {md_file}: {str(e)}")
|
612 |
+
st.subheader("Batch Processing")
|
613 |
+
st.write("Select MD files to combine and process:")
|
614 |
+
selected_md = {}
|
615 |
+
for md_file in md_files:
|
616 |
+
selected_md[md_file] = st.checkbox(md_file, key=f"checkbox_md_{md_file}")
|
617 |
+
batch_prompt = st.text_input("Enter batch processing prompt", "Summarize this into markdown outline with emojis and number the topics 1..12", key="batch_prompt")
|
618 |
+
if st.button("Process Selected MD Files", key="process_batch_md"):
|
619 |
+
combined_content = ""
|
620 |
+
for md_file, selected in selected_md.items():
|
621 |
+
if selected:
|
622 |
+
try:
|
623 |
+
with open(md_file, "r", encoding="utf-8") as f:
|
624 |
+
combined_content += f"\n## {md_file}\n" + f.read() + "\n"
|
625 |
+
except Exception as e:
|
626 |
+
st.error(f"Error reading {md_file}: {str(e)}")
|
627 |
+
if combined_content:
|
628 |
+
result_text = process_text_with_prompt(combined_content, batch_prompt, model=selected_gpt_model)
|
629 |
+
st.markdown(result_text)
|
630 |
+
output_filename = generate_filename("batch_processed_md", "md")
|
631 |
+
with open(output_filename, "w", encoding="utf-8") as f:
|
632 |
+
f.write(result_text)
|
633 |
+
st.success(f"Batch processing complete. MD file saved as {output_filename}")
|
634 |
+
st.markdown(get_download_link(output_filename, "text/markdown", "Download Batch Processed MD"), unsafe_allow_html=True)
|
635 |
else:
|
636 |
+
st.warning("No MD files selected.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
637 |
else:
|
638 |
+
st.warning("No MD files found.")
|
639 |
|
640 |
+
# ----------------- FINAL SIDEBAR UPDATE -----------------
|
641 |
+
# Update the asset gallery once (using its container).
|
642 |
+
def update_gallery():
|
643 |
+
container = st.session_state['asset_gallery_container']
|
644 |
+
container.empty() # Clear previous gallery content.
|
645 |
+
all_files = get_gallery_files()
|
646 |
+
if all_files:
|
647 |
+
container.markdown("### Asset Gallery 📸📖")
|
648 |
+
cols = container.columns(2)
|
649 |
+
for idx, file in enumerate(all_files[:st.session_state['gallery_size']]):
|
650 |
+
with cols[idx % 2]:
|
651 |
+
st.session_state['unique_counter'] += 1
|
652 |
+
unique_id = st.session_state['unique_counter']
|
653 |
+
if file.endswith('.png'):
|
654 |
+
st.image(Image.open(file), caption=os.path.basename(file), use_container_width=True)
|
655 |
+
else:
|
656 |
+
doc = fitz.open(file)
|
657 |
+
pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5))
|
658 |
+
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
659 |
+
st.image(img, caption=os.path.basename(file), use_container_width=True)
|
660 |
+
doc.close()
|
661 |
+
checkbox_key = f"asset_{file}_{unique_id}"
|
662 |
+
st.session_state['asset_checkboxes'][file] = st.checkbox("Use for SFT/Input", value=st.session_state['asset_checkboxes'].get(file, False), key=checkbox_key)
|
663 |
+
mime_type = "image/png" if file.endswith('.png') else "application/pdf"
|
664 |
+
st.markdown(get_download_link(file, mime_type, "Snag It! 📥"), unsafe_allow_html=True)
|
665 |
+
if st.button("Zap It! 🗑️", key=f"delete_{file}_{unique_id}"):
|
666 |
+
os.remove(file)
|
667 |
+
st.session_state['asset_checkboxes'].pop(file, None)
|
668 |
+
st.success(f"Asset {os.path.basename(file)} vaporized! 💨")
|
669 |
+
st.experimental_rerun()
|
670 |
+
|
671 |
+
# Call the gallery update once after all tabs have been processed.
|
672 |
+
update_gallery()
|
673 |
+
|
674 |
+
# Finally, update the Action Logs and History in the sidebar.
|
675 |
+
st.sidebar.subheader("Action Logs 📜")
|
676 |
+
for record in log_records:
|
677 |
+
st.sidebar.write(f"{record.asctime} - {record.levelname} - {record.message}")
|
678 |
+
|
679 |
+
st.sidebar.subheader("History 📜")
|
680 |
+
for entry in st.session_state.get("history", []):
|
681 |
+
if entry is not None:
|
682 |
+
st.sidebar.write(entry)
|