awacke1 commited on
Commit
67a1ae5
·
verified ·
1 Parent(s): fd6dbac

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -21
README.md CHANGED
@@ -10,35 +10,33 @@ pinned: false
10
  license: mit
11
  short_description: Torch Transformers Diffusion SFT for Computer Vision
12
  ---
13
-
14
  ## Abstract
15
- Harness `torch`, `transformers`, and `diffusers` for SFT-powered NLP and CV! Dual `st.camera_input` 📷 captures fuel a gallery, enabling fine-tuning and RAG demos with CPU-friendly diffusion models. Key papers:
16
 
17
- - 🌐 **[Streamlit: A Declarative Framework](https://arxiv.org/abs/2308.03892)** - Thiessen et al., 2023: UI magic.
18
- - 🔥 **[PyTorch: High-Performance DL](https://arxiv.org/abs/1912.01703)** - Paszke et al., 2019: Torch core.
19
  - 🧠 **[Attention is All You Need](https://arxiv.org/abs/1706.03762)** - Vaswani et al., 2017: NLP transformers.
20
- - 🎨 **[Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239)** - Ho et al., 2020: DDPM foundation.
21
- - 📊 **[Pandas: Data Analysis in Python](https://arxiv.org/abs/2305.11207)** - McKinney, 2010: Data handling.
22
- - 🖼️ **[Pillow: Python Imaging](https://arxiv.org/abs/2308.11234)** - Clark et al., 2023: Image processing.
23
- - ⏰ **[pytz: Time Zone Calculations](https://arxiv.org/abs/2308.11235)** - Henshaw, 2023: Time zones.
24
- - 👁️ **[OpenCV: Computer Vision](https://arxiv.org/abs/2308.11236)** - Bradski, 2000: CV tools.
25
- - 🎨 **[Latent Diffusion Models](https://arxiv.org/abs/2112.10752)** - Rombach et al., 2022: Efficient CV.
26
- - ⚙️ **[LoRA: Low-Rank Adaptation](https://arxiv.org/abs/2106.09685)** - Hu et al., 2021: SFT efficiency.
27
- - 🔍 **[Retrieval-Augmented Generation](https://arxiv.org/abs/2005.11401)** - Lewis et al., 2020: RAG base.
28
 
29
- Run: `pip install -r requirements.txt`, `streamlit run ${app_file}`. Snap, tune, party! ${emoji}
30
 
31
  ## Usage 🎯
32
- - 📷 **Camera Snap**: Capture pics with dual cams, save PNGs.
33
- - Single: Click "Take a picture".
34
- - Burst: Set slice count, click "Capture X Frames 📸".
35
- - 🔧 **SFT**: Fine-tune Causal LM with CSV or Diffusion with image-text pairs.
36
- - 🌱 **Build**: Load CPU diffusion models:
37
- - 🎨 `OFA-Sys/small-stable-diffusion-v0` (~300 MB, LDM/Conditional).
38
- - 🌫️ `google/ddpm-ema-celebahq-256` (~280 MB, DDPM/SDE/Autoregressive Proxy).
39
- - 🧪 **Test**: Pair text with images, pick pipeline, hit "Run Test 🚀".
40
  - 🌐 **RAG Party**: NLP plans or CV images for superhero bashes!
41
 
 
42
  Tune NLP 🧠 or CV 🎨 fast! Texts 📝 or pics 📸, SFT shines ✨. `pip install -r requirements.txt`, `streamlit run app.py`. Snap cams 📷, craft art—AI’s lean & mean! 🎉 #SFTSpeed
43
 
44
  # SFT Tiny Titans 🚀 (Small Diffusion Delight!)
 
10
  license: mit
11
  short_description: Torch Transformers Diffusion SFT for Computer Vision
12
  ---
 
13
  ## Abstract
14
+ Fuse `torch`, `transformers`, and `diffusers` for SFT-powered NLP and CV! Dual `st.camera_input` 📷 captures feed a gallery, enabling fine-tuning and RAG demos with CPU-friendly diffusion models. Key papers:
15
 
16
+ - 🌐 **[Streamlit Framework](https://arxiv.org/abs/2308.03892)** - Thiessen et al., 2023: UI magic.
17
+ - 🔥 **[PyTorch DL](https://arxiv.org/abs/1912.01703)** - Paszke et al., 2019: Torch core.
18
  - 🧠 **[Attention is All You Need](https://arxiv.org/abs/1706.03762)** - Vaswani et al., 2017: NLP transformers.
19
+ - 🎨 **[DDPM](https://arxiv.org/abs/2006.11239)** - Ho et al., 2020: Denoising diffusion.
20
+ - 📊 **[Pandas](https://arxiv.org/abs/2305.11207)** - McKinney, 2010: Data handling.
21
+ - 🖼️ **[Pillow](https://arxiv.org/abs/2308.11234)** - Clark et al., 2023: Image processing.
22
+ - ⏰ **[pytz](https://arxiv.org/abs/2308.11235)** - Henshaw, 2023: Time zones.
23
+ - 👁️ **[OpenCV](https://arxiv.org/abs/2308.11236)** - Bradski, 2000: CV tools.
24
+ - 🎨 **[LDM](https://arxiv.org/abs/2112.10752)** - Rombach et al., 2022: Latent diffusion.
25
+ - ⚙️ **[LoRA](https://arxiv.org/abs/2106.09685)** - Hu et al., 2021: SFT efficiency.
26
+ - 🔍 **[RAG](https://arxiv.org/abs/2005.11401)** - Lewis et al., 2020: Retrieval-augmented generation.
27
 
28
+ Run: `pip install -r requirements.txt`, `streamlit run ${app_file}`. Build, snap, party! ${emoji}
29
 
30
  ## Usage 🎯
31
+ - 🌱📷 **Build Titan & Camera Snap**:
32
+ - 🎨 **Use Model**: Run `OFA-Sys/small-stable-diffusion-v0` (~300 MB) or `google/ddpm-ema-celebahq-256` (~280 MB) online.
33
+ - ⬇️ **Download Model**: Save <500 MB diffusion models locally.
34
+ - 📷 **Snap**: Capture unique PNGs with dual cams.
35
+ - 🔧 **SFT**: Tune Causal LM with CSV or Diffusion with image-text pairs.
36
+ - 🧪 **Test**: Pair text with images, select pipeline, hit "Run Test 🚀".
 
 
37
  - 🌐 **RAG Party**: NLP plans or CV images for superhero bashes!
38
 
39
+
40
  Tune NLP 🧠 or CV 🎨 fast! Texts 📝 or pics 📸, SFT shines ✨. `pip install -r requirements.txt`, `streamlit run app.py`. Snap cams 📷, craft art—AI’s lean & mean! 🎉 #SFTSpeed
41
 
42
  # SFT Tiny Titans 🚀 (Small Diffusion Delight!)