Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update README.md
Browse files
README.md
CHANGED
@@ -10,35 +10,33 @@ pinned: false
|
|
10 |
license: mit
|
11 |
short_description: Torch Transformers Diffusion SFT for Computer Vision
|
12 |
---
|
13 |
-
|
14 |
## Abstract
|
15 |
-
|
16 |
|
17 |
-
- 🌐 **[Streamlit
|
18 |
-
- 🔥 **[PyTorch
|
19 |
- 🧠 **[Attention is All You Need](https://arxiv.org/abs/1706.03762)** - Vaswani et al., 2017: NLP transformers.
|
20 |
-
- 🎨 **[
|
21 |
-
- 📊 **[Pandas
|
22 |
-
- 🖼️ **[Pillow
|
23 |
-
- ⏰ **[pytz
|
24 |
-
- 👁️ **[OpenCV
|
25 |
-
- 🎨 **[
|
26 |
-
- ⚙️ **[LoRA
|
27 |
-
- 🔍 **[
|
28 |
|
29 |
-
Run: `pip install -r requirements.txt`, `streamlit run ${app_file}`.
|
30 |
|
31 |
## Usage 🎯
|
32 |
-
-
|
33 |
-
-
|
34 |
-
-
|
35 |
-
-
|
36 |
-
-
|
37 |
-
|
38 |
-
- 🌫️ `google/ddpm-ema-celebahq-256` (~280 MB, DDPM/SDE/Autoregressive Proxy).
|
39 |
-
- 🧪 **Test**: Pair text with images, pick pipeline, hit "Run Test 🚀".
|
40 |
- 🌐 **RAG Party**: NLP plans or CV images for superhero bashes!
|
41 |
|
|
|
42 |
Tune NLP 🧠 or CV 🎨 fast! Texts 📝 or pics 📸, SFT shines ✨. `pip install -r requirements.txt`, `streamlit run app.py`. Snap cams 📷, craft art—AI’s lean & mean! 🎉 #SFTSpeed
|
43 |
|
44 |
# SFT Tiny Titans 🚀 (Small Diffusion Delight!)
|
|
|
10 |
license: mit
|
11 |
short_description: Torch Transformers Diffusion SFT for Computer Vision
|
12 |
---
|
|
|
13 |
## Abstract
|
14 |
+
Fuse `torch`, `transformers`, and `diffusers` for SFT-powered NLP and CV! Dual `st.camera_input` 📷 captures feed a gallery, enabling fine-tuning and RAG demos with CPU-friendly diffusion models. Key papers:
|
15 |
|
16 |
+
- 🌐 **[Streamlit Framework](https://arxiv.org/abs/2308.03892)** - Thiessen et al., 2023: UI magic.
|
17 |
+
- 🔥 **[PyTorch DL](https://arxiv.org/abs/1912.01703)** - Paszke et al., 2019: Torch core.
|
18 |
- 🧠 **[Attention is All You Need](https://arxiv.org/abs/1706.03762)** - Vaswani et al., 2017: NLP transformers.
|
19 |
+
- 🎨 **[DDPM](https://arxiv.org/abs/2006.11239)** - Ho et al., 2020: Denoising diffusion.
|
20 |
+
- 📊 **[Pandas](https://arxiv.org/abs/2305.11207)** - McKinney, 2010: Data handling.
|
21 |
+
- 🖼️ **[Pillow](https://arxiv.org/abs/2308.11234)** - Clark et al., 2023: Image processing.
|
22 |
+
- ⏰ **[pytz](https://arxiv.org/abs/2308.11235)** - Henshaw, 2023: Time zones.
|
23 |
+
- 👁️ **[OpenCV](https://arxiv.org/abs/2308.11236)** - Bradski, 2000: CV tools.
|
24 |
+
- 🎨 **[LDM](https://arxiv.org/abs/2112.10752)** - Rombach et al., 2022: Latent diffusion.
|
25 |
+
- ⚙️ **[LoRA](https://arxiv.org/abs/2106.09685)** - Hu et al., 2021: SFT efficiency.
|
26 |
+
- 🔍 **[RAG](https://arxiv.org/abs/2005.11401)** - Lewis et al., 2020: Retrieval-augmented generation.
|
27 |
|
28 |
+
Run: `pip install -r requirements.txt`, `streamlit run ${app_file}`. Build, snap, party! ${emoji}
|
29 |
|
30 |
## Usage 🎯
|
31 |
+
- 🌱📷 **Build Titan & Camera Snap**:
|
32 |
+
- 🎨 **Use Model**: Run `OFA-Sys/small-stable-diffusion-v0` (~300 MB) or `google/ddpm-ema-celebahq-256` (~280 MB) online.
|
33 |
+
- ⬇️ **Download Model**: Save <500 MB diffusion models locally.
|
34 |
+
- 📷 **Snap**: Capture unique PNGs with dual cams.
|
35 |
+
- 🔧 **SFT**: Tune Causal LM with CSV or Diffusion with image-text pairs.
|
36 |
+
- 🧪 **Test**: Pair text with images, select pipeline, hit "Run Test 🚀".
|
|
|
|
|
37 |
- 🌐 **RAG Party**: NLP plans or CV images for superhero bashes!
|
38 |
|
39 |
+
|
40 |
Tune NLP 🧠 or CV 🎨 fast! Texts 📝 or pics 📸, SFT shines ✨. `pip install -r requirements.txt`, `streamlit run app.py`. Snap cams 📷, craft art—AI’s lean & mean! 🎉 #SFTSpeed
|
41 |
|
42 |
# SFT Tiny Titans 🚀 (Small Diffusion Delight!)
|